Automatically Generating Models for Botnet Detection

Peter Wurzingerl, Leyla Bilgez, Thorsten Holz!2,
Jan Goebel?, Christopher Kruegel*, Engin Kirda?

1 Secure Systems Lab, Vienna University of Technology, <pw@seclab.tuwien.ac.at>
2 TInstitute Eurecom, Sophia Antipolis, <bilge, kirda@eurecom. fr>
3 University of Mannheim, <holz, goebel@informatik.uni-mannheim.de>
4 University of California, Santa Barbara, <chris@cs.ucsb.edu>

Abstract. A botnet is a network of compromised hosts that is under the control
of a single, malicious entity, often called the botmaster. We present a system that
aims to detect bots, independent of any prior information about the command and
control channels or propagation vectors, and without requiring multiple infections
for correlation. Our system relies on detection models that target the characteris-
tic fact that every bot receives commands from the botmaster to which it responds
in a specific way. These detection models are generated automatically from net-
work traffic traces recorded from actual bot instances. We have implemented the
proposed approach and demonstrate that it can extract effective detection models
for a variety of different bot families. These models are precise in describing the
activity of bots and raise very few false positives.

1 Introduction

As the popularity of the Internet increases, so does the number of miscreants who abuse
the net for their nefarious purposes. A popular tool of choice for criminals today are
bots. A bot is a type of malware that is written with the intent of compromising and
taking control of hosts on the Internet. It is typically installed on the victim’s computer
by either exploiting a software vulnerability in the web browser or the operating sys-
tem, or by using social engineering techniques to trick the victim into installing the
bot herself. Compared to other types of malware, the distinguishing characteristic of
a bot is its ability to establish a command and control (C&C) channel that allows an
attacker to remotely control or update a compromised machine [9]. A number of bot-
infected machines that are combined under the control of a single, malicious entity
(called the botmaster) are referred to as a botnet. Such botnets are often abused as plat-
forms to launch denial of service attacks [22], to send spam mails [17,26], or to host
scam pages [1].

To complement host-based analysis techniques (such as anti-virus (AV) software),
it is desirable to have a network-based detection system available that can monitor net-
work traffic for indications of bot-infected machines. So far, work to detect bots at the
network-level has proceeded along two main lines: The first line of research uses verti-
cal correlation techniques. These techniques focus on the detection of individual bots,
typically by checking for traffic patterns or content that reveal command and control
traffic or malicious, bot-related activities. These systems require prior knowledge about

the command and control channels and the propagation vectors of the bots that they
can detect. The second line of research to detect bots uses horizontal correlation ap-
proaches to analyze the network traffic for patterns that indicate that two or more hosts
behave similarly. Such similar patterns are often the result of a command that is sent
to several members of the same botnet, causing the bots to react in the same fashion
(e.g., by starting to scan or to send spam). The drawback of these approaches is that
they cannot detect individual bots. That is, it is necessary that at least two hosts in the
monitored network(s) are members of the same botnet.

In this paper, we propose a detection approach to identify single, bot-infected ma-
chines without any prior knowledge about command and control mechanisms or the
way in which a bot propagates. Our detection model leverages the characteristic behav-
ior of a bot, which is that it (a) receives commands from the botmaster, and (b) carries
out some actions in response to these commands. Similar to previous work, we assume
that the command and response activity results in some kind of network communication
that can be observed.

The basic idea of our system is that we can generate detection models by observing
the behavior of bots that are captured in the wild. More precisely, by launching a bot in
a controlled environment and recording its network activity (fraces), we can observe the
commands that this bot receives as well as the corresponding responses. To this end, we
present techniques that allow us to identify points in a network trace that likely correlate
with response activity. Then, we analyze the traffic that precedes this response to find
the corresponding command. Based on the observations of commands and responses,
we generate detection models that can be deployed to scan network traffic for similar
activity, indicating the fact that a machine is infected by a bot. Our approach produces
specific detection models that are tailored to bot families or groups of bots related by
a common C&C infrastructure. Because the system is automated, it is easy to quickly
generate new models for bots that implement novel commands and responses. This is
independent of any prior knowledge of the protocol or the commands that the bot uses.

For our evaluation, we generated detection models for 18 different bot families, 16
controlled via IRC, one via HTTP (Kraken), and one via a peer-to-peer network (Storm
Worm). Our results indicate that our system is able to produce precise detection models
that reflect well the command and response activity of the bots. These models allow us
to identify bot-infected hosts on a network with a low false positive rate.

The contributions of this paper are as follows:

— We present a model to capture the command and response activity of bots in net-
work traffic.

— We propose an automated mechanism to generate bot detection models by observ-
ing the actual behavior of bot instances in a controlled environment, without mak-
ing assumptions about the C&C mechanisms.

— We demonstrate the feasibility of our approach by generating detection models for
various bot families (including those controlled via IRC and HTTP, as well as P2P).
These models are effective in detecting bots with few false positives.

An extended version of this paper is available as a technical report [33].

2 System Overview

This section provides an overview of our approach to generate network-based detection
models to identify bot-infected machines.

The input to our system is a collection of bot binaries. These binaries are collected
in the wild, for example, via honeynet systems such as Nepenthes [2], or through Anu-
bis [5], a malware collection and analysis platform. The output of our system is a num-
ber of models that can be used to detect instances of different bot families.

The basic idea of our system is to launch a bot in a controlled environment and
let it connect to the Internet. Then, we attempt to identify the commands that this bot
receives as well as its responses to these commands. Afterwards, these observations
are translated into detection models that analyze network traffic for symptoms of bot-
infected machines. The two main questions that arise are: (a) how are detection models
specified, and (b), how can we generate these models based on observing bot activity?

2.1 Detection Models

The goal of a detection model is to specify network traffic activity that is indicative of
the presence of a bot-infected machine.

Stateful models. In our system, a detection model has two states. The first state of the
model specifies signs in the network traffic that indicate that a particular bot command
is sent. For example, such a sign could be the occurrence of the string .advscan,
which is a frequently-used command to instruct an IRC bot to start scanning. Once
such a command is identified, the detection model is switched into the second state.
This second state specifies the signs that represent a particular bot response. Such a
sign could be the fact that the number of new connections opened by a host is above
a certain threshold, which indicates that a scan is in progress. When a model is in the
second state and the system identifies activity that matches the specified behavior, a
bot infection is reported. If no activity is found that matches the specification of the
second state for a certain time period, the model is switched back to the first state. Note
that we maintain a different (logical) model instance for each host that is monitored.
That is, when a command is found to be sent to host x, only the model for this host is
switched to the second state. Therefore, there is no correlation between the activity of
different hosts. For example, when a scan command is sent to host x, while immediately
thereafter, host y initiates a scan, no alert is raised.

We make use of a stateful model that only labels a host as bot-infected if the system
detects that a command is sent to the host and it witnesses a response within a certain
period of time. This directly reflects the characteristic behavior of bots, which remotely
receive commands from a botmaster and react accordingly. A stateful model has the
advantage that we can use less restrictive specifications to capture both the command
and the bot response, without risking an unacceptably high number of false positives.

In our current system, we use content-based specifications (comparable to intrusion
detection signatures) to model commands, and network-based specifications (compara-
ble to anomaly detection) to model responses. This is a natural approach, where content
signatures capture commands and network models reflect the network activities due to
responses (such as scanning, mass mailing, or binary downloads).

2.2 Model Generation

Given our notion of detection models, the question is how these models can be gen-
erated automatically. As mentioned previously, we do this based on the observation of
bot activity. More precisely, for each bot binary, we first record a trace of its network
activity over a certain period of time. Based on a trace, we have to identify those points
where the bot receives a command and responds appropriately.

Finding responses. Our key insight for being able to identify previously unknown com-
mands in a network trace is that we attack the problem from the opposite side. That is,
instead of checking the traces for commands, we first look for the activity that indicates
that a response has occurred. The reason for this approach is that a response launched
by a bot is often more visible in the network trace than an incoming command. While
a bot is in an idle state (i.e., it is not fulfilling requests of its botmaster), the network
activity is typically limited to the traffic required to participate in the botnet (e.g., by
exchanging IRC information or by polling web pages). However, when a command is
issued, the bot has to act accordingly. This action almost always leads to additional net-
work activity, for example, because the bot engages in scanning, downloads additional
components, or sends mails. This activity stands out from the background noise and can
be detected as an anomaly.

Once a bot response is identified, it is characterized by a behavior profile. More
precisely, a behavior profile models various properties of the network traffic that are
associated with a bot response. More details on recording bot traffic and locating re-
sponses are presented in Section 3.

Finding commands. By scanning the trace for network anomalies, we can identify
those points in time at which a bot has demonstrated a response. As a result, the network
traffic before this point must contain the command that has caused this response. Thus,
before each point at which a significant change in traffic behavior is detected, we extract
a snippet, a small section of the network trace.

Typically, different commands will lead to responses that are different. Therefore,
in a next step, we cluster those traffic snippets that lead to similar responses, assum-
ing that they contain the same command. Once clusters of related network snippets
have been identified, we search them for sets of common (string) tokens. As our re-
sults demonstrate, these tokens frequently represent the bot commands and can be used
for detection. Section 4 provides more details on the way in which traffic snippets are
clustered and analyzed for common bot commands.

Putting it all together. Extracted tokens can be directly used to represent the bot com-
mand in the first state of the detection model. For the second state (i.e., to specify the
response), we leverage the network behavior profiles that characterize bot response ac-
tivity. Thus, in our current system, a bot detection model consists of a set of tokens that
represent the bot command, followed by a network-level description of the expected
response. These models can be readily deployed on the network and can identify an
infected host once this host receives a known command and responds as expected.

Bot families. To provide sufficient quantity and diversity of command-response pairs
for our system to generate meaningful signatures, it is desirable to combine samples
from different botnets into bot families, as long as they use the same C&C mechanism.

The partitioning of samples into bot families can be performed either manually, based
on malware names assigned by anti-virus scanners, or based on behavioral similarities.
For example, previous work has introduced host-based analysis systems that can find
similar malware instances based on the system calls that these malware programs in-
voke [3, 6,28]. Moreover, the partitioning step does not need to be perfect. Our system
can tolerate the case in which the pool of bot network traces is polluted.

For the following discussion, we assume that the set of bot samples has already
been divided into consistent groups. Of course, the system is neither provided with
any information about the way in which commands are exchanged, nor how and when
responses are launched.

3 Analyzing Bot Activity

As a first step to creating bot detection models, our system requires captures of the
network traffic that the bot-infected machines create. To this end, we run each bot binary
in a controlled environment with Internet access for a period of several days. The goal is
to let the bot connect to its C&C mechanism and keep it running long enough to observe
a representative collection of the different bot commands and the activities they trigger.
The observed traffic should contain the most frequently used commands, since these
are the most helpful detection targets. On the other hand, the absence of rarely used
commands is acceptable, since detection models targeting these commands would also
rarely trigger when deployed. A more detailed description of our bot trace collection
environment can be found in the technical report [33].

3.1 Locating Bot Responses

Once a network trace is collected, the next step is to locate the points within this trace
where the bot executes responses to previously received commands. We do this by
checking for sudden changes in the network traffic (e.g., a surge in the number of pack-
ets, or the fact that many different hosts are contacted). The assumption is that such
changes indicate bot activity that is launched when a command is received. Of course,
this implies that we can only detect bot responses (and hence, commands) that lead
to a change in network behavior. However, most current bot responses, such as send-
ing spam mails, executing denial of service attacks, uploading stolen information, or
downloading additional components, fall into this category.

Of course, it is possible that there are changes in the traffic that are not caused
by commands. For example, a scan might end when the list of victims is exhausted.
Our system will also consider the end of the scan as a potential response, and mark
the location appropriately. Fortunately, this is of little concern, because it is likely that
the subsequent analysis will fail to find an appropriate command for this (inexistent)
response. Sometimes, however, interesting detection models can be generated in such
cases. For example, once a bot has finished scanning, it often sends a status notification
to the botmaster, which our system can extract as a content signature.

Locating bot responses in a network trace can be treated as a change point detection
(CPD) problem. CPD algorithms operate on time series, that is, on chronologically

ordered sequences of data values. Their goal is to find those points in time at which
the data values change abruptly. Change point detection has been used previously to
recognize spreading worms [34] and denial of service attacks [32]. However, we are
not aware of any prior work that used it in the context of botnet detection.

Before we can apply a CPD algorithm, we first have to convert a traffic trace into a
time series. To this end, the network traffic is partitioned into consecutive time intervals
of equal length (our choice of a concrete interval length will be discussed later). Then,
we compute a numeric description in the form of a vector that represents the network
traffic for each interval. For this, we extract a number of low-level features from the net-
work traffic. Each feature captures a different aspect of the network traffic and translates
into one element of the vector. Currently, we consider eight network traffic features:

Number of packets Number of non-ASCII bytes in payload

Cumulative size of packets (in bytes) Number of UDP packets

Number of different IPs contacted Number of HTTP packets (destination port 80)

Number of different ports contacted Number of SMTP packets (destination port 25)
Table 1. Network features to characterize bot behavior.

Using the features shown in Table 1, we can characterize the bot’s behavior during a
given time interval. The characterization of bot activity is designed in a generic fashion,
taking into account general features such as the number of packets, number of different
machines contacted, or the number of (binary) bytes in network streams. In addition,
we include two features that are derived from our domain knowledge of common bot
responses: the numbers of SMTP and HTTP packets. The reason is that sending spam
mails typically results in a surge of SMTP packets. The HTTP feature was initially
considered as helpful to detect cases in which a bot downloads additional components
via this channel. However, also currently unknown bot activity could be captured by
our features, and it is certainly easy to add additional ones.

For every time interval, we calculate a vector that stores the absolute value for each

feature. For example, when 50 packets are seen during a certain time interval, the cor-
responding element of the vector (number of packets) is set to 50. We call this vector
a traffic profile of the bot for this time interval. To be able to compare behaviors ob-
tained from different traces, this vector is normalized with regard to the maximum that
was observed for the corresponding feature. This yields a value between 0 and 1 for all
vector elements.
Change point detection. Once a network trace is converted into a sequence of traffic
profiles, we apply a CPD algorithm to locate points that indicate interesting changes
in the traffic. For this, we use CUSUM (cumulative sum), a well-known, robust algo-
rithm that is known to deliver good results for many domains [4]. In principle, CUSUM
is an online algorithm that detects changes as soon as they occur. Since we have the
complete network trace (time series) available, we can leverage this fact and transform
CUSUM into an off-line algorithm. This allows CUSUM to “look into the future” when
a decision needs to be made, and thus, yields more precise results.

The algorithm to identify change points works as follows: First, we iterate over
every time interval ¢, from the beginning to the end of the time series. For each interval
t, we calculate the average traffic profile P, for the previous € = 5 time intervals and
the traffic profile P;" for the subsequent e intervals. Then, we compute the distance
d(t) between P, and P;". The distance between two traffic profiles is defined as the
Euclidean distance between the corresponding vectors. More precisely:

€ dim

P_; Py _
Pr=) —— Br=) - dit)= le|Pt A
=1 =1

The ordered sequence of values d(¢) forms the input to the CUSUM algorithm.
Intuitively, a change point is a time interval ¢ for which d(¢) is sufficiently large and a
local maximum.

The CUSUM algorithm requires two parameters. One is an upper bound (local _mazx)
for the normal, expected deviation of the present (and future) traffic from the past. For
each time interval ¢, CUSUM adds d(t) —local -mazx to a cumulative sum S. The second
parameter determines the upper bound (cusum_max) that S may reach before a change
point is reported. To determine a suitable value for local_max, we require that each in-
dividual traffic feature may deviate by at most allowed_avg_dev = 0.04. Based on this,
we can calculate the corresponding value local_max = \/ dim X allowed_avg_dev?.
For cusum_maz, we use a value of 0.25. We empirically determined the values for
allowed_avg_dev and cusum_max. However, note that these values are robust and
yield good results for a large variety of traffic produced by hundreds of different mal-
ware instances that belong to different bot types (IRC, HTTP, and P2P bots).

It is possible that the cumulative sum S exceeds cusum_max for a number of con-
secutive time intervals. To locate the actual change point in this case, we take that inter-
val for which d(t) is maximal (since it is the time interval with the greatest discrepancy
between past and future traffic composition). The precision with which a change point
can be located also depends on the length of the time intervals. Shorter intervals in-
crease the precision. Unfortunately, they also increase the probability that small traffic
variations (e.g., bursts) are misinterpreted as a change point. This could introduce un-
wanted noise into the subsequent model generation process. To find a suitable length
for the time intervals, we experimented with a variety of values between 20 and 100
seconds. An interval of 50 seconds delivered the best results in our tests.

3.2 Extracting Model Generation Data

We assume that each change point indicates the time when a bot has received a com-
mand and initiated the corresponding response. Based on this assumption, we leverage
change points to extract two pieces of information that are needed for the subsequent
model generation step.

First, we extract a snippet of the traffic that is likely to contain the command that
is responsible for the observed change. Clearly, the snippet must contain the traffic
within the time interval where the change point is located. Moreover, we take the first

10 seconds of the following interval. The reason is that when a change point occurs
close to the boundary between two intervals, the CPD algorithm might select the wrong
one. To compensate for this imprecision, the start of the subsequent traffic interval is
included. Finally, we include the last 30 seconds of the previous interval to cover typical
command response delays. As a result, each snippet contains 90 seconds of traffic.

The second piece of information required for creating a detection model is a descrip-
tion of the response behavior. To this end, we extract a behavior profile, which captures
the network-level activities of the bot once a command is received. This profile consists
of the average of the traffic profile vectors over the complete period where the bot car-
ries out its response. This period is considered to be the time from the start of the current
response to the next change in behavior. That is, once the network traffic changes again,
we assume that the bot has finished its task or received another command.

4 Generating Detection Models

Given a set of network traffic snippets, together with their associated response behav-
ior profiles, we automatically generate suitable detection models. Recall that detection
models should embody the correlation of two events: The appearance of a command in
the network traffic, and the appearance of a subsequent response. The patterns that each
of the two events have to match are represented separately in our model.

At this point, the set of snippets contains a mix of network traffic that consists of
different commands and some contents that are specific to the C&C protocol. For subse-
quent processing performed by the token extraction algorithm, we require a two-phase
clustering: First, we arrange snippets such that those are put together in a cluster that
likely contain the same command. Afterwards, we group the contents of the snippets in
each cluster such that elements in a group share commonalities that can be leveraged
by the token extraction algorithm.

First, to cluster similar snippets, we make the following observation: The network
traffic of a bot responding to a certain command will look similar to the traffic generated
by this bot executing the same command at some later time. On the other hand, the
same bot executing a different command will generate traffic that looks different. That
is, there is a correspondence between the command that is sent and the response that is
invoked. This observation can be leveraged by clustering the snippets according to the
behaviors that we believe to be a response. That is, the goal is to find behavior clusters,
where each such cluster represents a certain bot activity, such as a scanning period or
any other kind of distinguishable network activity. Once such clusters have been found,
we can expect that most snippets that are part of the same cluster contain common parts
that are either directly responsible for triggering the bot reaction (the command itself),
or at least always appear in order for a bot to react that way.

To identify behavior clusters, we perform hierarchical clustering [10] based on the
normalized response behavior profiles. After the clustering step, each cluster holds a
set of snippets that likely contain a command that has led to the same response. These
snippets are used to extract the model of the bot command (as described in Section 4.1).
The response behavior profiles associated with the snippets are then used to model the
response activity (as discussed in Section 4.2).

4.1 Command Model Generation

The objective of the command model generation step is to identify common elements
in a set of network snippets that belong to a particular behavior cluster. In particular, we
are interested in finding character strings that appear frequently in the traffic snippets,
since there is a chance that they encode bot commands.

To extract likely bot commands from network traces, we use a signature generation
technique that produces token sequences. A token sequence consists of an ordered set
of tokens. That is, the tokens have to appear in a certain order, but there can be arbi-
trary characters between each token. Token sequences can be easily encoded as regular
expressions (which can serve directly as input to a network intrusion detection system).

To find common tokens, we use the longest common subsequence algorithm (based
on suffix arrays). Since the algorithm outputs a token sequence only if it is present in
all network traces, we cannot apply the algorithm directly. The reason is that different
commands may lead to similar responses which may be clustered together. Furthermore,
an incorrectly detected change point can cause an unrelated snippet to become part of
a cluster. Therefore, we require a second clustering refinement step that groups similar
network packet payloads within each behavior cluster. For the second clustering step,
we employ a standard complete-link, hierarchical clustering algorithm to find payloads
that are similar.

The longest common subsequence algorithm is applied to each set of similar pay-
loads, generating one token sequence per set. Recall that the second clustering step is
performed individually for each behavior cluster. Thus, it is possible (and common)
that multiple token sequences are associated with a single behavior cluster. Each of
these token sequences represents a potential command that leads to network activity
that the corresponding response behavior profile captures.

Precision optimizations. Some of the generated token sequences may be overly generic,
i.e., they are likely to match on benign traffic frequently. We want to identify and re-

move these token sequences to improve the precision of our detection models. This

can be done in an automated way by matching all generated token sequences against

known benign traffic: every match is clearly undesirable and suggests to discard the to-

ken sequence. We recorded the traffic at the Secure Systems Lab, a well administrated

network, for a duration of one day. It is save to assume that all traffic is benign. Further-

more, we remove all token sequences whose longest token is shorter than five bytes.

This is done because token sequences consisting only of very short tokens will trigger

frequently just by chance, e.g., when large amounts of binary data are transmitted.

4.2 Response Model Generation

The second part of our detection model consists of a network-based description of the
bot response. This description should capture the kind of network activity that is ex-
pected to be shown by a bot after the command has been received.

The input to this step is a behavior cluster. Recall that a behavior cluster is created by
grouping similar response behavior profiles and their associated snippets. We generate
the bot response model for a behavior cluster by computing the element-wise average

of the (vectors of the) individual behavior profiles. The result is another behavior profile
vector that captures the aggregate of the behaviors combined in the respective behavior
cluster. As such, this behavior profile is suitable to model the expected bot response
behavior associated with the bot commands that are described by the content-based
models extracted from the snippets.

Precision optimizations. In some cases, the behavior profile of a bot response can
be exceeded by sending only a few HTTP packets or by contacting two other hosts.
Clearly, such traffic is easily produced by regular users (e.g., surfing the web or using
an instant messaging client). Thus, we introduce minimal bounds for certain network
features. In particular, we define a threshold of 1,000 for the number of UDP packets
that are sent within one time interval (50 seconds), 100 for HTTP packets, 10 for SMTP
packets, and 20 for the number of different IPs. When a response profile exceeds none
of these thresholds, the corresponding behavior cluster (and its token sequences) are not
used to generate a detection model. This technique removes a small number of weak
profiles that could potentially result in a large number of false positives.

4.3 Mapping Models into Bro Signatures

Bro is a network intrusion detection system designed to monitor network activity for
suspicious or irregular events [24]. One of its key features is the integrated policy and
signature scripting language, which enables custom rules for intrusion detection. Due
to its flexibility, Bro is an appropriate platform to implement our detection models.

To map a detection model into a Bro specification, we have to encode the model’s
set of token sequences as well as its behavior profile. For each token sequence, one
Bro signature is generated. The signature consists of the concatenation of the individ-
ual tokens of a token sequence, using the ’. »’ regular expression operator. Also, each
signature is restricted to match only on inbound or outbound traffic, depending on the
bot traffic it had been generated from.

When a token sequence matches, the corresponding detection model is advanced
to the second state. At this point, Bro starts to record the traffic of the host that trig-
gered a signature. This is done for a duration of 50 seconds. Then, the system creates
a profile from the recorded traffic, using the following four features: number of UDP
packets, number of HTTP packets, number of SMTP packets, and number of unique
IP addresses. When the observed traffic exceeds, for at least one of these four features,
the corresponding value stored in the response profile, we consider this a match. In that
case, the host is considered to be bot-infected, and an alert is raised.

5 Evaluation

The purpose of the evaluation is to demonstrate that our system generates detection
models that are capable of detecting bot-infected hosts with a low false positive rate.
In a first step, we collected a set of 416 different (based on MD5 hash) bot sam-
ples. We obtained these malware programs through Anubis, a public malware anal-
ysis service [5]. Thus, the samples originate from a wide range of sources and in-
clude bots manually submitted by users, binaries collected with the help of honeypots

and spam traps, as well as contributions from malware analysis organizations (such as
ShadowServer.org). The collection period was more than 8 months. All bot sam-
ples were executed in our traffic capturing environment, each producing a traffic trace
with a length of five days.

In the next step, the bot traffic traces were divided into families of bots. This was
a manual process, based on the content of the traces. However, this step could be auto-
mated in the future [3, 6]. The classification process yielded a total of 16 different IRC
bot families (with 356 traffic traces) and one HTTP bot family consisting of samples
of Kraken (also known as Bobax, with 60 traffic traces). In addition, we obtained 30
network captures for the Storm Worm (also known as Peacomm and Zhelatin), which is
the most well-known example of a botnet that uses a peer-to-peer protocol for its C&C
communication [13]. The Storm Worm captures were separately generated at the Uni-
versity of Mannheim. Thus, in total, there were 446 network traces available as input
for our detection model generation process.

Bot family #DM #TS|| Botfamily #DM #TS|| Botfamily #DM #TS
IRC1 4 57|| IRC7 8 53|| IRC13 2 8
IRC2 9 50|| IRCS 3 72|| IRC14 5 38
IRC3 2 11| IRC9 3 17|| IRCIS 3 24
IRC4 4 94|| IRCI10 2 7|| IRC16 1 1
IRCS 1 8| IRClI 11 35|| HTTP 2 5
IRC6 1 20|| IRC12 7 21|| STORM 2 110

TOTAL 70 631

Table 2. Number of detection models (DM) and token sequences (TS) for each bot family.

Using these 446 network traces, our system produced a total of 70 detection mod-
els. A more precise breakdown of this number for the different bot families is shown in
Table 2. The table also shows the numbers of token sequences produced. Recall from
Section 4.1 that there can be multiple token sequences associated with a single detec-
tion model, but it is sufficient that a single one triggers to switch the model into the
second state (where it checks for suspicious response activity). As can be seen, our sys-
tem succeeded in producing at least one detection model for each bot family. This is
particularly interesting when considering that Storm uses encrypted commands. When
examining the Storm signatures, we observed that our system correctly identified that
the byte string “. mpg; size="is characteristic for this bot type. That is, even though
we cannot precisely identify a command in the network trace, our algorithm is able to
extract specific artifacts of the bot communication. Also, it should be noted that this
automatically-generated token sequence is very close to the human-specified signature
in Snort [29], a popular network intrusion detection system.

To understand the quality of our automatically-generated detection models, we com-
pared them to the human-developed bot and C&C signatures used by Snort. This serves
as an initial, qualitative assessment to determine whether the signatures are “reason-
able” and match traffic that a human analyst would associate with bot activity. In many
cases, we found that the signatures were very similar to the human-created references,

which confirms that our approach is capable of delivering intuitively correct results.
This was true for signatures for all three bot classes (IRC, HTTP, and P2P) that we ex-
amined. In other cases, we found that our signatures were overly specific, and contained
artifacts of a particular bot that was analyzed (e.g., IRC channel names, IP addresses,
time stamps). However, it is typically not problematic to include such specific signa-
tures. While they likely do not detect any bots, they typically do not contribute to false
alarms either.

signature ircl-000-2 {

dst—-ip == local_nets

payload /. PRIVMSG #.% :\.asc .*5 0 .x/
}

#DIFFERENT IPS > 20

Fig. 1. Automatically-generated Bro signature and corresponding behavior profile for an IRC bot.

An example of an automatically-generated detection model for a family of IRC bots
is shown in Figure 1. The token sequence consists of three tokens that need to be iden-
tified in an inbound IP packet. The first token (PRIVMSG #) contains a part of the IRC
protocol header for transmitting a message. This token restricts the signature to match
only on IRC traffic. The second token (: . asc) contains the command that instructs the
receiving bot to begin scanning. The third token (5 0) contains parameters for the scan
command. At first, it might seem that this token makes the signature overly restrictive.
However, very often, the same set of parameters is used for a command. Thus, this is
not a significant restriction. In comparison, a human-created Snort signature matches
on “PRIVMSG .x*:.=xasc”. The network behavior that needs to be matched in the
second detection phase (once the token sequence has been identified in the traffic) re-
quires that a host contacts more than 20 distinct IPs within a time period of 50 seconds.
This reflects the scan that a bot initiates when receiving the . asc command. Only if
this second condition is fulfilled as well, the host is reported as bot-infected.

For additional examples of HTTP and P2P detection models, as well as encrypted
C&C channels, the reader is referred to the technical report [33].

5.1 Detection Capability

To obtain a quantitative measure for the capability of our detection models to identify
bot-related traffic, we decided to split our set of 446 network traces into training sets
and test sets. Each training set contained 25% of one bot family’s traces, while the cor-
responding test set contained the remaining ones. We used the training sets to generate
a new set of detection models. Then, this new set of models was loaded into Bro, and
we analyzed the traffic traces in the test sets. In total, this procedure was performed four
times per family (four-fold cross validation).

Our system reported a bot infection for 88% of the analyzed traces. The remaining
12% of traces did not trigger even a token sequence match. For all traces that did lead

to at least one token sequence match, the behavior profile matching phase triggered as
well, thus, correctly confirming the bot infection.

To further put the detection results into context, we decided to perform a compar-
ison between our system and BotHunter [15]. BotHunter is the current state-of-the-art
tool for detecting individual bot infections. The system uses a number of phases that
model different aspects of the bot life cycle (such as spreading, C&C, and malicious
activity). To detect bot commands, BotHunter relies on manually-developed signatures
(mainly the database of Snort and some custom signatures). To determine the perfor-
mance of BotHunter, we ran its latest version (v1.0.2, with default settings) on all 446
bot traffic traces. BotHunter identified signs of bot infections for 69% of the traces. The
automatically generated signatures produced by our system thus outperform BotHunter
by nearly 20%.

5.2 Real-World Deployment

To analyze the amount of false positives that our detection models generate, we exten-
sively evaluated our system in two real-world network environments. More precisely,
we deployed one Bro sensor with our detection models in front of the residential homes
of RWTH Aachen University and one sensor at a Greek university network. In Aachen,
our system monitored a densely-populated /21 network (2K IPs) for a duration of 55
days. In Greece, we monitored a medium-populated /20 network (4K IPs) for 102 days.
On average, we observed about 40 million packets per hour in Aachen, while the num-
ber in Greece was about 17 million packets. Thus, our experimental evaluation com-
prises the analysis of traffic in the order of 94 billion network packets over a period of
over three months at two different sites in Europe.

IP space Packets/hour Days IPs flagged Total alerts Alerts/day
Aachen 2,048 40M 55 0 0 0
Greece 4,096 17M 102 11 60 0.59
BotHunter 4,096 1M 6 60 5,849 974.34
BotHunter w/o Blacklist| 4,096 17"M 6 5 60 10.00

Table 3. Results from real-world deployments.

The results of our evaluation are summarized in Table 3. Our deployment in Aachen
yielded no alerts at all over a duration of two months. There were 130 token sequence
matches, which were all correctly invalidated by the behavior profile matching phase.
This demonstrates the importance of the second phase of our detection models: Ran-
dom token sequence matches do not lead to an alert, because without the expected bot
response, the behavior profile will not be matched.

In the Greek network, our system raised only few alerts, and over a period of over
three months, reported a total of 11 hosts (IPs) as bot-infected. These 11 hosts were re-
sponsible for 60 alerts. To verify whether these alerts are false positives or indications of
true bot infections, we performed manual analysis of the traffic that caused the alarms.
In most cases, this led us to the conclusion that an alarm was a false positive. This is

also supported by the fact that both networks are well-maintained and bot infections are
very rare. However, a definite decision is difficult to make, since we did not have access
to the actual hosts.

Typically, all machines that are reported as bot infected must be manually inspected.
Thus, it is important that the system does not overload the administrator with incorrect
warnings. Considering the average number of alerts per day that our system reports as
well as the number of reported IP addresses (shown in Table 3), we believe that this
goal is clearly met.

Again, in order to compare our results with the current state-of-the-art BotHunter,
we deployed a BotHunter sensor in the Greek network (we did not obtain permission
to install such a sensor in Aachen). Unfortunately, due to performance limitations, we
could run either BotHunter or our system on the machine that was provided to us, but
not both systems at the same time. Thus, we deployed BotHunter for a period of only
six days. Nevertheless, we feel that this period is sufficiently long to draw meaningful
conclusions.

The comparison with BotHunter is instructive. We can see that an off-the-shelf
BotHunter installation reports almost one thousand alerts per day. Within a period of
only six days, 60 different IP addresses are reported as bot infected, each of which
would require manual inspection. Given this very high number of false alerts, we inves-
tigated the reasons and even attempted to tweak BotHunter to improve its performance.
On closer inspection of the alerts, we observed that a significant amount of them are
due to two components (phases). These rely on blacklists of known DNS names and
IP addresses that are related to malware domains and C&C servers. In an attempt to
reduce the amount of BotHunter’s false positives, we disabled these two components.
An accordingly modified Bothunter setup produced only 10 alerts per day, reporting a
total of 5 IP addresses as bot infected during the six day period. While, in contrast to the
off-the-shelf setup, the amount of alerts is now manageable by a human administrator,
BotHunter still does not reach the low number of false alerts our system generates.

Additionally, disabling the two components that are responsible for the vast major-
ity of false alerts has a significant negative impact on BotHunter’s detection capabili-
ties. When rerunning the experiments on the bot traces using the modified version of
BotHunter, the number of bots that BotHunter detects drops to only 39%.

Finally, a large fraction (89%) of the alerts raised by our system in the real-world
deployments were triggered by only three different detection models. The situation is
different for BotHunter: We observed 155 different matching BotHunter C&C signa-
tures during the evaluation in the Greek network. This large diversity of matching sig-
natures makes it difficult to disable a few BotHunter models that are responsible for the
bulk of false positives.

Our detection models BotHunter

Detection (true positive) rate on bot traces 88% 69%

Incorrectly detected IPs in real-world traffic (false positives) 11 60
Table 4. Comparison of the detection performance of our detection models vs. BotHunter.

We present a summary of the results of our evaluation in Table 4. Our automatically
generated detection models clearly outperform the state-of-the-art solution for single
bot detection, BotHunter, which relies on signatures hand-crafted by human experts.

6 Related Work

Malware, and botnets in particular, pose a significant threat to the security of the Inter-
net. As a result, there has been a strong interest in the research community to develop
adequate defense solutions. This paper touches on a number of related research areas.

Network intrusion detection. The purpose of network intrusion detection systems
(IDS) is to monitor the network for the occurrence of attacks. Clearly, this is very simi-
lar to the purpose of our detection models that analyze network traffic for the presence
of signs that indicate bot-infections. In fact, we directly encode our detection models in
the signature language of Bro [24], a well-known, network-based IDS.

Of course, both the ideas of content-based analysis and modeling network-level
properties to detect anomalies are not new. Content-based analysis has been used by
signature-based IDSs (such as Snort [29] or Bro) for years. Also, network-level prop-
erties (such as the number of flows that were transferred) have been used extensively
to model normal network traffic and to detect deviations that indicate attacks [21]. Our
proposed work complements existing network-based IDSs by automatically generating
the inputs needed by these systems to detect machines that are infected by bots.

Signature generation. As part of our detection model generation, we extract token sig-
natures from network traffic. Research on such automated signature generation started
with the work on Early Bird [30] and Autograph [19], and has later been extended with
Polygraph [23] and Hamsa [20]. Of course, extracting command tokens is only a small
part of the entire model generation process. In fact, we first have to record bot activity,
identify likely bot responses, extract the corresponding traffic snippet, and cluster them
based on behavioral similarities. Only then can we extract common tokens, using an
improved version of previous algorithms.

Botnet analysis and defense. In addition to general research on malware detection,
there is work that specifically focuses on the analysis [8, 11, 17,25] and detection [7,
12, 14-16, 18, 27] of botnets.

A number of botnet detection systems perform horizontal correlation. That is, these
systems attempt to find similarities between the network-level behavior of hosts. The
assumption is that similar traffic patterns indicate that the corresponding hosts are mem-
bers of the same botnet, receiving the same commands and reacting in lockstep. While
initial detection proposals [16, 18] relied on some protocol-specific knowledge about
the command and control channel, subsequent techniques [14,27] remove this short-
coming. The main limitation of systems that perform horizontal correlation is that they
need to observe multiple bots of the same botnet to spot behavioral similarities (with
small exceptions [16]). This is significant because botnets decrease in size [8], it be-
comes more difficult to protect small networks, and a botmaster can deliberately place
infected machines within the same network range into different botnets.

A second line of research explored vertical correlation, a concept that describes
techniques to detect individual bot-infected machines based on suspicious communica-
tion characteristics [7, 12]. The most advanced system is BotHunter [15], which corre-
lates the output of three IDS sensors — Snort [29], a payload anomaly detector, and a
scan detection engine. A closer analysis of the results reveals that the detection capabil-
ity of BotHunter strongly relies on the human-created Snort rules. Our system, on the
contrary, generates detection models completely automatically. Moreover, the stages
that are used by BotHunter to characterize the life cycle of a bot focus on scanning and
remote exploiting. Our system, on the contrary, does not rely on a specific bot propa-
gation strategy and does not require previous knowledge about command and control
channels.

Independently and concurrently to our work, a recent paper [17] has presented the
idea of running bots in a controlled environment (called Botlab). The proposed system
is similar to ours in that bots are executed and monitored. The difference is that Botlab
is exclusively focused on spam botnets and uses the monitored activity (in addition
to other inputs) to produce information about spam mails (such as malicious URLs
in the mail body). However, the approach does not provide any information about bot
commands or responses, and it is not designed to detect bot infected machines.

7 Limitations

Although our current system is able to effectively detect real-world botnets, we note
that it has several limitations, which we discuss in this section.

To evade detection, a botmaster may instruct his bots to wait for a certain amount of
time before reacting to the command (i.e., he might launch a threshold attack [31]). As a
result, our analysis could miss the connection between a command and the appropriate
response, both when generating detection models or once the models are deployed.
Many other comparable systems rely on a time window of some sort, and thus, are
vulnerable to this same attack [14-16,27]. A possible way of handling this evasion
attempt is to randomize the time window, making it harder for the adversary to select an
appropriate delay. Also, long time delays reduce the usefulness of botnets and increase
the difficulty for the attacker [16, 31].

Another limitation of our current implementation is that it uses content-based analy-
sis to detect command tokens. Thus, the system has problems with encrypted command
channels. This is a limitation that our approach shares with all previous techniques that
aim to detect single bots [7, 12, 15]. To avoid this problem, the most promising approach
is to use network-level properties to recognize commands. Interestingly, even in the cur-
rent version, our system can sometimes identify artifacts that are present in encrypted
traffic. The best example is the Storm Worm, for which our system extracts a “com-
mand” token that is characteristic for this bot. Also, our system is resistant to simple
obfuscation schemes in which a human-readable command is mapped to some unintelli-
gible string. In fact, we have generated token sequences for IRC bot families that match
obfuscated commands (as demonstrated in the technical report [33]). This is different
from previous approaches, such as BotHunter [15], that deploy manually-developed
signatures and thus, can be thwarted by bots that use non-standard commands.

8 Conclusions

This paper presents a system that identifies bot-infected machines by monitoring net-
work traffic. It targets the unique characteristic of bots, the fact that they receive com-
mands from the botmaster and respond appropriately. Our system observes the behavior
of bots executed in a controlled environment, and automatically derives signatures for
the commands that a bot can receive, as well as network-level specifications for the
responses that these commands trigger. Our approach relies neither on the propagation
vector, nor on any prior knowledge about the communication channel used by the bot.
As a result, we can generate models for IRC bots, HTTP bots, and even P2P bots such
as Storm. We have applied our system to a number of real-world bots, demonstrating
that we can automatically extract accurate detection models. Our evaluation shows that
our system outperforms BotHunter, which heavily relies on hand-tuned signatures.

References

1. D. Anderson, C. Fleizach, S. Savage, and G. Voelker. Spamscatter: Characterizing Internet
Scam Hosting Infrastructure. In Usenix Security Symposium, 2007.

2. P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C. Freiling. The Nepenthes Platform:
An Efficient Approach to Collect Malware. In International Symposium on Recent Advances
in Intrusion Detection (RAID), 2006.

3. M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario. Automated
Classification and Analysis of Internet Malware. In International Symposium on Recent
Advances in Intrusion Detection (RAID), 2007.

4. M. Basseville and 1. V. Nikiforov. Detection of Abrupt Changes - Theory and Application.
Prentice-Hall, 1993.

5. U. Bayer. Anubis: Analyzing Unknown Binaries. http://analysis.iseclab.org/.

6. U. Bayer, P. Milani Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable, Behavior-
Based Malware Clustering. In Network and Distributed System Security Symposium (NDSS),
20009.

7. J. Binkley and S. Singh. An Algorithm for Anomaly-based Botnet Detection. In Usenix
Steps to Reducing Unwanted Traffic on the Internet Workshop (SRUTI), 2006.

8. E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Understanding, Detect-
ing, and Disrupting Botnets. In Usenix Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI), 2005.

9. D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Structures. In Annual Com-
puter Security Applications Conference (ACSAC), 2007.

10. M. de Hoon, S. Imoto, J. Nolan, and S. Miyano. Open Source Clustering Software. Bioin-
formatics, 20(9), 2004.

11. F. Freiling, T. Holz, and G. Wicherski. Botnet Tracking: Exploring a Root-Cause Methodol-
ogy to Prevent Distributed Denial-of-Service Attacks. In European Symposium On Research
In Computer Security (ESORICS), 2005.

12. J. Goebel and T. Holz. Rishi: Identify Bot Contaminated Hosts by IRC Nickname Evaluation.
In Usenix Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

13. J. B. Grizzard, V. Sharma, C. Nunnery, B. B. H. Kang, and D. Dagon. Peer-to-Peer Botnets:
Overview and Case Study. In Usenix Workshop on Hot Topics in Understanding Botnets
(HotBots), 2007.

14. G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Botnet Detection. In Usenix Security Symposium,
2008.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting Malware
Infection Through IDS-Driven Dialog Correlation. In Usenix Security Symposium, 2007.

G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command and Control Channels
in Network Traffic. In Network and Distributed System Security Symposium (NDSS), 2008.

J. John, A. Moshchuk, S. Gribble, and A. Krishnamurthy. Studying Spamming Botnets Using
Botlab. In Usenix Symposium on Networked Systems Design and Implementation (NSDI),
20009.

A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale Botnet Detection and Characteriza-
tion. In Usenix Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Signature Detection.
In Usenix Security Symposium, 2004.

Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez. Hamsa: Fast Signature Generation for
Zero-day Polymorphic Worms with Provable Attack Resilience. In IEEE Symposium on
Security and Privacy, 2006.

M. Mahoney and P. Chan. Learning Nonstationary Models of Normal Network Traffic for
Detecting Novel Attacks. In Conference on Knowledge Discovery and Data Mining (KDD),
2002.

D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial of Service Activity. In Usenix
Security Symposium, 2001.

J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signatures for
Polymorphic Worms. In IEEE Symposium on Security and Privacy, 2005.

V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works, 31, 1999.

M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted Approach to Understand-
ing the Botnet Phenomenon. In Internet Measurement Conference (IMC), 2006.

A. Ramachandran and N. Feamster. Understanding the Network-Level Behavior of Spam-
mers. In ACM SIGCOMM Conference, 2006.

M. Reiter and T. Yen. Traffic Aggregation for Malware Detection. In Conference on Detec-
tion of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2008.

K. Rieck, T. Holz, C. Willems, P. Duessel, and P. Laskov. Learning and Classification of
Malware Behavior. In Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2008.

M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Systems Administration
Conference (LISA), 1999.

S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In Sympo-
sium on Operating System Design and Implementation (OSDI), 2004.

E. Stinson and J. Mitchell. Towards Systematic Evaluation of the Evadability of Bot/Botnet
Detection Methods. In Usenix Workshop on Offensive Technologies (WOOT), 2008.

H. Wang, D. Zhang, and K. G. Shin. Change-Point Monitoring for Detection of DoS Attacks.
IEEE Transactions on Dependable and Secure Computing, 1(4), December 2004.

P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda. Automatically Gen-
erating Models for Botnet Detection (TR-iSeclab-0609-001). http://www.iseclab.
org/papers/tr botdetection.pdf, 2009.

G. Yan, Z. Xiao, and S. Eidenbenz. Catching instant messaging worms with change-point
detection techniques. In Usenix Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2008.

Acknowledgments. This work has been supported by the Austrian Science Foundation (FWF
grant P18764), MECANOS, Secure Business Austria (SBA), the Pathfinder project funded by
FIT-IT, and the WOMBAT and FORWARD projects funded by the European Commission.

