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Experimental Characterization and Modeling of
Outdoor-to-Indoor and Indoor-to-Indoor

Distributed Channels
Claude Oestges, Nicolai Czink, Bernd Bandemer, Paolo Castiglione,

Florian Kaltenberger, and Arogyaswami J. Paulraj

Abstract— We propose and parameterize an empirical model
of the outdoor-to-indoor and indoor-to-indoor distribute d (coop-
erative) radio channel, using experimental data in the 2.4 GHz
band. In addition to the well-known physical effects of path
loss, shadowing, and fading, we include several new aspectsin
our model that are specific to multi-user distributed channels:
(i) correlated shadowing between different point to point links
which has a strong impact on cooperative system performance,
(ii) different types of indoor node mobility with respect to the
transmitter and/or receiver nodes, implying a distinctionbetween
static and dynamic shadowing motivated by the measurement
data, and (iii) a small-scale fading distribution that captures more
severe fading than given by the Rayleigh distribution.

I. I NTRODUCTION

Cooperative communication is a promising technology to
increase coverage, reliability and spectral efficiency in next
generation wireless networks [1], [2]. The basic idea is to
allow nodes to “help” other nodes with their communication
by exploiting the broadcast nature of the wireless channel.This
approach can for example be used to establish collaboratively a
reliable wireless link between a set of indoor nodes to a base
station not necessarily in reach of the individual nodes [3],
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[4], e.g. some nodes can be used as relays to the base station.
In such networks, especially when the distributed multi-link
channel is non-homogeneous, the selection of the best relay
can even provide better performance compared to existing
distributed space-time codes [5].

Yet, before developing algorithms tackling this challenge,
the outdoor-to-indoor radio channel, as well as the channel
between the cooperating distributed nodes (i.e. the distributed
channel) must be measured and modeled. Most of the theoret-
ical work on cooperative communications assumes lognormal
shadowing and Rayleigh fading, where path-loss, shadowing
and fading are all independent from one another. While this
is often true in cellular mobile scenarios, where the Rayleigh
assumption is used as a conservative model, this might not
be the case in indoor cooperative channels, depending on the
users’ mobility. In this paper, we make a distinction between
three types of mobility. In the first case, we consider a link
between a mobile and a fixed terminal, i.e. either the receiver
(Rx) or transmitter (Tx) is moving (this case is denoted
as single-mobile), and it is expected that fading be mostly
Rayleigh distributed, especially in non line-of-sight conditions.
Yet, Rayleigh fading might not be prevalent in the two other
types of mobility. The second type of mobility deals with
moving terminals at both link ends (double-mobile links), and
a preliminary analysis of the data showed that fading in such
scenarios may sometimes be worse than Rayleigh. The last
mobility is the nomadic case, where both terminals are static,
although they can be located almost anywhere in the region
of interest, most often in non line-of-sight from each other. In
such channels, also known as fixed, fading is hardly character-
ized by Rayleigh statistics, even in non line-of-sight (NLOS)
conditions. Indeed, Rx and Tx are static during any typical
communication, as are most scatterers. So, temporal fading
is only caused by the motion of some scatterers resulting in
a Ricean fading distribution. A further difference to mobile
links is that in mobile propagation, time and space are linked
through the user’s speed. By contrast, in nomadic systems, one
must account for both the temporal fading and the nomadic
aspect, i.e. the fact that the terminal can be used at many fixed
positions, which results in spatial fading adding to the static
path loss. Furthermore, it is important for nomadic channel
models to account for possible cross-correlations between
path-loss, shadowing, and fading statistics, as measurements
reveal that such relationships exist.

A further particularity of cooperative systems is that, while
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the separation between nodes is large enough to decorrelate
small-scale fading processes, shadowing correlation may be
present and can significantly affect the performance of the
network as shown in [6], [7].

Therefore, the goal of the present work is to analyze
outdoor-to-indoor and indoor-to-indoor distributed measured
channels and to infer a global empirical channel model, con-
sidering under a similar formalism both nomadic, single- and
double-mobile indoor links. Our objective is also to derivea
model able to fit as closely as possible the observed behaviors
of the distributed channels, in terms of e.g. mobility type,time-
varying vs. space-varying aspects, and shadowing correlation,
so that the model can be used for system design. In [8], a
model extrapolated from the present work has motivated the
research of an appropriate grouping algorithm for coopera-
tive indoor-to-outdoor networks. Simultaneously, our approach
integrates existing site-specific models, so that despite its
empirical nature, our model could be easily extended to
different environments.

Related Work. Several papers have analyzed various prop-
erties of outdoor-to-indoor and indoor-to-indoor distributed
channels. In [9], [10], the outdoor-to-outdoor channel was
measured for static receivers, and models of the Ricean K-
factor were proposed. In [11], the long-term statistics of
the fixed indoor channel were investigated. Mobile multi-
link measurements were presented in [12], for indoor MIMO
channels with two base stations and two users, and in [13]
for outdoor channels. In [14], various properties of indoor
distributed (or peer-to-peer) channels have been analyzedfor
static nodes only: fading was modeled by a generalized gamma
distribution, which might not be easily tractable.

Shadowing correlation has been studied extensively for non-
distributed outdoor [15]–[18] and indoor [19] scenarios. A
model for both outdoor and indoor fixed wireless channels
is proposed in [6]. None of these studies take into account
the impact of node mobility. The authors in [6] model the
shadowing between any two nodes as a weighted line integral
of a spatial loss field, which in turn is modeled as a wide
sense stationary Gaussian random field. The formulation al-
lows to calculate the shadowing correlation between any two
link pairs. However, the model always produces a positive
shadowing correlation, whereas our measurements also reveal
negative correlations, and it has been shown in [7] that some
cooperative protocols are extremely sensitive to the sign of the
shadowing correlation.

Contributions. The analysis presented in this paper is the
first one that includes both nomadic and mobile scenarios
of outdoor-to-indoor as well as indoor-to-indoor distributed
channels. The key contributions of the present paper are as
follows.

• We investigate narrowband outdoor-to-indoor (O2I) and
indoor-to-indoor (I2I) distributed channels based on a
wideband experimental campaign at 2.4 GHz. Unlike
previous models, we propose a unified framework that
includes both nomadic and mobile links. The differences
between the three types of mobility are also clearly
highlighted in the modeling approach.

• While developing a detailed statistical model of the

channel, we propose to separate static shadowing from
dynamic shadowing, as suggested by the data analysis.
The characterization of static shadowing and fading for
nomadic channels also takes into account that space
and time variations are caused by different mechanisms.
This decomposition also permits a better characterization
of dynamic shadowing correlation than previously pub-
lished.

• For mobile I2I channels, we find that the experimental
fading distribution follows the second-order scattering
fading model presented in [20]. Furthermore, we show
that the resulting model parametrization can be related
to the number of moving nodes in the considered link,
allowing a direct physical interpretation of the model.

• Despite the fact that complex distributions are used by the
various models, they can always be expressed by means
of normal variable generators, which makes them very
simple to use.

Outline. Section II summarizes the experimental set-up.
SectionIII details the general concept we use for the mea-
surement analysis, while SectionIV details the data post-
processing and the estimation of propagation metrics. Sections
V-A andV-B present the extracted empirical models, respec-
tively for the outdoor-to-indoor and the indoor distributed
channels. Finally, SectionVII summarizes this paper and
draws conclusions.

II. EXPERIMENTAL SET-UP

This paper is based on channel measurements of the Stan-
ford July 2008 Radio Channel Measurement Campaign. More
details on the full campaign can be found in [21]. In this sec-
tion, we briefly summarize the most important characteristics
of the measurement set-up.

A. Environments

We measured two kinds of environments: O2I, downlink
from a base station to distributed nodes, and I2I, between the
distributed nodes.

1) Outdoor-to-Indoor: A representation of the outdoor area
is given in Fig.1. At the outdoor location, an array of two dual-
polarized WiMAX base station antennas were mounted on a
scissor lift raised to a height of 10 m (location ’Tx1’ on Fig.
1), the arrow indicating the boresight orientation. The antenna
3-dB beamwidth was 90 degrees in azimuth and 8 degrees in
elevation. The gain in the direction of the main lobe was 15.5
dBi, and the antenna was tilted to ensure that the indoor office
was in the elevation direction of the main lobe.

The indoor environment was a typical cubicle-style office
room (see Fig.2), where the indoor terminals were distributed
over the various cubicles and along one wall. The room size
was 34 m by 15.7 m; the ceiling height was 3 m, while the
height of the internal partition walls forming the cubicles, rep-
resented by light lines on the map, was 1.7 m. Cubicle partition
walls were constructed from metal frames and fabric-covered
walls. Regarding the indoor receivers, the 8 Rx ports of the
sounder were used in two successive measurements, covering
a total of 12 receive locations as represented in Fig.2, with
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Fig. 1. Experimental outdoor environment

Fig. 2. Experimental set-up

circles and stars. The four receivers that are represented by
stars were located at the wall close to the outdoor transmitter,
and were kept at that position for the later I2I measurements.
To avoid any confusion, they will be referred to as “relays”
(with index 1 to 4). The indoor terminals (receivers and relays)
used two different kinds of off-the-shelf vertically polarized
omnidirectional WiFi antennas matched at 2.45 GHz. Their
gain is 7dBi and 10dBi, respectively, specified in the range of
2.4-2.83 GHz. To measure the distributed radio channel jointly,
we connected the antennas to the switches using low-loss RF
cables. During the measurements, the indoor terminals were
kept static, while time variations were generated by people
walking at a speed of≈ 0.3 m/s and carrying wooden boxes
with aluminum frames. These were similar to briefcases in
size, thus emulating people carrying their computer with them.

2) Indoor-to-Indoor: For the I2I segment, the measure-
ments used the same WiFi antennas as those described above,
and the same 8 (non-relay) receive locations as the O2I set-
up (represented by the circles in Fig.2). The 8 Tx locations
in the I2I set-up are represented by the stars (this time, the
relays acted as transmitters), and the squares in Fig.2. All
nodes are in NLOS from each other. Three types of mobility

are investigated:
• static measurements, where shadowing was generated by

walking people carrying metal-framed objects (same as
for O2I measurements),

• time-variant single-mobile measurements, where either
all 8 receive or all 8 transmit antennas were moved
randomly within a 2 m radius (inside a cubicle), at a speed
of approximately 0.3 m/s,

• time-variant double-mobile measurements, where 4 Tx
antennas (labeled as 2, 4, 6 and 8) and 4 Rx antennas
(labeled as 1, 3, 5 and 7) were moved randomly within
a 2 m radius (inside a cubicle), again at a speed of
approximately 0.3 m/s.

Each of these scenarios was measured twice to increase the
amount of collected data, and to allow for excluding possible
measurement artifacts.

B. Measurement Equipment

The measurements were taken by means of the RUSK
Stanford channel sounder at a center frequency of 2.45 GHz
with a bandwidth of 240 MHz, and a test signal length of 3.2
µs. The output of the sounder is the transfer function at each
time instant, each frequency tone being separated by 312.5
kHz. Owing to occasional interference (e.g. from WiFi or
WiMAX equipments as well as microwave ovens), the channel
characterization is actually carried out over the lower 70 MHz
of the measured spectrum, i.e. the band from 2.33 to 2.40
GHz, yielding an initial number of tones equal to 225.

Additionally, a total of 25 frequency tones had to be
removed (approximately 4 to 5 tones every 10 MHz), as
they were perturbed by narrowband interference caused by
the antenna unequal return loss. Since all evaluations were
done using the frequency domain (without carrying out Inverse
Fourier Transforms into the delay domain), the cutting of
frequencies does not have any impact on the channel char-
acterization. This results effectively inF = 200 frequency
tones quasi uniformly spread over the 70 MHz bandwidth.

The transmitter output power of the sounder was 3.2 W.
A rubidium reference in the transmit (Tx) and receive (Rx)
units ensured accurate timing and clock synchronization. The
sounder used fast 1× 8 switches at both transmitter and re-
ceiver, enabling switched-array MIMO channel measurements
of up to 8× 8 antennas, i.e. 64 links. The Rx sensitivity was
-90 dBm. One measurement of the whole MIMO channel at
one time instant is denoted as ablock.

The recorded frequency responses of the MIMO channels
are organized in a multi-dimensional arrayH [t, f, n, m], with
dimensions time (in blocks), frequency tone, receivers, and
transmitters. We had slightly different configurations forthe
three different scenarios, summarized in TableI.

III. G ENERAL CONCEPTS OFDATA ANALYSIS

Throughout this paper, the channel coefficients are consid-
ered to reflect the superposition of the following propagation
effects, when expressing the channel in logarithmic scale (dB):

channel = path loss+ static shadowing+

+ dynamic shadowing+ fading
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TABLE I

MEASUREMENT PARAMETERS USED IN THE EVALUATION

O2I I2I (static) I2I (mobile)
bandwidth 2.33 - 2.40 GHz

number of frequency tones (F ) 200
number of Tx antennas (M ) 2 dual-polarized 8 8
number of Rx antennas (N ) 8 8 8

number of blocks recorded (T ) 120 120 1200
gap between blocks 250 ms 250 ms 9.83 ms

recording time 32 s 32 s 19.7 s

Thepath-loss denoted asΛ in dB scale is classically defined
as the deterministic distance dependence of the received power.
Similarly, shadowing, denoted asS in dB scale, is usually
caused by obstruction of the link, and results in the individual
path loss to vary with location and time.

In the experimental data, a preliminary analysis showed that
shadowing is not zero-mean over time, but contains a constant
part. Accordingly, shadowing is therefore expressed by the
addition of two terms, i.e. static and dynamic shadowing.

Static shadowing, denoted as̄S [dB], is the time-invariant
mean shadowing (when expressed in dB) and estimated for
a given link as the difference between the time-averaged
received power predicted by the deterministic path loss de-
pendence (for the same range), and the time-averaged received
power on the considered link. For mobile scenarios, it is there-
fore related to time-invariant obstructions of the link, which
can of course differ for each node. For nomadic scenarios,
static shadowing has also an additional interpretation. Ontop
of time-invariant obstruction-related shadowing, we haveto
take into account the constructive or destructive combination
of coherent multipaths, such as reflections and diffractions on
walls. In that sense, this part of static shadowing, which only
exists for static links, has the same origin as spatial, or equiva-
lently, frequency-selective fading. Since this contribution does
not lead to any temporal variation, we have decided to include
it under the shadowing contribution, rather than into fading.
This is a particularity of nomadic links, where temporal and
spatial (or frequency) fading behaviors are unrelated as they
are caused by different mechanisms. Therefore, they must be
modeled on a separate basis, by contrast to mobile scenarios,
where static shadowing only represents the classical time-
invariant obstruction of the link (e.g. by fixed furniture orstatic
people), and is thus frequency/space invariant. Subsequently,
static shadowing is thereby written as the sum of two terms,
i.e. S̄ = S̄o + S̄s, where the former is the frequency-invariant
(or space-invariant) obstruction loss, and the latter is the
space/frequency selective fading term which only exists for
nomadic channels.

It will also be shown later in the paper that the concept
of obstruction-related static shadowing is comparable with the
decomposition used by well-known outdoor-to-indoor models
such as the COST 231 multi-wall transmission model [22].
Although the model parameters derived in this paper are site-
specific, this is not the case of the model formalism, including
the separation into static and dynamic shadowing. In particular,
our static shadowing model may be replaced in a modular

fashion with the corresponding model in COST 231, while
keeping the other parts of our model untouched.

When path-loss and static shadowing are removed, the chan-
nel becomes at each node a zero-mean variable (in dB) over
time. The temporal variations are eitherdynamic shadowing or
fading, depending on the involved mechanism, i.e. on the rate
of change.Fading, denoted asr or r(t) in linear scale, and as
R = −20 log1 0(r) in dB, is the classical small-scale fading
behavior of the channel caused by multipath interference
resulting from the small-scale motions of the stations and/or
the environment. When fading is averaged out, the remaining
variations are due todynamic shadowing. Represented by the
variableS̃(t) [dB], it consists in the slow temporal variation
of the static loss around its static mean caused by the mobility
of scatterers such as people, or of the stations themselves.

For a given link, the instantaneous loss at timet is therefore
proportional to

[

R(t) + Λ + S̄o + S̄s + S̃(t)
]

.
Our modeling process is as follows:

1) pre-process the data in order to represent the four effects,
respectively,

2) analyze the data and, by visual inspection, propose
various statistical models which might fit the data,

3) derive estimators to extract the model parameters from
these data,

4) apply these estimators to the three considered envi-
ronments: (i) outdoor-to-indoor static distributed nodes,
(ii) indoor-to-indoor static distributed nodes, and (iii)
indoor-to-indoor moving distributed nodes,

5) choose the best-fitting statistical models among those
tested, and build the final model.

IV. PARAMETER ESTIMATION

This section details the data processing that is used to
characterize the channels.

A. Data Preprocessing

For static measurements, temporal and frequency-selective
fading are caused by different mechanisms, as explained
above. Hence, the whole frequency band is first partitioned
into subbands ofFsub = 5 frequency tones each, over which
the channel is frequency-flat. This leads to a total number of
B = F/Fsub subbands per time instant and link.

For moving measurements, time-, space- and frequency-
selective fading share the same cause [23]: the motion of the
node causes phase shifts in each multipath. Hence the fading
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statistics over time at a given frequency are similar to the
statistics over frequency at any given time. As a consequence,
it is not necessary to treat time and frequency on a separate
basis and to divide the whole frequency band, which is then
considered as a single subband (i.e.Fsub = F ).

Regarding the indoor data, it was mentioned in SectionII
that two types of WiFi antennas were used. Hence, an antenna
gain correction is implemented to compensate for the gain
difference, so that the path losses can be rightfully compared
with each other.

B. Path Loss and Static Shadowing

Let us consider the link between transmitterm and receiver
n. We denote byd = dnm the distance between these nodes.
The average received power in thebth subband is then obtained
by averaging the power within the subband and over all time
samples,

P [b, n, m] =
1

FsubT

T
∑

t=1

bFsub
∑

f=1+(b−1)Fsub

|H [t, f, n, m]|2, (1)

with b = 1 . . . B, n = 1 . . . N, m = 1 . . .M (remember that
there is only one subband in the moving case, equal to the
entire 70 MHz bandwidth).

We model path-loss and static shadowing by expressing the
received powerP |dB at a distanced from the transmitter as

P |dB(d) = P0|dB − η · 10 log10

(

d

d0

)

− S̄, (2)

where P0 and d0 denote the reference power and reference
distance, respectively. For I2I scenarios,d0 is classically fixed
to 1 m [24]–[26]. The static shadowinḡS, which differs in
each subband in the nomadic case1 owing to the spatial
fading term S̄s, is then defined as the difference between
the observed power and the deterministic received power
P0|dB − η · 10 log10

(

d
/

d0

)

. It is a time-invariant random
variable for each link and each considered subband. We define
the individual path-lossL as

L = Λ0 + η · 10 log10

(

d

d0

)

+ S̄, (3)

whereΛ0 is the deterministic path-loss at a reference distance
d0. The path-loss and shadowing model parameters are the
so-calledpath loss exponent, η, and the parameters describing
the distributions ofS̄o and S̄s. The path loss exponentη
is common for all links and all subbands, and is estimated
by a least-square fitting using the values ofP [b, n, m]. The
obstruction lossS̄o is obtained for each link by averaging
S̄ over all frequency subbands, and its distribution is found
to be lognormal, i.e. characterized by the mean and standard
deviation µS̄o

and σS̄o
. Suitable distributions of̄Ss are the

same as those investigated to model temporal fading in mobile
scenarios (see SectionIV-D), since spatial shadowing is caused
by the same mechanisms. Finally, to simplify further notations,
let us introduce the reference individual path loss asL0 =
Λ0 + µS̄o

.

1This is not the case in the mobile scenarios (S̄s = 0), which is why the
full bandwidth is considered as a single subband in these cases.

C. Dynamic Shadowing

To estimate the time-variant dynamic shadowing, we first
average the received power over frequency for each time
instant and link. Subsequently, we further average over the
small-scale fading by using a moving window spanningTav =
2.6 s, corresponding to either 10 samples for the static mea-
surements or 160 samples for the moving measurements.

This yields

Ps[t, b, n, m] =

1

FsubTav

t+Tav/2−1
∑

t′=t−Tav/2

bFsub
∑

f=1+(b−1)Fsub

|H [t′, f, n, m]|2 . (4)

The choice ofTav is such that the small-scale fading is
averaged out, while still following the slow variations in-
duced by the motion of people, or by stations moving in
the environment. In mobile scenarios, the window span is
roughly equivalent to seven wavelengths. Such correspondence
cannot be established in the nomadic case, but it should be
remembered that fading is very limited in such scenarios, so
that 10 samples are largely sufficient to remove any fading.

Finally, we obtain the dynamic shadowing̃S[t, b, n, m] as
the variation ofPs|dB around its mean,

S̃ = − [Ps|dB − E{Ps|dB}] , (5)

where the operator|dB denotes the conversion to dB,E{·}
denotes the expectation over the time axis, and the[t, b, n, m]
dependence is dropped to simplify the notations.

A first inspection of the data reveals that dynamic shad-
owing is frequency-independent and log-normally distributed,
in agreement with previous results [24]. In other words,S̃ is
Gaussian distributed, with a meanµS̃ = 0 by definition. The
shadowing auto-correlation is also found to follow a negative
exponential. The model parameters are therefore the standard
deviationσS̃ , estimated using the sample variance [27], and
the slopeτ of the temporal auto-correlation,

RS̃(∆t) =
E{S̃(t)S̃(t + ∆t)}

σ2
S̃

= e−|∆t|/τ . (6)

For mobile links, the slopeτ may also be expressed as the
ratio of a decorrelation distancedc to an effective speedv,
corresponding to the motion of the nodes.

An important aspect of distributed or cooperative channels
is that dynamic shadowing may be highly correlated between
different links, which significantly affects the performance. We
estimated the correlation coefficients between links(n, m) and
(n′, m′) by

C[b, n, m, n′, m′] =
∑T

t=1 S̃[t, b, n, m]S̃[t, b, n′, m′]
√

∑T
t=1 S̃[t, b, n, m]2

∑T
t=1 S̃[t, b, n′, m′]2

(7)

These correlation coefficients are evaluated between allNM
links in one measurement. The resultingNM(NM − 1)/2
correlation values are then grouped in different sets:

1) links with a common Rx (denoted as ’Rx’),
2) links with a common Tx (denoted as ’Tx’),
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3) links with a common Rx or a common Tx (union of sets
1 and 2, denoted as ’Rx-Tx’),

4) links with no node in common (complement of set 3,
denoted as ’disjoint’),

5) all links (union of sets 3 and 4, denoted as ’all’).

For every such set, we then calculated the mean, the standard
deviation, the minimum, and the maximum value of the
correlation coefficients.

D. Fading

Small-scale fading is described by the statistics of the
received signal amplitude,r. In our environment, we expect
all kinds of fading, i.e. Ricean fading for static links, and
a smooth transition from Ricean/Rayleigh fading down to
Double-Rayleigh fading for mobile links. A mathematically
convenient method to approximate all three distributions —
with certain limitations — is by using the Nakagami distribu-
tion.

Before estimating the different kinds of fading, we remove
the effects of path-loss and shadow fading by normalizing each
channel by its respective power as

G[t, f, n, m] =
H [t, f, n, m]

√

Ps[t, ⌈f/Fsub⌉, n, m]
, (8)

where⌈·⌉ is the ceiling function. The signal amplitude is then
simply defined asr = |G|.

To estimate the statistics ofr, we use as ensembles the
data from all tones in each subband, and all time samples. For
the nomadic scenarios, we have therefore model parameter
estimates for each of the considered subbands. Theoretically,
one should also consider the fading correlation between dif-
ferent links. However, we found that this correlation was
practically zero in all cases, owing to the large separation
between antennas.

In the following, we discuss the different types of fading
and present their parameter estimators.

1) Ricean fading: We adopt the formulation of the Ricean
distribution from [28] as

pRice(r) =
r

σ2
e
−
(

r
2

2σ2
+K

)

I0

(

r

√
2K

σ

)

, (9)

whereI0(·) denotes the modified Bessel function of the first
kind and zero-th order,2σ2 denotes the average power of the
non-coherent part, and the K-factor describes the ratio between
the powers of the coherent part and the non-coherent part of
the channel.

Both K andσ2 are estimated for every combination of Rx
and Tx by numerical curve fitting to the cumulative distri-
bution function (cdf) of the Ricean distribution. Note thatif
E{r2} = 1, σ andK follow the relationship:2σ2 = 1/(K+1).

2) Second-order scattering fading distribution: The Ricean
fading distribution includes pure Rayleigh fading as the limit-
ing case forK = 0. In some measured scenarios, however, we
observe fading that is more severe than Rayleigh fading. To
model this effect, we assume that the channel can be expressed
as G = w0e

jθ + w1G1 + w2G2G3, whereG1, G2, G3 are

i.i.d. complex normal random variables with zero mean and
unit variance, andθ is a constant phase angle from[0, 2π]. The
three terms can be interpreted as a line-of-sight component, a
single-bounce Rayleigh-fading component and a two-bounce
Double-Rayleigh-fading component, respectively. The weight-
ing factorsw0, w1, w2 > 0 determine the relative powers of the
three components. The probability density function ofr = |G|
is then given as shown in [20], [29] by the so-called second-
order scattering fading (SOSF) distribution,

pSOSF(r) = r

∫ ∞

0

ω e−w2

1
ω2/4 4J0(rω) J0(w0ω)

4 + w2
2ω

2
dω, (10)

whereJ0 is the Bessel function of the first kind and zero-th
order. Note thatE{r2} = 1 is achieved whenw2

0+w2
1+w2

2 = 1
so that the distribution can be specified by two parameters [20],

α =
w2

2

w2
0 + w2

1 + w2
2

, (11)

β =
w2

0

w2
0 + w2

1 + w2
2

, (12)

where (α, β) are constrained to the triangleα ≥ 0, β ≥ 0,
α + β ≤ 1.

The SOSF distribution naturally encompasses Ricean fading
(α = 0, with β/(1 − β) being the K-factor), Rayleigh fading
(α = β = 0), as well as Double-Rayleigh fading (α = 1,
β = 0).

Assuming for the moment thatw0 = 0, the remaining
parametersw1, w2 can be estimated based on the method of
moments [29] asŵ2 = 4

√

S4/2 − S2
2 and ŵ1 =

√

S2 − ŵ2
2 ,

whereSi is the ith sample moment. In our data analysis, we
use these estimates witĥw0 = 0 as starting point for a CDF
curve fitting of the SOSF distribution to the empirical CDFs.

3) Nakagami fading: The Nakagami-m distribution is given
by [24]:

pNaka(r) =
2

Γ (m)

(m

Ω

)m

r2m−1e−mr2/Ω, (13)

where Ω is the second moment,Γ (·) denotes the Gamma
function and the m-parameter (sometimes known as the shape
parameter) is defined asm = Ω2/E

{

(

r2 − Ω
)2
}

, m ≥ 0.5.
The second momentΩ can be estimated by the unbiased

maximum-likelihood estimator̂Ω = S2, while the estimator
of the m-parameter is the approximation of the maximum-
likelihood estimator proposed in [30]. Note thatΩ = 1 if
E{r2} = 1.

While the Nakagami distribution is mathematically tractable
for analytical investigations, it has a number of shortcomings:
(i) in contrast to the Ricean and Rayleigh/Double-Rayleigh
distributions, it has no physical interpretation, (ii) forthis
reason, it does not fit the measurements as well, (iii) there
is no analytical random-number generator for this distribution
(only slow, iterative methods exist).

V. CHANNEL CHARACTERIZATION RESULTS

A. Outdoor-to-Indoor Channels

The parameters of the Outdoor-to-Indoor (O2I) environ-
ment were extracted from all channels between the 2 (dual-
polarized) Tx antennas and all 12 Rx locations (thereby
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Fig. 3. Standard deviation of dynamic shadowing for the O2I scenario (static
receivers).

including the relay nodes). The parameter estimation was
carried out as described in SectionIV.

1) Path loss and static shadowing: The individual path loss
of all 12 Rx nodes is calculated relative to the individual
path loss from BS antenna 1 to relay 2. This reference link
corresponds to the shortest range, and also to the best reception
point in the room, i.e. at the closest wall. Unfortunately, the
penetration loss into the building, represented byµS̄o

in our
notation, cannot be extracted from the available measurement
data. Additionally, only twelve O2I links were measured (by
contrast to 64 in the I2I case), implying a reduced number of
data points. Furthermore, a preliminary analysis also shows
that µS̄o

differs between the nodes on the right and left sides
of the building, owing to the shadowing effect of building 2
for six of the left-side nodes (Rx nodes 1, 4, 7 and 8, and
relay nodes 3 and 5). For these three reasons, it was decided
not to estimateη and the statistics of̄S in (2). However, we
will show later that our decomposition into path-loss and static
shadowing enables to use existing outdoor-to-indoor path loss
models to overcome this lack of measurements.

2) Dynamic shadowing: Dynamic shadowing̃S is lognor-
mal distributed, so we consider its standard deviation,σS̃ ,
which is strongly correlated with the path loss in nomadic
scenarios. Fig.3 demonstrates that the larger the path loss, the
larger the dynamic shadowing variance becomes. We model
this correlation using an exponential fit

log10(σS̃) = log10(σs,0) + 0.02(L− L0) + σσ
S̃
, (14)

where σs,0 = 0.27 dB, and σσ
S̃

is a zero-mean Gaussian
distributed random variable with a standard deviation of0.16.
The slope of the temporal auto-correlation is estimated as
τ = 1.74s.

Regarding the correlation coefficients of the dynamic shad-
owing, the mean, the standard deviation, the minimum, and
the maximum value of all different subsets (cf. Sec.IV-C)
are given in TableII . It can be seen that very high shadow
fading correlations as well as anti-correlations occur in the
measurements. In the O2I case, the distribution of shadow
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Fig. 4. K-factor and m-parameter vs. distance for the O2I nomadic data

fading correlations follows a Gaussian distribution quitewell.
3) Fading: Given the facts that Tx and Rx nodes are all

static and randomness was only introduced by people moving
in the building, the temporal fading statistics are expected to
be strongly Ricean. Our analysis indeed reveals that the K-
factor is generally very high, and decreases with increasing
path loss (see Fig.4).

The variation vs. path loss is well fitted by

K|dB = K0|dB − 0.60 (L − L0) + σK , (15)

where K|dB is the Ricean K-factor expressed in dB,σK

is a random variable (approximately Gaussian) of standard
deviation equal to 3.8 dB, andK0|dB is equal to 22.5 dB in our
experiment. Alternative models ofK0|dB can be found in [9]
for fixed outdoor-to-outdoor channels. Note however that the
decrease rate in (15) is estimated as 0.24 dB/dB in [9]. This
value is smaller than our own decrease rate, but once again, we
stress that our measured path loss includes a large shadowing
by neighboring buildings. This explains the discrepancy.

When fitting the Nakagami distribution to the data, also
large m-parameters are observed, and the values are consistent
with the observed K-factors, which is due to the close match
of the Nakagami distribution to the Ricean distribution for
large values of the m-parameter. Form = 1, the Nakagami
distribution is equal to Rayleigh fading; for values0.5 < m <
1, the Nakagami distribution resembles fading that is worse
than Rayleigh (i.e. favoring smaller amplitude values). Note
that because the m-parameter is lower-bounded by 0.5, the
apparent standard deviation ofm as a function of path-loss
naturally decreases with increasing path-loss. In addition, fit
values ofm very close to -3 dB are relatively rare. Instead,
m tends to concentrate around 0 dB for large path loss levels.
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TABLE II

SHADOWING CORRELATION STATISTICS IN ALL SCENARIOS

Scenario Subset Mean Std. Max Min

O2I all 0.02 0.31 0.98 -0.89

I2I
static

all 0.00 0.27 0.94 -0.90
Rx 0.02 0.30 0.93 -0.90
Tx 0.01 0.30 0.94 -0.89

Rx-Tx 0.01 0.30 0.94 -0.90
disjoint 0.00 0.27 0.90 -0.88

I2I
double
mobile

all 0.16 0.39 0.97 -0.90
Rx 0.29 0.36 0.89 -0.40
Tx 0.29 0.42 0.97 -0.74

Rx-Tx 0.29 0.39 0.97 -0.74
disjoint 0.06 0.36 0.81 -0.90

I2I
single
mobile
(Rx)

all 0.05 0.38 0.99 -0.91
Rx 0.47 0.41 0.99 -0.79
Tx -0.01 0.35 0.80 -0.83

Rx-Tx 0.23 0.45 0.99 -0.83
disjoint 0.00 0.34 0.90 -0.91

I2I
single
mobile
(Tx)

all 0.05 0.41 0.99 -0.93
Rx 0.00 0.36 0.81 -0.82
Tx 0.37 0.50 0.99 -0.84

Rx-Tx 0.19 0.47 0.99 -0.84
disjoint 0.01 0.37 0.87 -0.93

Still, for the largest part of the range of path loss values, the
variation of the m-parameter vs. path loss is fitted by

log10(m) = log10(m0)−0.052(L−L0)+σm, m ≥ 0.5 (16)

whereσm is a random variable (approximately Gaussian) of
standard deviation equal to 0.40, andlog10(m0) = 1.88 in our
case. As a consequence of the apparent reduction of standard
deviation at high path loss, this model is not rigorously valid
for larger values of path-loss. However, practically, it can still
be used in combination with a rejection method, i.e. drawing
a candidate forσm, verifying that the generatedm meets the
constraint, and if not met, drawing another candidate untilit
is fulfilled.

B. Indoor-to-Indoor Channels for Static Nodes

If not indicated differently, the parameters from the indoor-
to-indoor channels were extracted from the distributed-nodes
environment shown in Fig.2, for all channels between the
8 transmitters and 8 receivers. The parameter estimation was
carried out as described in SectionIV.

1) Path loss and shadowing: We evaluated the relative path
loss as a function of the Tx-Rx distance from the data, as
highlighted in Fig.5. From the graph, we extract the path-loss
model as

L = L0 + 1.75 · 10 log10

(

d

d0

)

+ S̄o + S̄s, (17)

where d0 = 1 m and S̄s = −20 log1 0(s̄s). We further im-
plicitly assume thatµS̄o

= 0, i.e. that the reference individual
path lossL0 is equal to the deterministic reference path loss
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Fig. 5. Relative path loss vs. distance and linear fit of (17)

Λ0 indoors (this results from the fact thatd0 = 1 m by contrast
to the O2I case). Interestingly, the value ofη = 1.75 is smaller
than 2, which tends to indicate that waveguiding propagation
effects take place. The obstruction loss̄So is found to be
a zero-mean Gaussian distributed variable, with a standard
deviationσS̄o

= 4.43 dB.
The statistics of the spatial fading part included in static

shadowing for this scenario vary between Ricean fading,
pure Rayleigh fading and worse-than-Rayleigh fading, i.e.,
fading in which smaller amplitudes are more probable than
in the Rayleigh distribution. For some links, the distribution
of s̄s even approaches the Double-Rayleigh distribution. As
outlined in SectionIV-D, a smooth transition between Ricean
and below-Rayleigh distributions can be modeled by both
the Nakagami distributionpNaka (with 0.5 < m < 1) and
the SOSF distributionpSOSF. Consequently, we fit these two
distributions to the measurement data, by normalizing the data
to satisfy E

{

|G|2
}

= 1 and forcing both distributions to
obey this constraint, i.e. we chooseΩ = 1 for Nakagami and
w2

0 + w2
1 + w2

2 = 1 for SOSF. The Nakagami fitting problem
then reduces to a one-dimensional optimization with respect
to m, while the SOSF fitting problem is a two-dimensional
optimization. The fitting is implemented using standard non-
linear minimization algorithms, where theL∞ norm of the
CDF deviation plays the role of a goodness of fit measure
(the smaller the norm, the better the fit). The optimization
process is initialized by the moment-based or ML parameter
estimates mentioned in SectionIV-D.

When comparing the goodness of fit for the two distribu-
tions for all links, we find that the SOSF distribution generally
achieves a better fit than Nakagami. This is expected, both
because unlike Nakagami, SOSF has a physical interpretation,
and SOSF allows us to tweak two parameters for fitting as
opposed to one in the Nakagami case. The derived values of
αs and βs are depicted on Fig.6 for all links. The triangle
is the permissible parameter region,T = {(αs, βs) | αs ≥
0, βs ≥ 0, αs + βs ≤ 1}. While there is no discernible
correlation between(αs, βs) and the individual relative path
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Fig. 6. SOSF fitted parameters for the distribution of spatial static shadowing

loss, the parameters are clearly distributed along the axes, so
that the joint distribution ofαs andβs can be represented by
the following bimodal distribution:

(αs, βs) ∼ 0.34 δ(αs) · Nµ=0.51,σ=0.18(βs)

+ 0.66 Unif [0,1](αs) · δ(βs), (18)

constrained to the triangleT of permissible(αs, βs). Here,
Unif [0,1] is a uniform distribution over[0, 1].

2) Dynamic shadowing: For the standard deviation of the
dynamic shadowing, we observed the same effect as in the
O2I case. It is again strongly correlated with the path loss
(cf. Fig. 3) and is modeled as in (14), σ′

σ
S̃

being zero-
mean Gaussian distributed with a standard deviation of0.22.
Furthermore, we may expressσS̃ as a function of the distance
as

log10(σS̃) = log10(1.85) + 0.2 log10

(

d

d0

)

+ σ′
σ

S̃

, (19)

whereσ′
σ

S̃

is a zero-mean Gaussian distributed random vari-
able standard deviation of 1.13. The slope of the temporal
auto-correlation is estimated asτ =2.5 s.

Regarding the dynamic shadowing correlation, the results
are summarized in TableII . For the static I2I scenario, it can
only be noticed that all the sets show a very similar behavior.
Furthermore, no clear relationship with the geometry of the
links could be found.

3) Fading: For static antennas, the channel gain is naturally
found to be Ricean distributed over time, with the K-factor
closely related to the to the Tx-Rx distance, as illustratedin
Fig. 7. This trend can be fitted by

K|dB = 16.90 − 5.25 log10

(

d

d0

)

+ σ′
K , (20)

where d is the Tx-Rx distance in meters,d0 = 1 m and
σ′

K is approximately a random Gaussian variable of standard
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Fig. 7. K-factor and m-parameter vs. distance for the I2I nomadic data

deviation equal to 6 dB.
A similar trend is found for the Nakagami m-parameter,

which is fitted by

log10(m) = 1.35 − 0.50 log10

(

d

d0

)

+ σ′
m (21)

over distance. Variableσ′
m is Gaussian distributed with a

standard deviation equal to 0.48. The distribution is naturally
truncated so thatm > 0.5.

C. Indoor-to-Indoor Channels for Mobile Nodes

1) Path loss and static shadowing: Expectedly, the mea-
sured static shadowing is frequency flat for mobile nodes (so
that S̄ = S̄o, and S̄s = 0, i.e. the SOSF parameters(αs, βs)
are equal to(0, 1) corresponding to a Ricean distribution with
infinite K-factor). Both the path loss exponent (estimated as
1.77) and the standard deviation ofS̄o (estimated as 4.6 dB)
are very similar to the nomadic case. In the proposed model,
we will use the above values, as the estimation accuracy is
expected to be higher for mobile measurements (because the
number of realizations is higher).

2) Dynamic shadowing: In contrast to the nomadic case,
σS̃ does not depend on the path loss any more when one or
both stations are moving, but is rather constant. We observed it
to be similar to that of static shadowing, hence we modelσS̃ =
σS̄o

. The slope of the temporal auto-correlation is estimated
as τ =1.5 s for both single- and double-mobile links, which
provides an equivalent decorrelation distancedc = 0.45 m
considering that the nodes move at 0.3 m/s. Note that the
absence of any difference between single- and double-mobile
links regarding dynamic shadowing characteristics is probably
due to the fact that dynamic shadowing is mostly caused by
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moving people obstructing the link (and only partly by the fact
that the antennas might be occasionally shadowed by furniture
at both ends). It is of course not possible to separate both
effects, hence both the decorrelation time and distance will be
considered in the model.

Table II also provides the results on the correlation coeffi-
cients. In the table, we distinguish between the two types of
mobility previously defined. When at least one of the nodes
is moving, it can be seen that the sets for which the moving
node is common clearly show a higher correlation than the
sets for which the moving node is not common to both links.
As an example, for the single-mobile case with moving Rx,
the ’Rx’ set shows a higher correlation than the ’Tx’ set, while
the opposite is observed for the the single-mobile case with
moving Tx. For the double-mobile case, the ’Rx’, ’Tx’ and
’Rx-Tx’ sets (all containing a joint moving node) show similar
values, while the ’disjoint’ set has a significantly lower mean.
This behavior is actually quite intuitive, as the joint moving
node is a source of positive correlation across the links. For the
sequel, we will thus partition the set of links into two subsets:
(i) links with a common moving node (the set Rx-Tx for the
double mobile case and the set Rx (resp. Tx) for the single
mobile Rx (resp. Tx) case) and (ii) links with no moving node
in common (the complement of (i)).

3) Fading: The small-scale fading statistics for this sce-
nario vary between Ricean and Double-Rayleigh fading. After
fitting both the Nakagami and the SOSF distributions, we
find that the latter achieves a much better fit. In order to
characterize the distribution parameters(α, β), we first note
that there is again no discernible correlation between these
parameters and the individual relative path loss (analogous to
S̄s, which is not surprising). Hence, we take again a stochastic
approach and distinguish between single-mobile and double-
mobile links.

Fig. 8 shows the distribution parameters(α, β) for all
double-mobile links. We identify three clusters in the distribu-
tion: (1) non-line-of-sight cases,β ≈ 0, where the distribution
is a mixture of Rayleigh and Double-Rayleigh fading, (2)

Ricean cases,α ≈ 0, and (3) cases where bothα and β
are larger than zero. Each cluster is modeled with a bivariate
Gaussian distribution, such that the overall distributionof
(α, β) results in a three-modal Gaussian. The figure also shows
the distribution parameters for each mode, such that the global
distribution of(α, β) for double-mobile links is

(α, β) ∼ 0.03 δ(α) · Nµ=0.34,σ=0.16(β)

+ 0.72 Nµ=0.54,σ=0.11(α) · δ(β)

+ 0.25 Nµ=[0.55,0.19],σ=[0.14,0.07],ρ=−0.52(α, β), (22)

constrained to the triangleT of permissible(α, β).

For single-mobile links, similar trends are found [20], and
the resulting three-modal Gaussian is then

(α, β) ∼ 0.09 δ(α) · Nµ=0.27,σ=0.14(β)

+ 0.59 Nµ=0.40,σ=0.14(α) · δ(β)

+ 0.32 Nµ=[0.39,0.24],σ=[0.12,0.09],ρ=−0.13(α, β), (23)

again constrained to the triangular setT . Note that for double-
mobile links, theα values are significantly higher than in the
single-mobile case, indicating more severe fading conditions.

Finally, it is interesting to note that the first mode (with
α = 0), is in fact Ricean-distributed, and thus an equivalent
K-factor can be computed. In our measurement, the median
equivalent K-factor (in natural scale) whenα = 0 is 0.31
for single-mobile links, and0.69 for double-mobile links, i.e.
these channels are almost Rayleigh distributed.

VI. L INK -LEVEL SIMULATION MODEL

This section integrates the results of the previous sectionto
build channel models for both O2I and I2I scenarios. Before
doing so, let us summarize the main requirements which
cooperative channel models should meet:

• differentiate between the different types of mobility: no-
madic, single-mobile and double-mobile, as the analysis
has revealed that the channel behavior is very dependent
on the mobility scenario; that implies to correctly iden-
tify which mechanisms are space-varying and/or time-
varying,

• allow for integration of site-specific models, especially
regarding the O2I segment, which is significantly influ-
enced by the outdoor environment,

• include a model of dynamic shadowing correlation, as
this parameter largely affects cooperative system perfor-
mance,

• rely, as much as possible, and in agreement with the data,
on Gaussian-based distributions (e.g. Rayleigh, Rice, log-
normal, SOSF, etc.), since random generators are then
easily built.

Hereafter, we describe the models for both O2I and I2I
channels. TableIII provides the values of the parameters used
by the models.
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A. Outdoor-to-Indoor Channel Model

The narrowband complex channelhn from the outdoor base
station to the indoor noden is described by

hn(t) =
1

10Ln/20 · 10S̃n(t)/20
· gn(t) (24)

where Ln is the combination of deterministic path lossΛn

and static shadowinḡSn; S̃n is the real-valued dynamic
shadowing; andgn is the complex normalized fading channel.
All these contributions are modeled based on the analysis of
SectionV-A. We summarize here the main steps required to
modelhn.

1) Path loss and static shadowing: The path loss and static
shadowing have not been analyzed in this paper due to the
limited number of O2I scenarios. We recommend to model
them by using the approaches of [22], [25], whereLn is
generally represented for LOS scenarios by

Ln = Λ0 + η · 10 log10

(

dn

d0

)

+ S̄n, (25)

whereΛ0 is the equivalent outdoor path-loss at the best wall,
d0 is the distance from the BS to the best wall, andη is given
in TableIII . S̄n is modeled as the sum of two terms,S̄o,n and
S̄s,n. The first termS̄o,n is a Gaussian variable, whose mean
is given by

µS̄o
= Lo2i + max[Li,1, Li,2], (26)

whereLo2i = Le + Lg(1 − cosφ)2 is the outdoor-to-indoor
excess path-loss, withLe being the path loss through the
external wall at normal incidence (φ = 0), and Lg is the
additional external wall loss incurred at grazing incidence
(φ = π/2); Li,1 is the indoor path loss proportional to the
indoor distance,

Li,1 = 0.5(d − d0), (27)

andLi,2 = nwLw is the excess attenuation caused bynw inter-
nal walls. In NLOS cases, the expression is slightly modified
to include a floor gain [22]. Values for the above parameters at
2.45 GHz are detailed in [31]. Note thatΛ0 + Lo2i represents
what we denoted asL0 in SectionV-A.

The standard deviationσS̄o
and the parameters describing

the statistics of̄Ss,n = s̄s,n|dB are given in TableIII .

2) Dynamic shadowing: Dynamic shadowing is modeled
as a zero-mean Gaussian variable, whose standard deviation
is given by (14). The shadowing temporal auto-correlation is
modeled as a decreasing exponential, whose decay timeτ is
listed in TableIII . The correlation coefficientC[n, n′] between
S̃n and S̃n′ is given by a truncated Gaussian distribution
N[−1,1](µC , σC), whose parameters are given in TableIII .
Hence, to model the dynamic shadowingS̃n(t) andS̃n′(t) on
two links overT time samples (t = [1, . . . , T ]), we first use the
following auto-regressive process to generate autocorrelated
dynamic shadowing values,

x(t) = e−1/τx(t − 1) +
√

1 − e−2/τgx(t), (28)

y(t) = e−1/τy(t − 1) +
√

1 − e−2/τgy(t), (29)

where gx and gy are both time series of lengthT , whose
values are drawn independently form a normal distribution
N (0, 1). This ensures an autocorrelationE{x(t)x(t+∆t)} =
e−|∆t|/τ , and similar fory(t). We finally generate the standard
deviationsσS̃n

andσS̃n′
as a function of the respective ranges

dn anddn′ , and correlate both time series at each timet as
[

S̃n(t)

S̃n′(t)

]

=

[

σS̃n

σS̃
n′

]

⊙
[

1 C[n, n′]
C[n, n′] 1

]1/2 [
x(t)
y(t)

]

, (30)

where⊙ is the Hadamard element-wise product. Note that
when multiple links are concerned, the full correlation matrix
containing all correlation coefficients should satisfy a positive
semi-definiteness constraint. ForN nodes, there areN(N −
1)/2 links, so that the correlation matrix isN(N − 1)/2 ×
N(N − 1)/2 and contains the various cross-link correlation
coefficients randomly generated by the model. One practical
way to build a valid correlation matrix is the rejection method,
i.e. drawing a candidate, verifying the constraint, and if not
met, drawing another candidate until it is fulfilled.

3) Fading: The amplitude ofgn is modeled for static Rx
nodes by a Ricean distribution whose K-factor is related to
the relative path-lossLn −L0 as outlined by (15). Generating
complex Ricean variables relies on using two normal variable
random variables, i.e. any realization ofgn is given by

gn =

√

K

K + 1
ejθ +

√

1

2(K + 1)
(u + jv) (31)

where θ is a random phase (fixed over time, but different
for each link), andu and v are normal variablesN (0, 1).
The fading processes between different links are taken as
uncorrelated.

B. Indoor-to-Indoor Channel Model

The narrowband complex channelhnm from indoor node
m to indoor noden is described by

hnm(t) =
1

10Lnm/20 · 10S̃nm(t)/20
· gnm(t). (32)

The various contributions are modeled as follows.
1) Path loss and static shadowing: The path loss and static

shadowing combined inLnm are modeled as outlined by (17)
and by considering that obstruction loss̄So is a zero-mean
Gaussian variable of standard deviationσS̄o

, that s̄s is SOSF-
distributed for static nodes, and̄Ss = 0 for mobile scenarios.

2) Dynamic shadowing: S̃nm(t) is a time-varying zero-
mean Gaussian variable, whose standard deviationσS̃ is
modeled differently for nomadic and mobile links (see Table
III ). The shadowing temporal auto-correlation is modeled as a
decreasing exponential, whose decay timeτ is listed in Table
III and is also given alternatively bydcv

−1 for mobile links,
using the decorrelation distance value also listed in TableIII
and the node speedv. The shadowing correlation coefficient
C[n, m, n′, m′] is a function of the mobility scenario and
the number of joint moving nodes, as detailed in TableIII .
Hence, for two links, joint shadowing time series are obtained
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TABLE III

MODEL PARAMETERS

O2I I2I (nomadic) I2I (single mobile) I2I (double mobile)
η 2.27 [25] 1.75 1.75

µS̄o
[dB] see (26) 0 0

σS̄o
[dB] 8-10 [22] 4.6 4.6

(αs, βs) see(18) see(18) = (0, 1)
σ

S̃
[dB] see (14) see (19) = σS̄o

τ [s] 1.74 2.5 1.5 (speed of 0.3 m/s)
dc [m] non-applicable non-applicable 0.45 (speed of 0.3 m/s)

(µC , σC) (0,0.31) (0,0.27)
common mov. no (mov.) common common mov. no (mov.) common

(0.28,0.47) (0.00,0.36) (0.29,0.39) (0.06,0.36)
K see (15) see (20) non-applicable

(α, β) non-applicable non-applicable see (23) see (22)

similarly to (30). Note that the correlation value for the I2I-
single mobile-common moving case in TableIII cannot be
found directly in TableII , as we have aggregated single mobile
Rx and single mobile Tx cases to build TableIII .

3) Fading: The small-scale fadinggnm is best described in
amplitude by a Ricean distribution in nomadic cases (the K-
factor being related to the distance, see (20)), while in mobile
scenarios, the SOSF distribution is used to model the fading
amplitude, with(α, β) randomly distributed as given in Table
III . The SOSF random variable generator is obtained in a
similar fashion as (31), based on its natural definition. Again,
the fading processes between different links are modeled as
independent variables.

VII. C ONCLUSIONS

This paper has presented a preliminary analysis and mod-
eling of the outdoor-to-indoor and indoor-to-indoor channels
based on experimental results at 2.4 GHz. The conclusive
results can be summarized as follows.

• To accurately account for the different node mobility
scenarios in distributed channels, we propose to model
the channel based on a physically-motivated separation
of static and dynamic shadowing. In nomadic channels,
static shadowing further includes a spatial-fading term,
which models the static multipath interference.

• The standard deviation of static obstruction shadowing
(in all cases) and dynamic shadowing (in mobile cases)
is about 4.5 dB indoors.

• In nomadic channels, the standard deviation of dynamic
shadowing is positively correlated with the path loss.

• The dynamic shadowing correlation can be high (posi-
tively or negatively) and is related to the node mobility:
the average correlation between two links is found to be
more positive when both links share a common moving
node. This is the first time such behavior is reported.

• For nomadic scenarios (both O2I and I2I), small-scale
fading is well approximated by a Ricean or a m-
Nakagami distribution,K andm decreasing with increas-
ing distance/path loss.

• For I2I mobile transmissions, the temporal fading am-
plitude is modeled by a single distribution consisting of
a weighted combination of Ricean and Double-Rayleigh
distributions. We find that the Double-Rayleigh fading

component is significantly stronger when both Tx and
Rx nodes are moving as opposed to only one of them
moving. This implies that the popular Rayleigh fading
assumption, believed to be pessimistic, might in fact be
too optimistic for the actual fading in cooperative double-
mobile scenarios.
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