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Abstract. Zombie armies - or botnets, i.e., large groups of compromised machines
controlled remotely by a same entity - pose today a significant threat to national
security. Recent cyber-conficts have indeed demonstrated that botnets can be easily
turned into digital weapons, which can be used by cybercriminals to attack the net-
work resources of a country by performing simple Distributed Denial-of Service
(DDoS) attacks against critical web services. A deep understanding of the long-
term behavior of botnet armies, and their strategic evolution, is thus a vital require-
ment to combat effectively those latent threats. In this paper, we show how to en-
able such a long-term, strategic analysis, and how to study the dynamic behaviors
and the global characteristics of these complex, large-scale phenomena by apply-
ing different techniques from the area of knowledge discovery on attack traces col-
lected on the Internet. We illustrate our method with some experimental results ob-
tained from a set of worldwide distributed server honeypots, which have monitored
attack activity in 18 different IP subnets for more than 640 days. Our preliminary
results highlight several interesting findings, such as i) the strong resilience of zom-
bie armies on the Internet, with survival times going up to several months; ii) the
high degree of coordination among zombies; iii) the highly uneven spatial distribu-
tion of bots in a limited number of “unclean networks”, and iv) the large propor-
tion of home users’ machines with high-speed Internet connexions among the bot
population.
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Introduction

In the recent years, many security experts have drawn attention to the increasingly im-
portant security problem related to zombie armies - also called botnets, which are groups
of malware-infected machines that are remotely controlled and coordinated by a same
entity. Still today, zombie armies and botnets constitute, admittedly, one of the main
threats on the Internet, as they are used for different kinds of illegal activities (e.g., bulk
spam sending, online fraud, denial of service attack, etc) [2,19]. More importantly, the
analysis of recent “cyber conflicts”, such as the presumed cases related to Estonia and
Georgia [17,6,7], have lead experts to the conclusion that botnets can be easily turned
into digital weapons, which can be used by cybercriminals (or dissidents) to attack the
network resources of a country by performing very simple Distributed Denial-of Service
(DDoS) attacks against critical web services (e.g., DNS servers, network routers, gov-
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ernment or financial websites, etc), which can lead to substantial economical or financial
loss. Although no clear evidence of the implication of any governmental organization in
those attacks could be underlined, one important lesson learned from these events is that
botnets are primarily used by dissidents or activists to perform this type of attacks in pe-
riods of political disturbances. A deep understanding of the long-term behavior of botnet
armies, and their evolution, is thus a vital requirement to be able to combat effectively
those latent threats.

While most previous studies related to botnets have focused on understanding their
inner working [24,5,1], or on techniques for detecting individual bots at the network-
level [8,9], in this work we are more interested in studying the global behaviors of those
armies from a strategic viewpoint. That is, we are not interested in studying a particular
botnet from the inside, or in the analysis of the various protocols used by bots to com-
municate with their C&C server. But instead, we want to perform a long-term, strategic
analysis of those armies from a behavioral point of view, i.e.: how long do they stay
alive on the Internet, what is their average size and their spatial distribution, and more
importantly, how do they evolve over time with respect to different criteria such as their
origins, or the type of activities (or scanning) they perform.

The first contribution of this paper consists in introducing a systematic method that
enables us to perform such a strategic analysis of zombie armies, based on the botnet
scanning traffic observed in a global honeynet. Our approach is based on an appropri-
ate combination of different knowledge discovery and data mining techniques, which
consists of the following components:

1. detection and characterization of coordinated attack events;
2. unsupervised clique-based clustering, so as to discover correlations among attack

events;
3. dimensionality reduction techniques, which allow us to visualize and to assess

the cliques correlations;
4. a fuzzy, multi-criteria decision-making process that leverages the results obtained

in the previous steps, in order to identify sequences of attack events that are very
likely attributed to the same zombie army.

As second contribution, we present some preliminary results obtained from a proof-
of-concept framework in which we implemented the techniques mentioned here above.
The experiments have been performed on attack traces collected with a worldwide dis-
tributed honeynet, which has observed global attack activity in over 18 different IP sub-
nets from Sep 2006 until July 2008 (i.e., about 640 days). Our experimental results high-
light several interesting facets of the botnet phenomenon:

• with a mean lifetime of about 98 days, zombie armies seem to be quite resilient.
In some extreme cases, we observed certain armies surviving for more than 18
months, which indicates that taking down botnets still constitutes a real challenge.
On average, zombie armies had at least 8,500 distinct, observable sources during
their lifetime.

• regarding the origins, malicious sources involved in zombie armies seem to be
highly unevenly distributed in the IPv4 address space; they clearly form a rel-
atively small number of tight clusters within a number of “unclean networks”,
which are thus responsible for a large deal of malicious activities related to server-
side attacks (e.g., network scanning, bot propagation).



• over all zombie armies observed so far, at least 43% of the botnet population is
made of home users’ machines with high-speed Internet connexions (cable, DSL).
Windows 2000 and WinXP Pro were the primarily operating systems among zom-
bie machines (i.e., more than 90% of the bots).

• similarly to real-world armies, certain groups of zombie machines seem to be able
to coordinate their efforts, e.g., by coordinating different tasks such as network
reconnaissance and subsequent targeted attacks.

• finally, most of the identified zombie armies had a significant attack capability,
not only in terms of the available bandwidth that can possibly be offered by all
zombies together, but also the number of ports they are able to probe or to exploit.

The rest of the paper is structured as follows: in Section 1, we give a brief overview
of the honeynet used in our experiments, and we define the notion of coordinated at-
tack events as observed by the honeypots. In Section 2, we describe the components of
our knowledge discovery framework that we use to identify global attack phenomena,
whereof most are related to some activities of zombie armies. In Section 3, we present
our experimental results and the kind of findings we can obtain by applying this method
to a set of attack events collected on the Internet. Finally, we conclude in Section 4.

Note that this research builds on prior work in malicious traffic analysis. More par-
ticularly, we have presented in [28] a more formal and complete discussion of our frame-
work, especially regarding the aspect fuzzy, multi-criteria decision-making. To make this
paper as self-contained as possible, we have summarized as much as possible our pre-
vious contributions in Section 2. This paper will mostly focus on the practical results
obtained in each step of our analysis framework, rather than the formal aspects of the
different techniques.

1. Collecting Attack Traces with a Global Honeynet

1.1. Leurre.com Honeynet - Dataset Overview

Our data set is made of network attack traces collected with a distributed set of sen-
sors (called server honeypots), which are deployed in the context of the Leurre.com
Project [14,22]. Because honeypots are systems deployed for the sole purpose of being
probed or compromised, any network connection that they establish with a remote IP can
be considered as malicious, or at least suspicious.
Launched in 2003 by Eurecom, a research Institute based in Sophia Antipolis (France),
this project maintains a worldwide distributed system of honeypots running in more than
30 different countries covering the five continents. The main objective of the project is
to get a realistic picture of certain classes of global attack phenomena happening on the
Internet, by collecting unbiased quantitative data in a long-term perspective. In the first
phase of the project, the data collection infrastructure relied solely on low-interaction
sensors based on Honeyd [23] to collect unsolicited traffic (also sometimes termed “In-
ternet background radiation” [18]). In early 2008, a second phase of the project was
started with the deployment of medium-interaction honeypots based on the ScriptGen
[15] technology, in order to enrich the network conversations with the attackers. Script-
gen sensors are able to automatically learn about new protocol interactions, such that
they can handle 0-day exploits, and eventually capture shellcode samples and malware



Table 1. Overview of some prevalent types of activities observed in the honeynet, grouped by port sequence.
The network traffic has been collected from Sep’06 until June’08.

Observed Port Sequence Targeted Service Volume of Sources (%) Main Origins (countries)
|I ICMP (Echo request/reply) 755,227 (28%) US(20%),KR(11%),CN(10%),BR(6%),

others(53%)
|1026U|1027U|1028U Windows Messenger 373,361 (14%) CA(100%)
|1026U Windows Messenger 216,040 (8%) US(50%),null(17%),CA(6%), others(27%)
|445T Microsoft-DS 208,060 (8%) CS(32%),RS(19%),US(6%), others(43%)
|I|139T, |I|139T|445T ICMP (Allaple), MS-Netbios-ssn, Microsoft-DS 130,392 (5%) KR(20%), others(80%)
|135T Microsoft DCE/RPC 112,764 (4%) JP(16%),US(13%),CS(7%),RS(7%),

PL(6%),DE(6%), others(45%)
|5900T VNC 104,238 (4%) US(17%),CN(6%),FR(6%),KR(6%),

others(51%)
|2967T Symantec AntiVirus (ssc-agent) 101,062 (4%) US(23%),CN(8%),JP(6%),

DE(5%),PK(5%), others(53%)
|1433T MS-SQL 87,332 (3%) CN(32%),US(15%),others(53%)
|139T MS-Netbios-ssn 50,781 (2%) US(17%),CA(8%),TW(5%),FR(5%),

others(65%)
|I|80T ICMP, Web 48,649 (2%) US(54%),KR(11%),CN(8%),

CA(7%), others(20%)
|1434U MS-SQL-Monitor (Slammer) 36,627 (1%) CN(44%),US(14%),JP(6%), others(36%)
|22T SSH 36,094 (1%) CN(24%),US(13%),KR(8%),

TW(5%), others(50%)
|80T Web 28,005 (1%) US(27%),CN(7%),FR(7%),

DE(7%),null(5%), others(47%)
|137U MS-Netbios-ns 25,630 (<1%) US(16%),BR(9%),AR(6%),

FR(5%),ES(5%), others(59%)
|I|445T ICMP, Microsoft-DS 18,273 (<1%) US(14%),CN(13%),TW(8%),FR(7%),

JP(7%),null(6%),DE(5%), others(41%)
|4899T Remote Admin 15,935 (<1%) CN(15%),US(15%),KR(10%),

RU(5%), others(54%)

binaries when they are targeted by code injection attacks. All network traces captured on
the platforms are automatically uploaded into a centralized database. The collected traf-
fic is also enriched with a diverse set of contextual information, such as: the geograph-
ical location and the ISP’s of malicious sources (via Maxmind), reverse DNS lookups,
VirusTotal2 and Anubis3 reports for each sample of downloaded malware, passive OS
fingerprinting (with P0f), Snort IDS alerts, and more recently, we also added the correla-
tion of the observed IP sources with different IP blacklisting services (e.g., Spamhaus4,
Emergingthreats5 blocking lists, and a fast-flux bot tracker6).

For the purpose of this study, we have used a 640-day attack trace collected by 36
platforms located in 20 different countries and belonging to 18 different class A-subnets.
Note that, in the scope of this paper, we only considered the traffic collected by low-
interaction sensors; but we are actively looking into extending our analysis techniques
to integrate the attack traffic gathered by the medium-interaction (ScriptGen) platforms.
Table 1 gives an overview of the most prevalent types of activities grouped by targeted
port sequences, and their origins, as observed in the honeynet.

From this traffic, we have then selected only the most prevalent types of activities
observed on the sensors, i.e., about 130 distinct attack profiles for which an activity

2http://www.virustotal.com
3http://anubis.iseclab.org
4http://www.spamhaus.org
5http://www.emergingthreats.net
6http://dnsbl.abuse.ch
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Figure 1. Distribution of malicious sources in the IPv4 address space using a fractal mapping (Hilbert curve).

involving a sufficient number of IP sources had been observed at least once on a given
day. This data set comprises totally 1,195,254 distinct sources, which have sent about
3,423,577 packets to the sensors. Fig. 1 illustrates the distribution of malicious sources
for these activities using a fractal mapping (e.g., a Hilbert curve). Note that spoofed
IP addresses have already been filtered from this data set. As such, Fig. 1 and Table 1
give already some interesting viewpoints, as it clearly shows that most malicious sources
seem to be clustered in a limited number of IP blocks (or AS’es). Nevertheless, this type
of global analysis does not help us to get insights into the individual attack phenomena
that occurred at a large scale (such as zombie armies). Moreover, such global trends do
not allow us to learn about the modus operandi of the attackers, which is why we need
to develop a more detailed analysis.

1.2. Coordinated Attack Events

We use a classical clustering algorithm to perform a first low-level classification of the
raw network traffic. Hence, each IP source observed on a honeypot sensor is attributed
to a so-called attack cluster [21] according to its network characteristics, such as the
number of IP addresses targeted on the sensor, the number of packets and bytes sent to
each IP, the attack duration, the average inter-arrival time between packets, the associated
port sequence being probed (e.g., if a source sends first some ICMP packets followed
by an exploit on port 445/TCP, then it is associated to the port sequence 〈I-445T〉), and
the packet payload. Therefore, all IP sources belonging to a given attack cluster have left
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Figure 2. Illustration of 3 attack events observed on 2 different sensors, and targeting 3 different ports.

very similar network traces on a given sensor and consequently, they can be considered
as having the same attack profile. This leads us then to the concept of attack event, which
is defined as follows:

An attack event refers to a subset of IP sources having the same attack profile on a given
sensor, and whose coordinated activity has been observed within a specific time window.

Fig. 2 illustrates this notion by representing the time series (i.e., the number of
sources per day) of three coordinated attack events observed on two different sensors
in the same time interval, and targeting three different ports. The identification of those
events can be easily automated by using the method presented in [20]. By doing so, we
are able to extract interesting events from the spurious, nonproductive traffic collected
by our sensors, and we can focus on the most important events that might originate
from coordinated phenomena, such as attack activities resulting from botnet reconnais-
sance scans, and bot propagation. As previous botnet studies have already showed [13],
it seems that the botnet scanning behavior is ingrained to the botnets because this is an
effective (and low-cost) way for them to recruit new bots. Therefore, botmasters will
probably not give up scanning in the near future.

By using the technique described in [20], we have extracted from the whole data
set about 351 attack events that were coordinated on at least two different sensors. In
the rest of this paper, we will focus on the analysis of this set of attack events, which
still accounts for 282,363 unique sources (23.6 % of the original data set), or 741,349
packets (21.5%), and we will show how to take advantage of different external attack
characteristics to discover knowledge, and to identify individual phenomena related to
zombie armies.



2. A Framework to Identify Global Attack Phenomena

2.1. Overview

Once we have identified a set of attack events occurring at different moments, how could
we know in a reliable way which events can be attributed to the same root phenomenon?
That is, how can we identify which sequences of attack events are very likely the conse-
quence of the same zombie army scanning or probing one or several subnets, eventually
during non-contiguous intervals of time?

In the realm of threat monitoring, this problem is sometimes referred to as “attack
attribution”, which is the process of effectively attributing new attack events to (un)-
known phenomena, based on some evidence or traces left on one or several monitoring
platforms. To address this problem in a systematic way, we have developed a framework
that analyzes attack events with appropriate knowledge discovery (KDD) techniques.
The main components of this framework are sketched in Fig. 3. Based on a set of attack
events (as defined here above), the first KDD component extracts cliques of attackers
in an unsupervised way, so as to identify meaningful correlations between events. That
is, we want to know whether some groups of events are strongly correlated with respect
to some given characteristics. For example, we could discover which groups of attack
events share the very same spatial distributions (in terms of geographical or IP subnet
distributions), or which other groups of attack events are targeting the same set of sensors
in the same time interval, or which groups of attacks are similar in terms of activities
(e.g., the port sequences targeted by malicious sources), and so on. We motivate our
choice of attack characteristics used to discover knowledge in the next subsection. Then,
we evaluate the consistency of the extracted cliques (or clusters) by using dimensional-
ity reduction techniques, which enable us to visualize on a map the cliques results for
each attack dimension. We refer to this step as “semantic mapping”, since the distance
between each pair of events on a given mapping has a certain meaning. Indeed, the dis-
tances are related to the degree of similarity between the underlying feature vectors of
the attack events (i.e., the distributions of countries, subnets, etc).

In the next component of the framework, we have implemented a multi-criteria
decision-making algorithm that is based on fuzzy inference systems (FIS). The objective
consists in combining intelligently the previously extracted knowledge (i.e., the cliques
and the semantic mappings), so as to build sequences of attack events that can be at-
tributed to the same global phenomena with a high degree of confidence, thanks to the
combination of different statistical measurements. Interestingly, a FIS does not need any
training prior making inferences. Instead, it takes only advantage of the previously ex-
tracted knowledge to make sound inferences, so as to attribute incoming attack events to
a given phenomenon. Each identified attack phenomenon is then modeled with a fuzzy
inference system.

2.2. Defining Attack Characteristics

In most knowledge discovery applications, we must first define salient features that may
provide some meaningful patterns [11]. So, we start by defining different attack char-
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Figure 3. Components of a Knowledge Discovery Framework for Identifying Global Phenomena.

acteristics that we have used to extract knowledge from our set of attack events. In this
specific case, we consider them as useful to analyze the root causes of global phenomena
observed on our sensors, and as a result, to identify different zombie armies. However,
we do not pretend they are the only ones that could be used in threat monitoring. Since
other characteristics might prove relevant in the future, our framework is built such that
additional features could be easily included when necessary (e.g., to include characteris-
tics related to code injection attacks, shellcodes, or malware samples).

The two first characteristics retained are related to the origins of the attackers, i.e.
their spatial distributions. First, the geographical distribution of malicious sources can
be used to identify botnets that are located in a limited number of countries. Similarly,
the IP network blocks provide also an interesting viewpoint on the attack phenomena,
since it gives a good indication of the spatial “uncleanliness” of certain networks, i.e., the
tendency for compromised hosts (e.g., zombie machines) to stay clustered within unclean
networks [4]. So, for each attack event, we can create a feature vector representing either
the distribution of originating countries, or of IP addresses grouped by Class A-subnet
(i.e., by /8 prefix).

The next characteristic deals with the targets of the attackers, namely the distribu-
tion of sensors that have been targeted by the sources. Botmasters may indeed send com-
mands at a given time to all zombies to instruct them to start scanning (or attacking) one
or several IP subnets, which of course will create coordinated attack events on specific
sensors. Therefore, it seems important to look at relationships that may exist between
attack events and the sensors they have been observed on.

Besides the origins and the targets, the type of activity performed by the attackers
seems also relevant to us. In fact, bot software is often crafted with a certain number of
available exploits targeting a reduced set of TCP or UDP ports. In other words, we might
think of each botnet having its own attack capability, which means that a botmaster will
normally issue scan or attack commands only for vulnerabilities that he might exploit to
expand his botnet. So, it seems to make sense to take advantage of this feature to look
for similarities between the sequences of ports that have been targeted by the sources of
the attack events.



Table 2. Some experimental clique results obtained from a honeynet dataset collected from Sep 06 until June
08. (1) the given patterns represent the average distributions for the most prevalent cliques, i.e. the ones lying
in the upper quartile in terms of number of sources. For the IP subnets (resp. targeted platforms), the numbers
refer to the distributions of originating (resp. targeted) class A-subnets.

Attack Dimension Nr of Max.size Min.size Volume of Most prevalent patterns found in the cliques(1)

Cliques (nr events) (nr events) sources (%)
Geolocation 31 40 3 84.4 〈CN,CA,US,FR,TW〉, 〈IT,ES,FR,SE,DE,IL〉, 〈KR,US,BR,PL,CN,CA〉

〈US,JP,GB,DE,CA,FR,CN,KR〉, 〈US,FR,JP,CN,DE,ES,TW〉, 〈CA,CN〉
〈PL,DE,ES,HU,FR〉

IP Subnets (Class A) 25 51 3 91.2 〈87,82,151,83,84,81,85,213〉, 〈222,221,60,218,58,24,124,121,219,82,220〉
〈201,83,200,24,211,218,89,124,61,82,84〉, 〈24,60〉
〈83,84,85,80,88〉, 〈193,195,201,202,203,216,200,61,24,84,59〉

Targeted platforms 17 86 2 70.1 〈202〉, 〈88, 192〉, 〈195〉, 〈193〉, 〈194〉
〈129, 134, 139, 150〉, 〈24, 213〉

Port sequences 22 66 4 93.2 〈I〉, 〈1433T〉, 〈I-445T〉, 〈5900T〉, 〈1026U〉, 〈135T〉, 〈50286T〉
〈I-445T-139T-445T-139T-445T〉, 〈6769T〉, 〈1028U-1027U-1026U〉

Finally, we have also decided to compute, for each pair of events, the ratio of com-
mon IP addresses. We are aware of the fact that, as time passes, some zombie machines
of a given botnet might be cured while others may get infected and join the botnet. Addi-
tionally, certain ISPs apply a quite dynamic policy of IP address allocation to residential
users, which means that bot-infected machines can have different IP addresses when we
observe them at different moments (i.e., DHCP churn effect). Nevertheless, and accord-
ing to our domain experience, it is reasonable to expect that if two distinct attack events
have a high percentage of IP addresses in common, then the probability that those two
events are somehow related to the same global phenomenon is increased (assuming that
the time difference between the two events is not too large).

2.3. Clique-based Knowledge Discovery

For each attack characteristic considered here above, we have applied a clique-based
clustering on our set of attack events. That is, we use a graph-based approach to formu-
late the problem: the vertices of the graph represent the feature vectors of each attack
event (e.g., the distribution of countries, subnets, targeted sensors, etc), and the edges
express the similarity relationships between those vertices. Clearly, the choice of a simi-
larity metric is very important, as it has an impact on the properties of the final clusters,
such as their size, quality, and consistency. To reliably compare the kind of empirical dis-
tributions mentioned here above, we have chosen to rely on strong statistical distances,
such as Pearson’s χ2, or the Jensen-Shannon divergence (JSD) [16], which derives itself
from the Kullback-Leibler divergence [12]. Finally, the clustering is performed by ex-
tracting so-called maximal weighted cliques (MWC) from the graph, where a maximal
clique is defined as an induced sub-graph in which the vertices are fully connected and
it is not contained within any other clique. We refer the interested reader to [27,26] for a
more detailed description of this clique-based clustering technique applied to honeynet
traces.

Table 2 presents a high-level overview of the cliques obtained for each attack di-
mension separately. As we can see, a relatively high volume of sources could be clas-
sified into cliques for each dimension. The last colon with the most prevalent patterns
gives an indication of which countries or class A-subnets (e.g., originating or targeted IP



subnets) are most commonly observed in the cliques that lie in the upper quartile with
respect to the number of sources. Interestingly, it seems that many coordinated attack
events are coming from a given IP sub-space. Regarding the targeted platforms, several
cliques involve a single class A-subnet. About the type of activities, we can observe some
commonly targeted ports (e.g., Windows ports used for SMB or RPC, or SQL and VNC
ports), but also a large number of uncommon high TCP ports that are normally unused on
standard (and clean) machines (such as 6769T, 50286T, 9661T, . . . ). A non-negligeable
volume of sources is also due to UDP spammers targeting Windows Messenger popup
service (ports 1026 to 1028/UDP).

2.4. Visualizing Cliques - Knowledge Consolidation

In order to assess the consistency of the resulting cliques of attack events, it can be useful
to see them charted on a two-dimensional map so as to i) verify the proximities among
clique members (intra-clique consistency), and ii) understand potential relationships be-
tween different cliques that are somehow related (i.e. inter-clique relationships). More-
over, the statistical distances used to compute those cliques make them intrinsically co-
herent, which means also that certain cliques of events may be somehow related to each
other, although they were separated by the clique algorithm.

Since most of the feature vectors we are dealing with have a high number of variables
(e.g., a geographical vector has more than 200 country variables), the structure of such
high-dimensional data set cannot be displayed directly on a 2D map. Multidimensional
scaling (MDS) is a set of methods that can help to address this problem. MDS is based on
dimensionality reduction techniques, which aim at converting a high-dimensional dataset
into a two or three-dimensional representation that can be displayed, for example, in a
scatter plot. The aim of dimensionality reduction is to preserve as much of the significant
structure of the high-dimensional data as possible in the low-dimensional map. As a
consequence, MDS allows an analyst to visualize how far observations are from each
other for different kinds of similarity measures, which in turn can deliver insights into
the underlying structure of the high-dimensional dataset.

Because of the intrinsic non-linearity of real-world data sets, we have applied a
recent MDS technique called t-SNE to visualize each dimension of the data set, and
to assess the consistency of the cliques results. t-SNE [29] is a variation of Stochastic
Neighbour Embedding; it produces significantly better visualizations than other MDS
techniques by reducing the tendency to crowd points together in the centre of the map.
Moreover, this technique has proven to perform better in retaining both the local and
global structure of real, high-dimensional datasets in a single map, in comparison to other
non-linear dimensionality reduction techniques such as Sammon mapping, Isomaps or
Laplacian Eigenmaps [10].

Figure 4 shows the resulting two-dimensional plot obtained by mapping the geo-
graphical vectors on a 2D map using t-SNE. Each datapoint on this map represents the
geographical distribution of a given attack event. The coloring refers to the clique mem-
bership of each event, and the dotted circles indicate the clique sizes. We could easily
verify that two adjacent events on the map have highly similar geographical distributions
(even from a statistical viewpoint), while two distant events have clearly nothing in com-
mon in terms of originating countries. Quite surprisingly, the resulting mapping is far
from being “chaotic”; it presents a relatively sparse structure with clear datapoint group-
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Figure 4. Visualization of geographical cliques of attackers. The coloring refers to the different cliques and the
dotted circles indicate their sizes on the low-D map. The superposed text labels indicate the two first attacking
countries of the distribution of certain attack events, as well as some of the targeted port sequences (in red).

ings, which means also that most of those attack events present very tight relationships
regarding their origins. Due to the strict statistical distances used to calculate cliques,
this kind of correlation can hardly be obtained by chance only.

Similar “semantic mapping” can naturally be obtained for the other dimensions (e.g.,
subnets, platforms, etc), so as to help assessing the quality of other cliques of attackers.
As described in the next Section, those different mappings will be used by the multi-
criteria decision-making component of our framework to identify global phenomena, i.e.
by combining efficiently different sets of cliques.

2.5. Identification of Zombie Armies using Fuzzy Inferences

The final objective consists in re-constructing sequences of attack events that can be at-
tributed with a high confidence to the same root phenomenon in function of multiple
criteria. In other words, we want to build an inference engine that takes as input the ex-
tracted knowledge (cliques and mappings) to classify incoming attack events into either
“known phenomena”, or otherwise to identify a new phenomenon when needed (e.g.,
when we observe a new zombie army). To do this, we have implemented a multi-criteria
decision-making algorithm that relies on fuzzy inferences. Our motivation is that: i) we
have a priori zero-knowledge of the expected output, which means that we can not pro-
vide training samples showing the characteristics of the output we are looking for; and ii)
we want to include some domain knowledge to specify which type of combinations we
expect to be promising in the root cause identification. Also, we favor the “white-box”
approach (or a transparent reasoning process), which allows an expert to understand why
the system has grouped a given set of events into the same root phenomenon.
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Figure 5. Main components of a Fuzzy System.

Although large-scale phenomena on the Internet are complex and dynamic, our in-
tuition is that two consecutive attack events should be linked to the same root phe-
nomenon if and only if they share at least two different attack characteristics. That is,
our decision-making process will attribute two attack events to the same phenomenon
when the events characteristics are “close enough” (from a statistical viewpoint) for
any combination of at least two attack dimensions out of the complete set of crite-
ria: {origins, targets, activity, commonIP }. In other words, we hypothesize that real-
world phenomena may perfectly evolve over time, which means that two consecutive
attack events of the same zombie army must not necessarily have all their attributes in
common. For example, the bots’ composition of a zombie army may evolve over time
because of the cleaning of infected machines and the recruitment of new bots. From our
observation viewpoint, this will translate into a certain shift in the IP subnet distribution
of the zombie machines for subsequent attack events of this army (and thus, most proba-
bly different cliques w.r.t. the origins). Or, a zombie army may be instructed to scan sev-
eral consecutive IP subnets in a rather short interval of time, which will lead to the obser-
vation of different events having highly similar distributions of originating countries and
subnets, but those events will target completely different sensors, and may eventually use
different exploits (hence, targeting different port sequences).

On the other hand, we consider that only one correlated attack dimension is not suf-
ficient to link two attack events to the same root cause, since the result might then be due
to chance only (e.g., a large proportion of attacks originate from some large or popular
countries, certain Windows ports are commonly targeted, etc). However, by combining
intelligently several attack viewpoints, we can reduce considerably the probability that
two attack events would be attributed to the same root cause whereas they are in fact
unrelated.

We still need to formally define what is the “relatedness degree” between two attack
events, certainly when they do not belong to a same clique but are somehow “close” to
each other. Intuitively, attack events characteristics in the real world have unsharp bound-
aries, and the membership to a given phenomenon can be a matter of degree. For this
reason, we have developed a decision-making process that is based on a fuzzy inference
system (FIS). Fuzzy Inference is a convenient way to map an input space to an output
space with a flexible and extensible system, and using the codification of common sense
and expert knowledge. The mapping then provides a basis from which decisions can be
made. The main components of an inference system are sketched in Fig. 5. To map the
input space to the output space, the primary mechanism is a list of if-then statements
called rules, which are evaluated in parallel, so the order of the rules is unimportant.



Instead of using crisp variables, all inputs are fuzzified using membership functions in
order to determine the degree to which the input variables belong to each of the appro-
priate fuzzy sets. If the antecedent of a given rule has more than one part (i.e., multiple
’if’ statements), a fuzzy logical operator is applied to obtain one number that represents
the result of the antecedent for that rule.

Concretely, we use the knowledge obtained from the extraction of cliques to build
the fuzzy rules that describe the behavior of a given phenomenon. The characteristics
of new incoming attack events are then used as input to the fuzzy systems that model
the phenomena identified so far. In each of those fuzzy systems, the features of the most
recent attack event shall define the current parameters of the membership function used
to evaluate the following simple rules: if xi is closeAND if yi is close then zi is related,
∀i ∈ {geo, subnets, targets, portsequence}. The membership functions referred to as
“is close” in the fuzzy rules are thus defined by the characteristics of the cliques to
which the attack events belong. The calculation of the rule output zi ∈ [0, 1] is just
the intersection between two curves, which quantifies the inter-relationship between the
cliques (and hence, between the attack events).

The results of all rules are then combined and distilled into a single, crisp value
using an appropriate multi-criteria aggregation function. In this case, we use an Ordered
Weighted Average (OWA) operator, which allows to model more complex requirements
such as “most of”, or “at least two” criteria to be satisfied in the overall decision function
[30]. We refer the interested reader to [28] for a more detailed discussion of our multi-
criteria decision-making algorithm.

3. Behavioral Analysis of Zombie Armies

3.1. Global Characteristics

In this Section, we provide some experimental results obtained by applying our multi-
criteria inference method to our set of attack events introduced in Section 2 (clique anal-
ysis). Over the whole collection period (640 days), we found only 32 global phenomena.
In total, 348 attack events (99%) could be attributed to a large-scale phenomenon. An
in-depth analysis has revealed that most of those phenomena (apart from the noisy net-
work worm W32.Rahack.H [25], also known as W32/Allaple) are quite likely related to
zombie armies, i.e. groups of compromised machines belonging to the same botnet(s).
We conjecture this for the following main reasons: i) the apparent coordination of the
sources, both in time (i.e., coordinated events on several sensors) and in the distribution
of tasks (e.g., scanners versus attackers); ii) the short durations of the attack events, typ-
ically a few days only, whereas “classical” worms tend to spread over longer, contin-
uous periods of time; iii) the absence of known classical network worm spreading on
many of the observed port sequences; and iv) the source growing rate, which has a sort
of exponential shape for worms and is somehow different for botnets [13].

To illustrate the results, Table 3 presents an overview of some global phenomena
found in our dataset. Thanks to our method, we are able to characterize precisely the
behaviors of the identified phenomena or zombie armies. Hence, we found that the largest
army had in total 57 attack events comprising 69,884 sources, and could survive for
about 112 days. The longest lifetime of a zombie army observed so far was still 586
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Figure 6. Empirical CDF of the size and lifetime of zombie armies.

days. Fig. 6 shows the cumulative distributions (CDF) of the lifetime and size of the
identified armies. Those figures reveal some interesting aspects of their global behaviors:
according to our observations, at least 20% of the zombie armies had in total more than
ten thousand observable7 sources during their lifetime, and the same proportion of armies
could survive on the Internet for at least 250 days. On average, zombie armies have a
total size of about 8,500 observed sources, a mean number of 658 sources per event, and
their mean survival time is 98 days.

Regarding the origins, we observe some very persistent groups of IP subnets and
countries of origin across many different armies. On Fig. 7, we can see the CDF of the
sources involved in the zombie armies of Table 3, where the x-axis represents the first
byte of the IPv4 address space. It appears clearly that malicious sources involved in those
phenomena are highly unevenly distributed and form a relatively small number of tight
clusters, which account for a significant number of sources and are thus responsible for
a large deal of the observed malicious activities. This is consistent with other prior work
on monitoring global malicious activities, in particular with previous studies related to
measurements of Internet background radiation [3,18,31]. However, we are now able to
show that there are still some notable differences in the spatial distributions of those
zombie armies with respect to the average distribution over all sources (represented with
the blue dashed line). In other words, certain armies of compromised machines can have
very different spatial distributions, even though there is a large overlap between “zombie-
friendly” IP subnets. Moreover, because of the dynamics of this kind of phenomena,
we can even observe very different spatial distributions within a same army at different
moments of its lifetime. This is a strong advantage of our analysis method that is more
precise and enables us to distinguish individual phenomena, instead of global trends, and
to follow their dynamic behavior over time.

7It is important to note that the sizes of the zombie armies given here only reflect the number of sources we
could observe on our sensors; the actual sizes of those armies are most probably much larger.
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Another interesting observation on Fig. 7 is related to the subnet CDF of ZA1 (uni-
formly distributed in the IPv4 space, which means randomly chosen source addresses)
and ZA20 (a constant distribution coming exclusively from the subnet 24.0.0.0/8). A very
likely explanation is that those zombie armies have used spoofed addresses to send UDP
spam messages to the Windows Messenger service. So, this indicates that IP spoofing is
still possible under the current state of filtering policies implemented by certain ISP’s on
the Internet.

Then, in terms of attack capability, we observe that about 50% of the armies could
target at least two completely different ports (thus, probably two different exploits, at
least), and one army had even an attack capability greater than 10. Table 4 provides addi-
tional details on the characteristics of malicious sources involved in those zombie armies.
Regarding the operating systems (detected through passive OS fingerprinting with P0f),
we can see that a large majority of the sources are running either Windows 2000 SP or
Windows XP Pro. Finally, by analyzing the hostnames of the sources (obtained via re-
verse DNS lookups), we infer the ratio of home users’s machines by looking for typical
strings such as ’%DSL%’, ’%PPP%’, ’%CABLE%’. Over all zombie armies observed
so far, we found that at least 43% of the botnet population is made of residential users
with high-speed Internet connections. If we take 256kbps as a lower-bound estimate of
the average upstream bandwidth for this kind of connection, then we observe that most
of those zombie armies could have an aggregate network capacity of several gigabits per
seconds, which can easily be used to exhaust almost any type of network resources on
the Internet by launching Distributed Denial of Service attacks.

3.2. Some Detailed Examples

In this Section, we further detail two zombie armies to illustrate some typical behaviors
we could observe among the identified phenomena, e.g.:

i) a move (or drift) in the origins of certain armies (both geographical and IP blocks)
during their lifetime;



Table 3. Overview of some large-scale phenomena found in a honeynet dataset (Sep’06 until Jun’08.

Id Nr of Total size Lifetime Targeted sensors Attack capability Main origins
events (nr sources) (nr days) (Class A- subnets) (countries / subnets)

1 10 18,468 535 24.*,193.*,195.*,213.* 1026U US,JP,GB,DE,CA,FR,CN,KR,NL,IT
69,128,195,60,81,214,211,132,87,63

4 82 26,962 321 202.* 12293T,15264T,18462T,25083T,
25618T,28238T,29188T, IT,ES,DE,FR,IL,SE,PL
32878T,33018T,38009T,4152T, 87,82,83,84,151,85,81,88,80
46030T,4662T,50286T,. . .

5 13 9,644 131 195.* 135T,139T,1433T,2968T,5900T CN,US,PL,IN,KR,JP,FR,MX,CA
218,61,222,83,195,221,202,24,219

6 15 51,598 >1 year > 7 subnets ICMP (W32.Rahack.H / Allaple) KR,US,BR,PL,CN,CA,FR,MX,TW
201,83,200,24,211,218,89,124

9 23 11,198 218 192.*,193.*,194.* 2967T,2968T,5900T US,CN,TW,FR,DE,CA,BR,IT,RU
193,200,24,71,70,213,216,66

10 57 69,884 112 128.*,129.*,134.*,139.*,150.* I-I445T CN,CA,US,FR,TW,IT,JP,DE
222,221,60,218,58,24,70,124

11 14 2,636 110 129.*,134.*,139.*,150.* I-445T-139T-445T-139T-445T US,FR,CA,TW,IT
82,71,24,70,68,88,87

12 14 27,442 183 192.*,193.*,194.*,195.* 1025T,1433T,2967T US,JP,CN,FR,TR,DE,KR,GB
218,125,88,222,24,60,220,85,82

20 10 30,435 337 24.*, 129.*, 195.* 1026U,1026U1028U1027U,1027U CA,CN
24,60

Table 4. Some detailed characteristics related to the composition of different zombie armies.

Zombie Army Id Home Users (DSL, Cable, PPP) Operating Systems (P0f)
1 spoofed IP’s -
4 69% Windows 2000 SP (68%), Windows XP Pro (5%)
5 27% Windows 2000 SP (50%), Windows XP Pro (21%)
6 38% Windows 2000 SP (2%), unknown (98%)
9 29% Windows 2000 SP (63%), Windows XP Pro (16%)

10 34% Windows 2000 SP (10%), unknown (87%)
11 61% Windows 2000 SP (56%), unknown (35%)
12 26% Windows 2000 SP (61%), Windows XP Pro (17%)
20 spoofed IP’s -

ii) a large scan sweep by the same army targeting several consecutive class A-
subnets;

iii) within a same army, multiple changes in the port sequences (or exploits) used
by zombies to scan or to attack;

iv) a coordination between different armies.

Zombie army 12 (ZA12) is an interesting case in which we can observe the behaviors
ii) and iii). Fig. 8 represents the output of the fuzzy system modeling this phenomenon.
Each bar graph represents the fuzzy output zi for a given attack dimension, whereas the
last plot shows the final aggregated output from which the decision to group those events
together was made (i.e., F (zi)). We can clearly see that the targets and the activities of
this army have evolved between certain attack events (e.g., when the value of zi is low).
That is, this army has been scanning (at least) four consecutive class A-subnets during
its lifetime (still 183 days), while probing at the same time three different ports on these
subnetworks.

Then, the largest zombie army observed by the sensors (ZA10) has showed the be-
haviors i) and iv). On Fig. 9, we can see that this army had four waves of activity during
which it was randomly scanning 5 different subnets (note the almost perfect coordination
among those attack events) on Windows ports (445T, 139T), preceded by ICMP. When
inspecting the subnet distributions of those different attack waves, we could clearly ob-
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Figure 9. Time series of coordinated attack events for zombie army ZA10 (Nr of sources / day).

serve a drift in the origins of those sources, quite likely as certain machines were infected
by (resp. cleaned from) the bot software. Finally, we found another smaller army (ZA11)
that is clearly related to ZA10 (e.g., same temporal behavior, similar activity, same tar-
gets); but in this case, a different group of zombie machines, resulting in very different
subnet CDF’s on Fig. 7), was used to attack only specific IP addresses on our sensors,
probably by taking advantage of the results given by the army of scanners (ZA10). The
scanners were probably using some OS fingerprinting techniques to detect Windows op-
erating systems, since only those ones were targeted by the attackers on ports 445 and
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139 (and not the Linux honeypots). The distinction between scanners and attackers is
even more visible on the 2D mapping (illustrated on Fig 10) obtained from the subnets
distributions of these two zombie armies.

4. Conclusions

In this paper, we have introduced an analysis framework to identify, observe and char-
acterize zombie armies on the Internet, based on the attack traces they have left on dis-
tributed sensors. Recent cyber-conflicts have showed that zombie armies and botnets can
be easily turned into digital weapons and used to perform DDoS attacks against the net-
work infrastructure of a Nation. It is thus very important to understand the long-term be-
havior of botnet armies, and their strategic evolution, in order to deploy effective counter-
measures against those latent threats. Our analysis is based on the application of appro-
priate knowledge discovery techniques and a multi-criteria decision-making process. A
key aspect of the proposed method is the exploitation of external characteristics of mali-
cious sources, such as their spatial distributions in terms of countries and IP subnets. Our
experiments on a set of real-world attack traces have also highlighted some interesting
aspects of the global characteristics of such zombie armies, such as their high resilience
and the high attack capacity that zombie machines can potentially offer. As future work,
we envisage to extend our method to other data sets, such as high-interaction (client)
honeypot data, or malware data sets, and to include even more relevant attack features so



as to improve further the inference capabilities of the system, and thus also our insights
into malicious behaviors observed on the Internet.
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