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ABSTRACT

We address the problem of blind multiuser multichannel identifi-
cation in a Spatial Division Multiple Access (S.D.M.A.) context.
Using astochastic model for the input symbolsand only second or-
der statistics, we develop a simple algorithm, based on the Gener-
alized Schur algorithm to apply LDU decomposition of the covari-
ance matrix of the received data. We show that this method leads
to identification of the channel, up to a unitary mixture matrix.
Furthermore, the identification agorithm is shown to be robust to
channel length overestimation and approaches the performance of
the Weighted Linear Prediction (WLP) method [1], at low compu-
tational cost.

1. INTRODUCTION

Blind multichannel identification has received considerable inter-
est over the last decade. In particular, second-order methods have
raised a lot of attention, due to their ability to perform channel
identification with relatively short data bursts. Among these meth-
ods, we can distinguish the deterministic methods, where the input
symbols are considered deterministic and the stochastic methods,
where the input symbols are considered stochastic. Using the de-
terministic model leads to adynamical indeterminacy [3, 5] as op-
posed to the stochastic model which leads to the identification of
the channel up to a unitary static mixture matrix [3]. Subsequent
source separation can then be performed by other classica meth-
ods or by resorting to known symbols (i.e. performing semi-blind
identification).

We show that LDU decomposition of the covariance matrix
leads to the identification of the channel (up to a unitary mixing
matrix) and that performing this decomposition with a Schur al-
gorithm yields good performance. Moreover, this identification
procedure is inherently robust to channel length overestimation,
which makes our method a serious candidate for bootstrap blind
multiuser multichannel identification.

2. DATA MODEL AND NOTATIONS

Consider linear digital modulation over a linear channel with ad-
ditive Gaussian noise. Assume that we have p transmitters at a
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certain carrier frequency and m antennas receiving mixtures of the
signals. We shall assumethat m > p. The received signals can be
written in the baseband as

vi(t) = YD ay(k)hiy(t—kT) +vi(t), i=1,---,m
@

where the a, (k) are the transmitted symbols from source j, T is
the common symbol period, hi,(t) is the (overal) channel im-
pulse response from transmitter j to receiver antennas. Assuming
the {a, (k)} and {v:(¢)} to be jointly (wide-sense) stationary, the
processes {y; (t)} are (wide-sense) cyclostationary with period 7.
If {y:(¢)} issampled with period T, the sampled processis (wide-
sense) stationary.

We assume the channels to be FIR. In particular, after sam-
pling we assume the (vector) impul se response from source 5 to be
of length IV,. Thediscrete-time received signal can be represented
in vector form as

y(k) = HAx(k) +o(k):H = [H,---H,] (9
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Figure 1. Notations.

We consider additive temporally and spatially white Gaussian
circular noisew (k) with R, (k—i) = E{v(k)v™ (i)} = 02 Lndxi.
Assumewe receive M samples:

Y (k) = Ta (H) Anypa—1)(k) + Var(k) 3

where Yar (k) = [YH (k) - YH (k= M+ 1)]" and Viar(k) is
defined similarly whereas 7 (H) is the multichannel multiuser



convolution matrix of H, with M block lines (7 (H)

= [Tm(Hy) ... Tu(Hy)), where Tas(H ;) is block Toeplitz).
Theinput symbolsare alsoi.i.d., zero mean and independent from
one user to another, sowe canwrite Raa = o>1.

3. IDENTIFIABILITY

Effective Number of Channels

In the subsequent developments, we will often consider ir-
reducible and column reduced channels, (i.e. such that h(z) =
[hi(z)---hy(z)]isfull-rank Vz and [h1 (N1 — 1) ... hyp(Ny —1)]
isfull-rank), which is equivalent to forcing the tall (i.e. morelines
than columns) matrix 7 (H) to be full column rank. Obviously,
if H x isnot full rank, 7 (H) can not be full column rank under
the same matrix size conditions and one must consider a reduced
number of channels (equal to therank of H x), which wewill call
effective number of channels. From here on, irreducible channels
will mean irreducible channelswith m being the effective number
of channels.

One must identify § = [H o2] from

Ryy(¢) = T(H)T"(H)os + 021 )

Sufficient condition [3] In the stochastic model, the m-channel
H isidentifiable blindly up to a unitary static mixture factor by
second-or der statisticsif

(i) Thechannd isirreducible and column reduced.
(i) M>L+1
where L = [i:ﬂ (=0for 2)

4. LDUFACTORIZATION OF A COVARIANCE MATRIX

From (4), under theidentifiability conditions, we can identify o2 as
the singular vector corresponding to the minimum singular value
of Ryy. LetY bethe prediction error, then, as' Y can be perfectly
predicted in the absence of noise, the covariance of the error can
be written as

H
Ryy — RygRE¥_Ryy =0= Ry RE_Ry, =U"DU
©)
where # denotesa generalized inverse.

Consider we perform ablock triangularization, examination of
therank of Ryy — 021 = T(H)T™(H)o? leadsto, for block i

=p .1
rank (D;) = m-me{p+1,...,m} i
m i

A IV
(e~ e~ e~

1
1
(6)
wherem = (m —p)L— N —p € {0.1.... .m—1—p}.
Asthepredictionof Y = Y (k) isperfect frominstant L+1

on,int > L, y(k — t) contains the emitted symbols, apart from
a unitary matrix, which is consistent with the rank profile of D;.

Furthermore, denoting U (i, 5) as the (i, j) block of U, UH =
Ry implies:

UR(i.j) = E{yk—ig%k-j)}

I
g
=

i

alk —i— )T a® (k — j)}
fori,7 > L

— TH(-i)
(7)

where T is a unitary matrix. Hence, we can identify the channel,
up to aunitary matrix, by triangularization of the covariance matrix
of the received signal.

5. USE OF THE GENERALIZED SCHUR ALGORITHM

5.1. Somebasics

The displacement of an x n Hermitian matrix isdefinedas V R 2
R—Z,RZE where Z, isan x n lower shift matrix with ones
on the ™ subdiagona . The rank r of VR is called the dis-
placement rank and can be shown to be equal to 2m for the co-
variance matrix Ryy(—af,.l). Moreover, we can factor V Ry vy as
VRyy = GEGH where Y. = (I, & —I,,) iscdled the signature
matrix and G the generator of Ry y. Onecan easily check that, de-
notingtheblocsr; = RyY/?(0)Ryy (i), Ryy of size Km x K'm
and Ryvy = [7‘,_]]1'?] .
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Proceeding by block, the generalized Schur algorithms starts
with the generator G©) = @, forms
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where 5) isablock hyperbolic Househol der transformation (such
that it is ¥ unitary : i.e. SVESWT = %) Then ¢V isthe
generator of the Schur complement of Ry y with respect to rq.
Continuing this process further, we get Ryy = U DU where

0 0 0
g’ e i

1 . 1
U= 0 7r‘(() ) : rg\’)—Q
0 0 r(()}\"—l)

proader definitions can be found in [6, 2].



5.2. Applyingit to LDU factorization of Ryy

After the LM iteration, the p first columns of the generator contains
the channel, the subsequent . — p columns being zero.

The generalized Schur algorithm can only work with strongly
nonsingular and definite positive matrices (i.e. whose principa
minors are al definite positive). Solutions have been proposed for
singular matrices [4, 7] but introduce some additional complexity,
which we want to avoid, hence, the choice of the estimator of the
correlation matrix is critical. Here, we choose the " biased estima-
tor” of the correlation sequence

Ryy M Z y t + 'L)

because the matrix formed with these estimators is, by construc-
tion, block Toeplitz and definite positive. The ”unbiased estima-
tor” (wherethe scaling factor is 1/(M — 1)) leadsto an indefinite
matrix and the ” sampl e covariance matrix”

(Ryy = LM Y(H)Y 7 (t), wherey(k) = 0 fork => M)
has a displacement rank of 2(m + 1), having thus adlightly differ-
ent structure as the true covariance matrix.

Furthermore, due to the fact that it is a biased estimator, the
singular value spectrum does not present an abrupt breakdown at
the theoretic rank of Ry y, but presents a relatively ”smooth” de-
cay of the singular values. Thiswill lead to late occurence of bad
conditioning in the Schur agorithm and prevent us from using the
methods necessary in the case of singular matrices. Besides this
numerical advantage, we will also be able, provided the size of
Ryy is big enough (2 to 3 (Lm x Lm)), to overestimate the
channel length without numerical problems, as we will be able to
perform the Schur iteration further than the L™ iteration.

The drawback of this behaviour is that, after the L™ iteration,
though singular in the exact case, the (L + 1)“‘ block of the block
diagonal isfar from singular and, hence, the p first columns of the
generator can not pretend to contain the channel exactly. A ssimple,
though possibly expensive (O(pm®m K')) way, isthen to perform
an SVD on the m first columns of the generator and takethe p first
columns, which correspond to the non-singular part of D 4.

SCHUR ESTIMATION PROCEDURE

1. Cdculatethe estimate of Ryy

YY sz t+l

then ﬁyy — /\mm(ﬁYY)]
pl/2
2. CalculateRY/r

3. Proceed with the Schur iterations asin (8) until the L™ iter-
ation.

4. Either

e collect the p first columns of the generator.

e calculate the p first left singular vectors of the gener-
ator.

6. COMPLEXITY

In this section, we evaluate the order of magnitude of complexity
of the Schur algorithm, apart from the calculation of Ryy, which
iscommon to al algorithms.

Evaluating the complexity for each step as: )\mm(ﬁyy) :

O(Km) ; RY2 : O(m?) ; multiply the first block column :
O(Km?) ; L Schur iterations 2 : O(Lm(2m)Km) ; optional
SVD : O(Km?). Intota, this gives a complexity which is linear
in the size of the covariance matrix (O(2(L + 1) K'mm?)).

If we compareto the PL P-WL P, where the complexity is domi-
nated by aPseudo-inverse(O(( K m)®)) and the solution of aleast-
square problem involving structured matrices (O(4p( K m)?)), we
get afar less complex agorithm with comparable performances.

7. SSIMULATIONS

In order to evaluate the performance of the agorithms, we have
computed the Normalized MSE (NMSE) on the estimated chan-
nels, averaged over 200 Monte Carlo runs. We have used a ran-
domly generated channel withp = 2 users, Ny = 3 and N> =
4, and m = 4 subchannels. The symbols arei.i.d. BPSK and
the data length is M = 250. The mixing matrix has been esti-

mated afterwardsas T = g H for the Schur method (where

t t
H, 2 [HE.. . HE® and Hiy 2 [h7(j)],=1.n,) and similarly
on h(0) for the WLP-PLP methods.

We evaluate the performance of the Schur algorithm, with and
without SV D performed on the generator and compare them to the
Weighted and Plain Linear Prediction algorithm [1].
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2for one iteration the complexity is O (rm Km) where = is the dis-
placement rank



We further explore the performance when the channel length
has been overestimated (N1 = N> = 6),

0 T T

— - Schur with no svd

Raa = o21. The figure here above shows the performance
increasing with the number of input symbols.

8. CONCLUSIONS

We have introduced a Schur method to identify multiuser multi-
channelsblindly in acomputationaly efficient way. Thisalgorithm
is recursive in order, and can be coupled to a channel length esti-
mator and source detector by examining the diagona of the LDU
of Ryy — o21. Evenif this channel length is overestimated, the
algorithm provides a good estimate of the channel. Furthermore,
an adaptive version could be developed by using standard signal
processing techniques.

The performances of this simple agorithm are shown to be
closeto the Weighted Linear Prediction method, which is near op-
timal [1] and presents the same robustness characteristics.

Moreover, the computational complexity of the Schur algo-
rithm is linear in the size of the covariance matrix, opposed to
the cubic complexity of the Linear Prediction methods, which ren-
dersthis method very attractive for bootstrap blind multiuser mul-
tichannel identification.
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