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Abstract—This paper presents a link-simulation model for
cooperative indoor communication systems at 2.4 GHz, based
on empirical data. The channel simulator relies on a simple
formulation, and takes into account the impact of the node
mobility on fading and shadowing statistics. This implementation
is then applied to the evaluation of the cooperative system
performance in terms of network lifetime.

I. I NTRODUCTION

In peer-to-peer networks, cooperation is a promising tech-
nology to increase reliability and spectral efficiency [1],[2].
The basic idea is to allow nodes to “help” other nodes
with their communication by exploiting the broadcast nature
of the wireless channel. In such networks, especially when
the distributed multi-link channel is non-homogeneous, the
selection of the best relay can even provide better performance
compared to existing distributed space-time codes [3]. A par-
ticularity of cooperative systems is that shadowing correlation
between different links can significantly affect the performance
of the network compared to the case where the shadow fading
is assumed to be identically and independently distributed
(i.i.d.) [4], [5]. Additionally, the peer-to-peer channelstatistics,
including the aforementioned shadowing correlation, might be
significantly affected by the node mobility. As some nodes
might move, while other nodes might remain static, we make
a distinction between three types of mobility:

• single-mobile scenarios: either the receiver (Rx) or trans-
mitter (Tx) is moving,

• double-mobile scenarios: terminals at both link ends are
moving,

• nomadic scenarios: both terminals are static, although
they can be located almost anywhere in the region of
interest, most often in non line-of-sight from each other.

The goal of this paper is to propose a multi-link simulation
model for peer-to-peer cooperative (a.k.a. distributed) radio
channels based on the experimental results of [6], [7]. We
first summarize the main results of [6], [7], and then propose

a model implementation under the form of a generic model
whose parameters are extracted from measured data. A typ-
ical application is then outlined illustrating how the channel
impacts the partner selection in indoor cooperative networks.

II. EXPERIMENTAL RESULTS

In [6], [7], indoor-to-indoor (I2I) distributed channels were
analyzed based on a wideband experimental campaign at 2.4
GHz. The main findings can be summarized as follows:

• To accurately account for the different node mobility
scenarios in distributed channels, shadowing was divided
into static and dynamic shadowing, the former being
time-invariant and defined as the difference between the
average received power at a given location to the received
power predicted by a deterministic path-loss law.

• For nomadic links, the standard deviation of lognormal
dynamic shadowing is positively correlated with the
range. For mobile links, it is similar at all ranges.

• In all cases, the dynamic shadowing correlation can be
high (positively or negatively) and is related to the node
mobility: the average correlation between two links is
found to be more positive when both links share a
common moving node.

• For nomadic scenarios, small-scale fading is well ap-
proximated by a Ricean or a m-Nakagami distribution
whose parameters (K-factor and m-parameter) decrease
with increasing range.

• For mobile transmissions, the fading amplitude can be
modeled by a single distribution consisting of a weighted
combination of Ricean and Double-Rayleigh distribu-
tions. The Double-Rayleigh fading component is signifi-
cantly stronger when both Tx and Rx nodes are moving
as opposed to only one of them moving.

In addition to the results detailed above, a further and finer
analysis reveals that in nomadic channels, static shadowing
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itself can be divided into two contributions: (i) a frequency-
invariant (or space-invariant) obstruction loss, which iscom-
mon with mobile links, and (ii) a spatial fading related term,
which models the static multipath interference. In that sense,
this part of static shadowing, which only exists for static links,
has the same origin as spatial, or equivalently, frequency-
selective fading. Since this contribution does not lead to any
temporal variation, we have decided to include it under the
shadowing contribution, rather than into fading. This is a
particularity of nomadic links, where temporal and spatial(or
frequency) fading behaviors are unrelated as they are caused
by different mechanisms. Therefore, they must be modeled
on a separate basis, by contrast to mobile scenarios, where
static shadowing only represents the classical time-invariant
obstruction of the link (e.g. by fixed furniture or static people),
and is thus frequency/space invariant.

III. M ODEL IMPLEMENTATION

The narrowband complex channelhmn from indoor node
m to indoor noden is described by

hmn(t) =
1

10Lmn/20 · 10S̃mn(t)/20
· gmn(t). (1)

The various contributions are modeled as described in the
following sections.

A. Path Loss and Static Shadowing

The path loss and static shadowing combined inLmn are
modeled as outlined by

L = L0 + 1.75 · 10 log10

(

d

d0

)

+ S̄o − 20 log10 s̄s, (2)

whered = dmn is the range, andL0 is the reference path-
loss in line-of-sight atd0 = 1 m. We further consider that
the obstruction loss̄So is a zero-mean Gaussian variable of
standard deviationσS̄o

equal to 4.4 (for fixed nodes) and 4.6
(for mobile nodes), that̄ss is Rayleigh distributed for static
nodes, whereas̄ss = 1 for mobile scenarios.

B. Dynamic Shadowing

The parameter̃Smn(t) is a time-varying zero-mean Gaus-
sian variable, whose standard deviationσS̃ is modeled dif-
ferently for nomadic and mobile links, as shown below. The
shadowing temporal auto-correlation is modeled as a decreas-
ing exponential, whose decay timeτ = 2.5 s for static links,
and given bydcv

−1 for mobile links, withdc = 0.45 m andv
being the node speed (indeed,dc is the variable independent
from the terminal’s speed in mobile scenarios). The shadowing
correlation coefficientC[m, n, m′, n′] between links(n, m)
and (n′, m′) is a function of the mobility scenario and the
number of joint moving nodes, as explained in [6]. It is gen-
erated by a truncated Gaussian distributionN[−1,1](µC , σC),
whose parameters are given in TableI. Hence, to model the
dynamic shadowing̃Smn(t) and S̃m′n′(t) on two links over
T time samples (t = [1, . . . , T ]),

• Use the following auto-regressive process to generate
autocorrelated dynamic shadowing values,

x(t) = e−1/τx(t − 1) +
√

1 − e−2/τgx(t), (3)

y(t) = e−1/τy(t − 1) +
√

1 − e−2/τgy(t), (4)

where gx and gy are both time series of lengthT ,
whose values are drawn independently form a normal
distribution N (0, 1). This ensures an autocorrelation
E{x(t)x(t + ∆t)} = e−|∆t|/τ , and similar fory(t).

• Generate the standard deviationsσS̃mn
and σS̃m′n′

as
a function of the respective rangesdmn and dm′n′ for
nomadic links,

log10(σS̃) = log10(1.85) + 0.2 log10 d + σ′
σS̃

, (5)

with σ′
σS̃

being a zero-mean Gaussian distributed random
variable standard deviation of 1.13, or equal toσS̄o

for
mobile links.

• Correlate both time seriesx(t) and y(t) at each timet
usingC[m, n, m′, n′], to yield S̃mn and S̃m′n′ .

C. Fading

The small-scale fadinggmn is best described in amplitude
by a Ricean distribution in nomadic cases. The K-factor is
related to the distance,

K|dB = 16.90 − 5.25 log10

(

d

d0

)

+ σ′
K , (6)

whereσ′
K is a random Gaussian variable of deviation standard

equal to 6 dB.
In mobile scenarios, the so-called second order scattering

fading (SOSF) distribution is used to model the amplitude
statistics [7],

pSOSF(r) = r

∫ ∞

0

ω e−w2

1
ω2/4 4J0(rω) J0(w0ω)

4 + w2
2ω

2
dω, (7)

whereJ0 is the Bessel function of the first kind and zero-th
order. Note thatE{r2} = 1 is achieved whenw2

0+w2
1+w2

2 = 1
so that the distribution can be specified by two parameters,

α =
w2

2

w2

0
+w2

1
+w2

2

and β =
w2

0

w2

0
+w2

1
+w2

2

, (8)

where (α, β) are constrained to the triangleα ≥ 0, β ≥ 0,
α + β ≤ 1. In each scenario,(α, β) are randomly distributed
as given by [7]

(α, β) ∼ 0.09 δ(α) · Nµ=0.27,σ=0.14(β)

+ 0.59 Nµ=0.40,σ=0.14(α) · δ(β)

+ 0.32 Nµ=[0.39,0.24],σ=[0.12,0.09],ρ=−0.13(α, β), (9)

for single-mobile links, and by

(α, β) ∼ 0.03 δ(α) · Nµ=0.34,σ=0.16(β)

+ 0.72 Nµ=0.54,σ=0.11(α) · δ(β)

+ 0.25 Nµ=[0.55,0.19],σ=[0.14,0.07],ρ=−0.52(α, β), (10)

for double-mobile scenarios. The fading processes between
different links are modeled as independent variables.
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TABLE I
SHADOWING CORRELATION STATISTICAL MODEL

Nomadic Single-mobile Double-mobile

(µC , σC) (0,0.27) common mov. no (mov.) common common mov. no (mov.) common
(0.28,0.47) (0.00,0.36) (0.29,0.39) (0.06,0.36)

IV. A C ASE-STUDY APPLICATION OF THEMODEL:
PARTNER SELECTION IN COOPERATIVE I2I NETWORKS

In the following example, the goal is to illustrate the
importance of the channel model when assessing the trade-off
between performance improvement and complexity increase
for partner selection strategies based on the overall channel
statistic instead of the average received power only.

A. System Model

The scenario under study consists of battery-powered nodes
that are distributed indoors and communicate with a common
access point (AP). The AP is acting as destination for all
nodes. It propagates the synchronization signal to imple-
ment a time division multiple access (TDMA) scheme. The
channel (path-loss, shadowing and fading) between thei-th
node (i = 1, ..., N) and the j-th node (j = 0, ..., N), with
node j = 0 being the AP, is modeled as explained in the
previous section, considering that indoor nodes are all static.
In this preliminary analysis, the shadowing values are however
assumed to be uncorrelated.

Cooperation is allowed by pairing the nodes analogous to
[8], the nodei in the pair (i, j) acting as an amplify-and-
forward (AF) relay for the respective partnerj. The AP com-
municates the cooperating partners, the time-slot assignments
and the radio-frequency (RF) transmit powers. Depending on
the AP decision, based on some knowledge of the multi-link
channel statistic, a certain number of nodes are not required
to act as relays.

B. Performance Analysis and Partner Selection Strategies

Assuming that the battery capacity is the same for all nodes,
the network lifetime is by definition inversely proportional
to the maximum energy expenditure among the nodes. The
analysis of energy consumption within the network is carried
out as detailed in [8] by targeting certain outage probability
Pout and spectral efficiencyR for all nodes. The network
lifetime gain of AF cooperation, with respect to the direct
transmission, is determined by the resource allocation strategy
(pairing solution) implemented at the AP. The optimal pairing
solution, that maximizes the network lifetime gain, is based
on the whole knowledge of the multi-link channel statistic.
Yet, (i) the uplink overhead increases since the AP must
be updated with all the inter-node channel statistics; (ii)
the combinatorial optimization algorithm that computes the
optimal solution becomes too complex as the network size
increases. To overcome these drawbacks, two low-complexity
algorithms, the worst-link-first based on the uplink coding-
gains (WLF-CG) and the same one based on the uplink path-
loss values (WLF-PL), have been proposed and compared in
[8]. For indoor-to-outdoor (I2O) communications, where the

uplink channel qualities dominate the outage performance,the
WLF-CG algorithm maximizes the network lifetime. On the
other hand, the WLF-PL obtains suboptimal performance with
the advantage of being more robust to the inaccurate estimation
of the distributed channel statistic.

In order to have the paper self-contained, we briefly
overview the worst-link-first algorithm based on the metric
mi,j denoting a generic measure of the link(i, j) quality. In
the first (distributed) phase, each nodei estimates the ratio
mi,j/mi,0, which represents how much better its link to the
potential relayj is compared to a direct uplink connection
without relay. Ifmi,j/mi,0 > η, nodej becomes a candidate
partner for nodei. At the end of this phase, each node
communicates to the BS the set of candidate partners. In the
final (centralized) phase, the BS builds a sorted list of nodes
from the smallest (worst-uplink) to the largest uplink quality
(best-uplink). At each iteration the BS assigns to the worst-
uplink node its best-uplink candidate partner, if there is one,
and removes the paired nodes from the list. If no candidate
partners are available for the worst-uplink node, the BS leaves
the node without partner and removes it from the list.

The quality of the links is measured by the inverse of the
path lossmi,j = L−1

i,j for the WLF-PL algorithm and by the

channel coding gainmi,j =
expKi,j

Ki,j+1 L−1
i,j for the WLF-CG

algorithm [8].

C. Simulation Results

Lifetime performances of the optimal and sub-optimal part-
ner selection algorithms are here simulated for the I2I cooper-
ative network presented in SectionIV-A . Performance results
are averaged over107 scenarios. For each scenario,N nodes
together with the AP are randomly distributed in a25m×25m
indoor environment. The parameters(Li,j , Ki,j) values associ-
ated to every inter-node and uplink channel are stochastically
generated as described in (2), with σS̄o

= 4.4dB, and (6),
respectively. The target outage probability isp = 10−3

for all the nodes with spectral efficiencyR = 1 bps/Hz.
Gaussian modulation is assumed for both cooperative and
direct transmissions.

Fig. 1 shows the ratio between the maximum energy
consumptions, averaged among the scenarios, for the non-
cooperative and cooperative systems, i.e. the network lifetime
gain as defined in [8]. In Fig.1-a, the performance of the low-
complexity algorithms WLF-CG and WLF-PL are compared
for different choices of the thresholdη from 0 to 102. Inter-
estingly, the most conservative choice ofη with respect to the
inter-node channel quality (η = 102 < mi,j/mi,0) provides
the best performance of the WLF-CG algorithm, while it has
a negative impact on the performance of the WLF-PL. In
the latter case, many good pairing solutions are too early
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Fig. 1. Network lifetime gain of AF cooperation, compared tothe non-
cooperative transmission, vs. the number of nodesN : (a) The suboptimal
WLF-CG and WLF-PL performance are evaluated for different threshold
valuesη. (b) Optimal and suboptimal pairing strategies are compared.

excluded in the distributed phase of the WLF-PL algorithm.
The best threshold choice for the WLF-PL algorithm is instead
η = 1: the partner selection is the outcome of a well-balanced
decision between the two phases of the algorithm, that allows
the maximum exploitation of the incomplete knowledge of the
channel statistics (i.e., the K-factors are unknown).

In Fig. 1-b, the optimal pairing solution (circle markers) is
compared to the suboptimal algorithms WLF-CG (solid line)
and WLF-PL (dashed line), implemented with the respective
best choice ofη. The random pairing strategy (dotted line) is
also evaluated as in [8]. The degree of optimality of the WLF-
CG is remarkably lower in the present I2I scenario compared
to the I2O case of [8]. The latter result suggests that the com-
plete knowledge of the inter-node channels statistics is crucial
for the computation of the optimal pairing solution. Indeed,
uplinks and the inter-user links qualities impact similarly the
AF outage performances, as they have on average the same
statistics. Although suboptimal for the cosidered I2I scenario,
the partner selection strategies WLF-CG and WLF-PL increase
the network lifetime by factors up to 400 and 50, respectively,
compared to the non-cooperative transmission; by factors up to

40 and 5, respectively, compared to a random partner selection.

V. CONCLUSIONS

This paper has proposed the implementation of an empirical
model for indoor peer-to-peer cooperative channels, which
takes into account path-loss, shadowing and fading in a
comprehensive way. It namely includes a model of dynamic
shadowing correlation, and rely, as much as possible, and
in agreement with experimental data, on Gaussian-related
distributions (e.g. Rayleigh, Rice, lognormal, SOSF, etc.).
This implementation has then been applied to a case-study
consisting in the evaluation of a cooperative network life for
various channel-assisted partner selection strategies.
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