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ABSTRACT

We address the problem of blind multiuser multichannel identifi-
cation in a Spatial Division Multiple Access (S.D.M.A.) context.
Using a stochastic model for the input symbols and only second or-
der statistics, we develop a simple algorithm, based on the Gener-
alized Schur algorithm to apply LDU decomposition of the covari-
ance matrix of the received data. We show that this method leads
to identification of the channel, up to a unitary mixture matrix.
Furthermore, the identification algorithm is shown to be robust to
channel length overestimation and approaches the performance of
the Weighted Linear Prediction (WLP) method [1], at low compu-
tational cost.

1. INTRODUCTION

Blind multichannel identification has received considerable inter-
est over the last decade. In particular, second-order methods have
raised a lot of attention, due to their ability to perform channel
identification with relatively short data bursts. Among these meth-
ods, we can distinguish the deterministic methods, where the input
symbols are considered deterministic and the stochastic methods,
where the input symbols are considered stochastic. Using the de-
terministic model leads to a dynamical indeterminacy [3, 5] as op-
posed to the stochastic model which leads to the identification of
the channel up to a unitary static mixture matrix [3]. Subsequent
source separation can then be performed by other classical meth-
ods or by resorting to known symbols (i.e. performing semi-blind
identification).

We show that LDU decomposition of the covariance matrix
leads to the identification of the channel (up to a unitary mixing
matrix) and that performing this decomposition with a Schur al-
gorithm yields good performance. Moreover, this identification
procedure is inherently robust to channel length overestimation,
which makes our method a serious candidate for bootstrap blind
multiuser multichannel identification.

2. DATA MODEL AND NOTATIONS

Consider linear digital modulation over a linear channel with ad-
ditive Gaussian noise. Assume that we have transmitters at a
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certain carrier frequency and antennas receiving mixtures of the
signals. We shall assume that . The received signals can be
written in the baseband as

(1)

where the are the transmitted symbols from source , is
the common symbol period, is the (overall) channel im-
pulse response from transmitter to receiver antenna . Assuming
the and to be jointly (wide-sense) stationary, the
processes are (wide-sense) cyclostationary with period .
If is sampled with period , the sampled process is (wide-
sense) stationary.

We assume the channels to be FIR. In particular, after sam-
pling we assume the (vector) impulse response from source to be
of length . The discrete-time received signal can be represented
in vector form as

(2)
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Figure 1: Notations.

We consider additive temporally and spatially white Gaussian
circular noise with E .
Assume we receive samples :

(3)

where and is
defined similarly whereas is the multichannel multiuser



convolution matrix of , with block lines (
, where is block Toeplitz).

The input symbols are also i.i.d., zero mean and independent from
one user to another, so we can write .

3. IDENTIFIABILITY

Effective Number of Channels
In the subsequent developments, we will often consider ir-

reducible and column reduced channels, (i.e. such that h
h h is full-rank and

is full-rank), which is equivalent to forcing the tall (i.e. more lines
than columns) matrix to be full column rank. Obviously,
if is not full rank, can not be full column rank under
the same matrix size conditions and one must consider a reduced
number of channels (equal to the rank of ), which we will call
effective number of channels. From here on, irreducible channels
will mean irreducible channels with being the effective number
of channels.

One must identify from

(4)

Sufficient condition [3] In the stochastic model, the -channel
is identifiable blindly up to a unitary static mixture factor by

second-order statistics if

(i) The channel is irreducible and column reduced.

(ii)

where for

4. LDU FACTORIZATION OF A COVARIANCE MATRIX

From (4), under the identifiability conditions, we can identify as
the singular vector corresponding to the minimum singular value
of . Let be the prediction error, then, as can be perfectly
predicted in the absence of noise, the covariance of the error can
be written as

(5)

where denotes a generalized inverse.
Consider we perform a block triangularization, examination of

the rank of leads to, for block

rank

(6)

where .
As the prediction of is perfect from instant

on, in , contains the emitted symbols, apart from
a unitary matrix, which is consistent with the rank profile of .

Furthermore, denoting as the block of ,
implies :

E

E

for

(7)

where is a unitary matrix. Hence, we can identify the channel,
up to a unitary matrix, by triangularization of the covariance matrix
of the received signal.

5. USE OF THE GENERALIZED SCHUR ALGORITHM

5.1. Some basics

The displacement of a Hermitian matrix is defined as
, where is a lower shift matrix with ones

on the th subdiagonal 1. The rank of is called the dis-
placement rank and can be shown to be equal to for the co-
variance matrix . Moreover, we can factor as

where is called the signature
matrix and the generator of . One can easily check that, de-

noting the blocs , of size
and .

...
...

...
...

Proceeding by block, the generalized Schur algorithms starts
with the generator , forms

(8)

where is a block hyperbolic Householder transformation (such

that it is unitary : i.e. ). Then is the
generator of the Schur complement of with respect to .
Continuing this process further, we get where

. . .
...

...
. . .

...

1broader definitions can be found in [6, 2].



5.2. Applying it to LDU factorization of

After the th iteration, the first columns of the generator contains
the channel, the subsequent columns being zero.

The generalized Schur algorithm can only work with strongly
nonsingular and definite positive matrices (i.e. whose principal
minors are all definite positive). Solutions have been proposed for
singular matrices [4, 7] but introduce some additional complexity,
which we want to avoid, hence, the choice of the estimator of the
correlation matrix is critical. Here, we choose the ”biased estima-
tor” of the correlation sequence

because the matrix formed with these estimators is, by construc-
tion, block Toeplitz and definite positive. The ”unbiased estima-
tor” (where the scaling factor is ) leads to an indefinite
matrix and the ”sample covariance matrix”
( , where for )
has a displacement rank of , having thus a slightly differ-
ent structure as the true covariance matrix.

Furthermore, due to the fact that it is a biased estimator, the
singular value spectrum does not present an abrupt breakdown at
the theoretic rank of , but presents a relatively ”smooth” de-
cay of the singular values. This will lead to late occurence of bad
conditioning in the Schur algorithm and prevent us from using the
methods necessary in the case of singular matrices. Besides this
numerical advantage, we will also be able, provided the size of

is big enough (2 to 3 ), to overestimate the
channel length without numerical problems, as we will be able to
perform the Schur iteration further than the th iteration.

The drawback of this behaviour is that, after the th iteration,
though singular in the exact case, the th block of the block
diagonal is far from singular and, hence, the first columns of the
generator can not pretend to contain the channel exactly. A simple,
though possibly expensive ( ) way, is then to perform
an SVD on the first columns of the generator and take the first
columns, which correspond to the non-singular part of .

SCHUR ESTIMATION PROCEDURE

1. Calculate the estimate of

then

2. Calculate .

3. Proceed with the Schur iterations as in (8) until the th iter-
ation.

4. Either

collect the first columns of the generator.

calculate the first left singular vectors of the gener-
ator.

6. COMPLEXITY

In this section, we evaluate the order of magnitude of complexity
of the Schur algorithm, apart from the calculation of , which
is common to all algorithms.

Evaluating the complexity for each step as :
; ; multiply the first block column :
; Schur iterations 2 : ; optional

SVD : . In total, this gives a complexity which is linear
in the size of the covariance matrix ( ).

If we compare to the PLP-WLP, where the complexity is domi-
nated by a Pseudo-inverse ( ) and the solution of a least-
square problem involving structured matrices ( ), we
get a far less complex algorithm with comparable performances.

7. SIMULATIONS

In order to evaluate the performance of the algorithms, we have
computed the Normalized MSE (NMSE) on the estimated chan-
nels, averaged over 200 Monte Carlo runs. We have used a ran-
domly generated channel with users, and

, and subchannels. The symbols are i.i.d. BPSK and
the data length is . The mixing matrix has been esti-

mated afterwards as for the Schur method (where

and ) and similarly
on for the WLP-PLP methods.

We evaluate the performance of the Schur algorithm, with and
without SVD performed on the generator and compare them to the
Weighted and Plain Linear Prediction algorithm [1].
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Curves show that the Schur algorithm, although very simple,
gives comparable performance as the PLP and WLP method, this
last one was shown to be only slightly sub-optimal.

2for one iteration the complexity is where is the dis-
placement rank



We further explore the performance when the channel length
has been overestimated ( ),
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Again, the performances are rather close and the robustness
of the Schur method is as good as the robustness of the Linear
Prediction Method.

In both figures, it can be seen that performing a SVD on the
generator gives (as expected) better results at high SNR, in which
case we attain the WLP performance. At low SNR, the perfor-
mance is degraded.

Figures show also that the performances of the Schur method
are ”smoother” than those of the WLP method, indeed, simulations
show that this latter algorithm leads to NMSE’s that have larger
confidence intervals than the first one.
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It is worth mentioning that, as we have a stochastic point of
view, we have a flooring effect at high SNR, due to the assumption
that . The figure here above shows the performance
increasing with the number of input symbols.

8. CONCLUSIONS

We have introduced a Schur method to identify multiuser multi-
channels blindly in a computationaly efficient way. This algorithm
is recursive in order, and can be coupled to a channel length esti-
mator and source detector by examining the diagonal of the LDU
of . Even if this channel length is overestimated, the
algorithm provides a good estimate of the channel. Furthermore,
an adaptive version could be developed by using standard signal
processing techniques.

The performances of this simple algorithm are shown to be
close to the Weighted Linear Prediction method, which is near op-
timal [1] and presents the same robustness characteristics.

Moreover, the computational complexity of the Schur algo-
rithm is linear in the size of the covariance matrix, opposed to
the cubic complexity of the Linear Prediction methods, which ren-
ders this method very attractive for bootstrap blind multiuser mul-
tichannel identification.
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