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Abstract— Polarization Division Multiplexing (PDM) is emerg-
ing as a promising technique for increasing data rates without
increasing symbol rates. However, the distortion effects of the
fiber transmission medium poses severe barriers for the imple-
mentation of this technological alternative. Especially,due to the
fiber induced polarization fluctuation orthogonally transmitted
PDM signals are mixed at the receiver input. Therefore, a receiver
compensation structure needs to be implemented to recover the
original orthogonal transmitted components from their mixtures
at the end of the fiber channel. This is in fact the focus of this
article where a receiver algorithm is based on a recently proposed
Blind Source Separation (BSS) scheme exploiting magnitude
boundedness of digital communication signals. Through theuse of
this scheme, new receiver algorithms for recovering the original
polarization signals in an adaptive manner are proposed. The
key feature of these algorithms is that they can achieve high
separation performance while maintaining the algorithmic com-
plexity in a fairly low level that is suitable for implementation in
optical fiber communication receivers. The performance of these
algorithms are illustrated through some simulation examples.

Index Terms— Blind Signal Processing, PMD, PDM, Fiber
Optic.

I. I NTRODUCTION

CEntral to the research efforts in optical fiber commu-
nications is to increase data rates to meet the growing

demand for high bandwidth applications such as video on
demand, teleconferencing, etc. There are different technologic
alternatives to be utilized for this purpose. The development
of corresponding methods along with the investigation of their
efficiency and the practicality is an area of active research.

The most direct approach is to increase the data rate
by increasing the symbol rate, and therefore, the physical
transmission bandwidth. However, the increasing frequency
selective behavior of the fiber as a function of bandwidth,
which is mainly due to the polarization mode dispersion [1],
[2], [3], [4], [5] (PMD), is a major obstacle. There are different
receiver compensation alternatives, optical [6], [7], [8], [9],
[10], [11] or electrical [12], [13], [14], [15], [16], [17],[18],
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[19], [20], to counteract the inter symbol interference (ISI)
caused by the frequency selective behavior. However, a major
limiting factor in optical fiber communication systems is the
limited availability of computational resources per symbol,
which clearly decreases with the growing symbol rate.

Another approach is to squeeze more information bits into
given bandwidth by using more complex modulation schemes
than on-off signalling, such as the use of multi-level constel-
lations potentially in connection with some channel precoding
schemes (e.g., multitone scheme) [21], [22]. Pursuing these
alternatives would have clear implications on both transmitter
and receiver complexities. The constraint on the real time
implementation of corresponding DSP blocks would be a clear
bottleneck.

The utilization of both orthogonal polarizations at the same
wavelength as multiplexed transmission paths in a fiber, i.e.,
polarization division multiplexing (PDM) [23], is a promis-
ing method for increasing the information capacity of a
fiber. PDM would simply enable a factor of two increase in
bandwidth efficiency subject to the availability of intelligent
coding/multiplexing schemes and efficient receiver algorithms.
Despite its promising features, there are practical problems in
the implementation of the PDM method. The main issue is the
mixing of the transmitted symbols in both space (polarization)
and time dimensions due to the random fiber-induced polar-
ization fluctuations and PMD. For relatively low symbol rates,
which is the subject of this paper, the mixing in time, i.e., ISI
due to PMD, can be ignored. However, the mixing of the two
polarization sequences due to the random fluctuations of the
polarization states in a fiber would still be an important issue.
Therefore, intelligent receiver methods are needed to separate
the original polarization signals from their mixtures. Dueto
the non-stationary behavior of the fiber, the separation needs
to be done in an adaptive manner.

Due to the promise of doubling bandwidth efficiency, PDM
has received considerable attention in the literature. PDM
together with WDM was employed to enable terabit/sec trans-
mission in a single strand of fiber in 1996 [23]. PDM with
solitons was used to double fiber information capacity in ultra
long-haul transmission in [24]. In both [23], [24], an RF pilot
tone or a dither signal is added to one of the polarizations
and the two polarization channels are demultiplexed using
an optical polarization beam-splitter and an active optical
polarization controller that is electronically controlled based
on monitoring the RF pilot tone/dither signal in the receiver.
In [25], slightly different amounts of optical power is launched
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into the two polarization channels, and the detected power
difference between the two channels is used as the feedback
signal to control the dynamic optical polarization controller.
With this technique based on channel power imbalance, one
does not need to modify the existing receiver electronics.
The control electronics needed does not need to work at
the symbol rate and can be much slower. In [26], a con-
trol signal for the dynamic optical polarization controller is
obtained based on computing auto- or cross-correlations in
the receiver that quantify the amount of cross-talk between
the two polarization components. We note here that, in the
PDM technique, two independent data sets are transmitted on
each of the two orthogonal polarizations using on-off keying
or other modulation formats such as (differential) phase-
shift-keying ((D)PSK). There is also a class of techniques
which use polarization as another dimension in forming a
signal constellation, such as the one described in [27] that
employs a 4-ary signalling scheme based on the total power
transmitted in the two polarizations, and the one in [28] that
uses joint phase-polarization-shift-keying in a direct-detection
quaternary scheme. The advantage of both of these techniques
is that a dynamically controlled optical polarization controller
is not needed and a 4-ary receiver with a simple structure
can be used. A simplified receiver structure in this case
comes at the cost of using a sub-optimal (in terms of BER
for given power) signal constellation scheme. However, if
PDM is used along with coherent receiver structures [29],
[30], one can also avoid using dynamically controlled optical
polarization controllers and implement adaptive algorithms
purely in electronics in order to compensate for the fiber-
induced polarization fluctuations. Moreover, with coherent de-
tection, one can also use optimal, multi-bit signaling schemes
such as (D)QPSK in order to further increase bandwidth
efficiency and information capacity of the fiber. In devising
adaptive algorithms in order to compensate for the polarization
fluctuations, the use of training sequences is impractical and
bandwidth inefficient in most cases. In this paper, we consider
the use ofunsupervised, or blind, adaptive algorithms which
do not require any kind of pilot/dither signals and that can be
implemented purely in electronics in order to separate the two
polarization components and compensate for the fiber-induced
polarization fluctuations.

The separation of original sources from their mixtures is an
active research problem under Blind Source Separation(BSS)
and Independent Component Analysis(ICA) fields. Applicabil-
ity of a given BSS algorithm to the PDM separation problem
depends on its performance, robustness, data efficiency and
computational complexity. In fact, the most challenging issue
is to develop an algorithm which has sufficiently low complex-
ity to work in high symbol rates of fiber links while achieving
a desired level of separation performance. For this reason,we
propose the use of the BSS approach for Magnitude Bounded
(MB-BSS) signals proposed in [31] and its extensions for
fiber communication applications. MB-BSS approach provides
a suitable framework for the development of low complexity
blind structures, and in this article we demonstrate that PDM
receivers designed based on MB-BSS have the desired low-
complexity and high performance separation features.

The organization of the article is as follows: In Section
II, we introduce the low data rate channel model and the
simulation model we use in this article. Section III poses
the polarization demixing problem as a blind source sepa-
ration problem. In Section IV, the magnitude bounded blind
source separation (MB-BSS) algorithm is introduced as an
unsupervised adaptive solution for the polarization mixing
problem. We provide extensions to this algorithm to reduce
implementation complexity and describe simplified hardware
for compensator system design. Furthermore, in Section V,
we provide simulation results to illustrate the performance
of the resulting receiver structures. Finally Section VI isthe
conclusion.

II. L OW SYMBOL RATE CHANNEL MODEL

In the PDM scheme, two independent signals are transmitted
over two orthogonal polarizations. Figure 1 shows the overall
block diagram corresponding to PDM based fiber link. The
PDM multiplexed signals at the transmitter travel along the
fiber and reach the receiver. These signals are demodulated
by a coherent receiver structure (see for example [30]) in
order to extract in-phase and quadrature-phase componentsof
two orthogonal polarizations of the received signal. However
due to the fiber induced polarization fluctuation and the PMD
of the fiber channel, these signals are distorted and mixed
versions of the original multiplexed transmit signals. Forthis
reason, a fiber optic link using PDM transmission scheme
can be modeled as a2 × 2 Multiple Input Multiple Output
(MIMO) channel where we have two input signals, orthogonal
polarization signals sent by the transmitter, and two output
signals, the mixtures of the original transmitted signals at the
receiver. As a result, the compensator for this type of a channel
must also be a2×2 system that tries to extract two independent
original polarization signals from their mixtures. Finally the
compensator outputs are sent to two separate decision devices.

We build a simulation model for the channel to enable the
numerical experimentation of the overall fiber communication
link in a computer environment. The simulation model consists
of three parts. First part is the transmit filter used for pulse
shaping. Second part is the fiber channel with PMD and third
part is the receive filter matched to the transmit filter. First we
obtain frequency domain transfer functions of all components
and combine them to obtain the overall transfer function. Then
a discrete time channel impulse response is extracted by fitting
a finite impulse response (FIR) filter to the overall frequency
spectrum with a least squares approximation. As we use PDM,
all of these parts are 2 by 2 systems.

At the transmitter, square-root raised cosine pulse filtersare
employed as transmit filters. At the receiver, matched filters
to maximize signal to noise ratio (SNR) are used. The aim in
using such transmit-receive filter pairs is to achieve bandwidth
limitation of the signal and send the signal in a suitable form to
resist ISI. What remains is the mathematical modeling of the
PMD of the fiber channel. PMD is mathematically modeled as
a concatenation of polarization-maintaining fibers with varying
group delays and rotations of the principal axes [32], [33],
[34], [5]. Therefore fiber frequency responseU(ω) is given
by:
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Fig. 1. Overall fiber link and compensator for PDM transmission

U(ω) =

M∏

i=1

Di(ω)Si, (1)

where

Di(ω) =

(

ejω
∆τi

2 0

0 e−jω
∆τi

2

)

and

Si =

(
cos(αi)e

jφi sin(αi)e
jφi

−sin(αi) cos(αi)

)

.

• ∆τi represents the group delay induced by theith section
(each section has equal length).Si is the scattering
matrix and gives a frequency independent coordinate
transformation of the principal axes.

• αi andφi respectively denote the random polarization and
phase angles, and are randomly generated with uniform
distributions over (0,2π).

For the scattering matrixSi, there are more alternatives.
Some authors use slightly different scattering matrices [35].
Total product of the matrices in (1) results in a frequency
dependent unitary matrixU(ω) whereω represents the angular
frequency deviation from the carrier angular frequencyω0.
Therefore we have a baseband equivalent transfer function.
Based on the scattering matrices used,U(ω) may be a general
unitary matrix or a structured unitary matrix in the following
form [36], [4]:

U(ω) =

(
U1(ω) U2(ω)
−U∗

2 (ω) U∗
1 (ω)

)

ω ∈ [0,2π) (2)

satisfying the unitaryness constraint (|U1(ω)|2 + |U2(ω)|2 = 1
for all ω ∈ [0, 2π)).

As a result, overall channel PMD transfer function is a
paraunitary matrix (i.e.,unitary at each frequency). Polarization
Dependent Loss (PDL) may distort the unitary structure,
however, it is assumed to be negligible. For all the simulations
presented in this article, we used a fiber cable of length of
100 km having a PMD parameter (Dp) equal to 1 ps/

√
km,

resulting in a total mean DGD of 10 ps.

A. Discrete-Time Equivalent Channel

Since the overall channel for the fiber link is bandlimited
due to transmit and receive filters, we can model the effective
channel within the transmission band in the sampled domain,
as shown in Figure 2. The impulse response of the correspond-
ing system can be obtained by fitting an FIR impulse response

spectrum to the transfer function in the transmit band with a
least squares approximation. Although the overall channelis
a 2× 2 MIMO system, we describe the fitting procedure for
one of its four scalar components.

Transmit
Filter
p1(t)

PMD
Channel

u(t)

Receive
Filter
p2(t)

s(k)
r(t)

T

y(k)

Fig. 2. Channel simulation model

• The transmitted discrete time sequence is represented by
{s(k), k ∈ Z}. Typically, either real-valued BPSK or
complex valued QPSK-QAM constellations are used for
transmission symbols.

• Let p1(t) and p2(t) be the impulse responses of the
transmit and the receive filters respectively, where we
choosep2(t) = p∗1(−t), i.e., as the matched filter to
the transmit pulse shaping filter. Letu(t) represent the
impulse response corresponding to the fiber link, i.e., the
inverse Continuous Time Fourier Transform (CTFT) of
U(w). Then the overall channel impulse response would
be equivalent to:

c(t) = p1(t) ⊗ u(t) ⊗ p2(t) = p(t) ⊗ u(t) (3)

wherep(t) = p1(t) ⊗ p2(t).
• As stated before, the combined receive transmit filter

impulse responsep(t) is selected as the raised cosine
spectrum (p1(t) is a square-root raised cosine filter and
p2(t) is time-reversed and conjugated version ofp1(t))
whose CTFT is bandlimited to1

T
,

P (f) = 0 for |f | >
1

T
. (4)

whereT is the symbol period. Therefore, the CTFT of
the combined channelc(t) is also bandlimited to1

T
,

C(f) = P (f)U(f) = 0 for |f | >
1

T
. (5)

• As C(f) is bandlimited to 1
T

, the output of the receive
filter r(t) which is given by

r(t) =

∞∑

k=−∞

s(k)c(t − kT ) (6)

would also be bandlimited to1
T

. Therefore, samplingr(t)
at a rate of2

T
(Nyquist sampling rate) would be sufficient:
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z(n) = r(n
T

2
) =

∞∑

k=−∞

s(k)c(n
T

2
− kT ) (7)

=
∞∑

k=−∞

s(k)c((n − 2k)
T

2
)

= d(k) ⊗ g(k)

where d(k) is the up-sampled version (with an up-
sampling rate of 2) ofs(k), i.e.,

d(k) =

{
s(k/2) k is even
0 k is odd

(8)

andg(k) are the sampled version of the continuous time
impulse responsec(t) with a sampling rate of2

T
, i.e.,

g(k) = c(k
T

2
) k ∈ Z. (9)

Since C(f) is bandlimited to 1
T

, the Discrete Time
Fourier Transform (DTFT) ofgk obeys

G(w) =

∞∑

k=−∞

g(k)e−jwk = C(
w

Tπ
) for −π ≤ ω ≤ π.

(10)
Now a causal FIR filter approximation is fit to the above
frequency spectrum:

L−1∑

k=0

ĝ(k)e−jwk ≈ C(
w

Tπ
) for − π ≤ ω ≤ π, (11)

where L is the filter length, which is chosen to be
an odd number. The parametersĝ(k) can be found by
applying least squares to the system of equations obtained
by evaluating above equation at different frequencies.
Assuming that a symbol-rate sampling is used at the
receiver, and we represent the symbol spaced receive filter
output samples witho(k), we have

y(n) = r(nT ) = s(k) ⊗ h(k). (12)

where the overall discrete time equivalent channelh(k)
is given by

h(k) = ĝ(2k) k = 0, 1, ...,
L − 1

2
. (13)

Following the steps described above, all four scalar compo-
nents of the 2× 2 MIMO discrete time equivalent impulse
response of the overall channel can be obtained. In other
words, ifhij(k) represent the impulse response of the channel
between the inputj and outputi obtained by the procedure
above, we can write the overall discrete time equivalent
impulse response as

H(k) =

[
h11(k) h12(k)
h21(k) h22(k)

]

, k = 0, . . . , N − 1. (14)

The resulting discrete time impulse response could be used
to measure the effective ISI of the overall channel (before
compensation) as a function of symbol rate. For that purpose

we introduce the Signal to ISI energy Ratio (SISIR) measure
defined as:

SISIR =
ρ2

∑N−1
k=0 ||H(k)||2F − ρ2

, (15)

whereρ is the Frobenius norm1 of the main tap (i.e., the tap
with the maximum Frobenius norm):

ρ = max
k∈{0,1,...,N−1}

||H(k)||F . (16)

In Figure 3, for a fiber with a total mean DGD of 10 ps
(which is the fiber link assumed in simulations), we plot SISIR
as a function of symbol rate. Due to the random nature of
PMD, SISIR is also random. Therefore, we plot its mean and
its standard deviation variation around its mean values.
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Fig. 3. Mean and standard deviation variation around its mean of SISIR(dB)
for data rates between 1Gsym/s and 55Gsym/s (for a fiber with atotal mean
DGD of 10psec).

The graph indicates that increasing data rates results in
higher ISI (lower SISIR) as expected. This is because when we
increase the data rate the dispersion induced pulse broadening
becomes longer than symbol periods due to the decreased
symbol durations.

In the rest of the article, we’ll assume that the symbol rates
are moderately low (e.g. less than10Gsymbols/sec) such that
the ISI is not the limiting factor. In such a scenario, main
limiting factor will be the cross-talk between the two PDM
channels induced by the fiber induced polarization fluctuation
and in the following sections, we introduce various algorithms
to solve this problem. The high symbol-rate case, where both
ISI and the ploarization crosstalk needs to be handled, willbe
the subject of a separate article.

III. B LIND SEPARATION OFPOLARIZATION CHANNELS

FOR LOW SYMBOL RATES

Blind processing is used when no training signal is avail-
able. Although the training based (i.e., supervised) adaptive
filtering is currently being used in several communication

1Frobenius norm of anm × n matrix A is defined as‖A‖F =
q

Pm
i=1

Pn
j=1

|Aij |2.
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applications, it has serious drawbacks. First of all the useful
available bandwidth of the channel is wasted by training
sequences. This reduces the overall capacity of the channel
drastically. Furthermore there are some cases where the use
of training sequences is not practical or very difficult to
establish: The same communication link may be shared by
several users and inclusion of a new user requires interruption
in the service for other users. Furthermore, locating and
synchronizing the training data location may be a nontrivial
task especially for high-rate signals. Finally, due to the non-
stationary nature of the fiber link, the receiver algorithm needs
to track the variations without using training information. As
a result, unsupervised or blind adaptation of receivers is more
preferable, which is indeed our approach in this work.Blind
separation is the process of extracting original input signals
from their mixtures without any information about the mixing
matrix and with only some information about the statistics of
the input data. A general setup for the separation problem is
shown in Figure 4, where

H WT

s1

s2

s3

sp

y1

y2

y3

yq

z1

z2

z3

zp

Fig. 4. Blind source separation setup

• s1, ..., sp are independent source signals andy1, . . . , yq

are the mixture signals. In the PDM application,p and
q are both equal to2, i.e., there are two source signals,
s1(k) and s2(k) corresponding to two sequences trans-
mitted at the orthogonal polarizations, and two mixture
signalsy1(k) andy2(k), corresponding to the orthogonal
polarization signals at the receiver

• H is the unknown mixing channel. In the PDM appli-
cation, there are two input polarization signals and two
output polarization signals. Therefore,H is a2×2 system.
For the low symbol rate case assumed in this article,
the mixing systemH is memoryless, i.e. the mixtures at
any time instants are functions of only the sources at the
same time instant, which is referred as theinstantaneous
BSS problem. This refers to the case where there is no
mixing in time and therefore no ISI. As noted before
the instantaneous BSS scenario is applicable only if the
symbol rate is low such that the frequency response of
the channel within the transmission bandwidth can be
assumed to be flat. Referencing Figure 3, for data rates up
to 10 Gsym/s, the channel can be considered practically
ISI free as SISIR is considerably high at those rates (for
the assumed fiber link with a total mean DGD of 10 ps).
In this case, the outputsy1 and y2 of H can be written
as

[
y1(k)
y2(k)

]

︸ ︷︷ ︸

y(k)

= H
[

s1(k)
s2(k)

]

︸ ︷︷ ︸

s(k)

. (17)

• The purpose of BSS is to extract the source signals from
the observation sequencesy(k) using a linear system with
transfer matrixWT ,i.e.,

z(k) = WT y(k), (18)

where z(k)=
[

z1(k) z2(k) . . . zp(k)
]T

contains
the estimates of the source signals.W is obtained adap-
tively from the time samples (realizations) ofy(k). No
a priori knowledge ofH and no training sequences are
assumed.

• For a typical BSS algorithm,W is decomposed into two
operatorsW = WpreΘ where

– Wpre is used to whiten the channel outputs. The
output of this section is two uncorrelated signals.

– Θ is the unitary separator, which is used to con-
vert uncorrelated signals generated by the whitening
block into independent original polarization signals.

Fortunately, in the fiber PDM application mixing chan-
nel is (nearly) unitary due to our standing assumptions
about the fiber model. Therefore, whitening phase can
be skipped which brings a considerable relief in terms
of complexity for the BSS algorithm implementation.
Therefore, we can chooseWpre = I and consequently
W = Θ.
Although the elements ofy(k) are uncorrelated, they
are not necessarily independent. Therefore, our goal is
to obtain a unitary matrixΘ which will convert the
uncorrelatedy(k) vector into an independent vector. For
such a choice ofΘ, we would obtain

z(k) = ΘTy(k) = ΦPs(k) (19)

where P is a permutation matrix andΦ is a diagonal
matrix with unit-magnitude complex entries given as

Φ =

[
ejφ1 0
0 ejφ2

]

. (20)

Here matricesP andΦ represent the unavoidable permu-
tation (ordering of polarizations) and phase ambiguities.
These ambiguities can be easily resolved via exploitation
of some side information after convergence. The algo-
rithm introduced in the next section restricts the phase
ambiguity to a set of finite values (e.g.{0, π

2 , π,−π
2 } for

4-QPSK signaling) which could be easily resolved and
compensated.

• ObtainingΘ to convert the uncorrelated vectory into an
independent vectorz is typically posed as an optimization
problem in the form

maximize/minimize J (z(k))

subject to ΘHΘ = I.
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HereJ is the objective/cost function, which reflects the
level of independence ofz as a function ofΘ, to be
optimized. Different choices forJ leads to development
of different algorithms with varying performance and
complexities. In the next section, we introduce a low
complexity BSS approach suitable for implementation in
high symbol rate optical fiber communication systems.

IV. MB-BSS ALGORITHM FOR POLARIZATION

SEPARATION

The approach we follow in this article exploits the bounded
magnitude property of digital communication sources, in ad-
dition to the independence of polarization components, hence
it is named BSS for bounded magnitude sources (MB-BSS)
[31].

The MB-BSS approach is based on the optimization setting:

minimize sup ||Re{z(k)}||∞
subject to ΘHΘ = I,

which corresponds to minimizing the maximum real compo-
nent of the output over all output components and over the
ensemble. This setting doesn’t have a closed form solution,so
the solution is obtained through a simple search process. Since
the objective function is convex but non-smooth, the search
is performed through the use of subgradient directions. The
following sections describe the original algorithm proposed in
[31] and its low complexity variations.

A. Windowed version of the MB-BSS Algorithm

In order to obtain a practical algorithm for the proposed
optimization setting which can be used in real time applica-
tions, the evaluation of the maximum value of the infinity
norm of z(k) should be limited to a finite window of time
samples of z, i.e.,{z(k) : k ∈ {0, 1, ..., Ω − 1}}. Here we
make a certain ergodicity assumption that these time samples
reflect (or approximate) the ensemble behavior in terms of the
infinity norm of z. The basic subgradient search algorithm
corresponding to the optimization setting above, which is
proposed in in [31] can be described as follows:

If we define
Y =

[
y(0) y(1) . . . y(Ω − 1)

]
,

as the matrix of input values in the window of interest, then
for a givenΘ, the corresponding outputs can be placed in a
matrix Z:

Z =
[

z(0) z(1) . . . z(Ω − 1)
]

= ΘT Y.
Then, update of the algorithm is given as:

Θ(i+1) = Θ(i) − µ(i)sign(Re{Z(i)

m(i),n(i)})Ȳ:,n(i)eT
m(i)(21)

Θ(i+1) = PU{Θ(i+1)},
where

• Θ(i) is the value ofΘ at theith iteration,
• Z(i) is the output matrix calculated based onΘ(i),
• (m(i), n(i)) is the index for the maximum real component

magnitude entry ofZ(i),
• µ(i) is the step size at theith iteration,
• Θ(i+1) is the unprojected version of the updatedΘ,

• PU is the projection operator to the unitary matrix set,
• Ȳ:,n(i) is the nth column ofY(i) (which is y(n)) with

its elements complex conjugated,
• em(i) is themth standard basis vector.

After each subgradient update,Θ matrix is potentially
moved away from the set of unitary matrices. Therefore the
updatedΘ matrix needs to be projected back onto the unitary
matrix set to realize the unitary constraint. The techniquewe
use forPU is minimum-(Frobenious)-distance orthogonaliza-
tion. With this technique we try to find the projection operator
which projectsΘ(i+1) to the minimum Frobenius-distance
unitary matrix. The projection is obtained by (see e.g., [37]):

Θ(i+1) = PU{Θ(i+1)}, (22)

= PU{U(i+1)Σ(i+1)V(i+1)H}
= U(i+1)V(i+1)H

,

whereU(i+1)Σi+1V(i+1)H is the singular value decomposi-
tion (SVD) of Θ(i+1).

B. Simplified Version of the MB-BSS Algorithm

In order to reduce the implementation complexity of the
windowed MB-BSS algorithm, we propose the following
simplification: The original windowed version of the MB-BSS
algorithm requires storage to keep track of the maximum value
and the corresponding subgradient components. The need for
such storage could be eliminated by replacing window based
structure with a sample-by-sample update structure. According
to this method, the current maximum magnitude real output of
the separator is compared against a target value, which could
be calculated from the constellation structure. For example, if
4-QAM type constellation is used for both polarizations, the
target level for the maximum absolute real component is equal
to 1 assuming that the output is normalized to have a variance
of 2. The corresponding algorithm can be summarized as:

• Assume that the received signal vector isyi (channel
output) at the instant. Then the separator outputzi is
given as:

zi = ΘT yi =

[
a + jb
c + jd

]

. (23)

• Let K = max{|a|, |c|} and letm be the index of this max-
imum. For example, if|a| > |c| thenm = 1, otherwise
m = 2. The simplified MB-BSS algorithm comparesK
with 1. If K < 1, no operation is performed. IfK > 1,
then the separator is updated with the subgradient given
by (21).

Θ(i+1) = Θ(i) − µ(i)V (i) ȳie
T
m(i) (24)

Θ(i+1) = PU{Θ(i+1)}, (25)

where

V (i) =

{
sign(a) if m(i) = 1
sign(c) if m(i) = 2

(26)

After the separator update, the next step is unitary pro-
jection indicated by (25).
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The second complicated step in the original algorithm is
the projection to the set of unitary matrices. This operation
requires that SVD is performed for each update or at least
for a group of updates. This would necessitate the use of a
complicated DSP unit with hard computational restrictionsfor
the real time implementation.

In order to eliminate the need for the projection to unitary
matrices, one can use a parametrization approach to represent
the unitary matrices. According to this approach, the unitary
matrix is parameterized with several unconstrained real vari-
ables, therefore the original constrained problem is converted
to an unconstrained one. The unconstrained version could
potentially enable a low-complexity hardware implementation.

Any general 2× 2 unitary matrixW can be parameterized
as:

W = ejφ

U

︷ ︸︸ ︷
[

cos(α)ejx sin(α)ejy

− sin(α)e−jy cos(α)e−jx

]

, (27)

where the exponential represents a global phase factor and
U is a 2 × 2 unitary matrix with determinant +1. Therefore,
according to (27), any general 2× 2 unitary matrix can be
parameterized using four real parameters (φ, α, x andy).

The derivation of the parametric MB-BSS algorithm in-
cludes partial derivatives with respect to the 4 real variables
above. We will use the chain rule to obtain the updates
with respect to these 4 real parameters. First, subgradient
is obtained with respect to the unitary separator. After the
subgradient is obtained, the parameterized unitary separator is
differentiated with respect to the 4 real parameters. We will
only show the derivation for the variableα since we perform
the same operations for the remaining parameters. The gradient
with respect toα is derived through the following steps:

• The cost function can be first written in a more convenient
form in terms of the vectorized version ofΘ:

f(Θ) = ||Re{vec(z)}||∞ (28)

= ||Re{(zT ⊗ I)
︸ ︷︷ ︸

A

vec(ΘT)
︸ ︷︷ ︸

b

}||∞

= ||Re{Ab}||∞,

where ”vec” denotes the vectorization operation of the
matrix and⊗ denotes the Kronecker product.

• We can further process the resulting expression for the
cost function to write it in terms of vectors of real
variables:

||Re{Ab}||∞
= ||Re{(AR + jAI)(bR + jbI)}||∞(29)

= ||ARbR − AIbI ||∞
= ||

[
AR −AI

]

︸ ︷︷ ︸

K

[
bR

bI

]

︸ ︷︷ ︸

r

||∞

= || Kr
︸︷︷︸

s

||∞ = f(r),

where the subscript ”R” denotes the real part of the
component while ”I” denotes the imaginary part.

• A subgradient of the cost function with respect tor can
be written as as:

g = sign(si)K
T
i,:

2 where |si| = ||s||∞. (30)

• Assuming that the cost function is differentiable with
respect toα, which is true except at a discrete set of
points, we apply the chain rule to obtain derivative with
respect toα:

∂f(r)

∂α
= gT .

∂r

∂α
. (31)

In order to obtain∂r

∂α
, first of all, the unitary separator

matrix is vectorized to obtainb. Then real and imaginary
parts of the vectorb is placed on top of each other
to construct the vectorr. These operations were all
explained in preceding steps. If we skip the details, then
the partial derivative vector is given by:

∂r

∂α
=















− sin(α) cos(φ + x)
cos(α) cos(φ + y)
− cos(α) cos(φ − y)
− sin(α) cos(φ − x)
− sin(α) sin(φ + x)
cos(α) sin(φ + y)
− cos(α) sin(φ − y)
− sin(α) sin(φ − x)















. (32)

• Final step is the update of the variable achieved as:

α(i+1) = α(i) − µ(i)gT .
∂r

∂α
, (33)

whereg is given in (30) and∂r

∂α
in (32).

The elimination of the window structure together with
parametrization described above enables the implementation
of the compensation using a low complexity hardware struc-
ture, eliminating the need for an embedded CPU. Simplified
version of the algorithm removes the need for memory, unitary
projection operation and other complex operations that can
only be carried out by DSPs Therefore the application of the
simplified algorithm with the parametric algorithm updates
makes the all-hardware implementation possible. The resulting
algorithm would update4 real parameters based on the result
of the comparison of maximum absolute real component with
the threshold value. If an update is required, the 4 real
parameters are updated with the received signal vectoryi.
Otherwise no operation is carried out. In the next section, we
present simplified hardware implementation correspondingto
the parametrization based algorithm presented above.

C. Hardware Implementation of the Simplified MB-BSS

The simplified MB-BSS algorithm is suitable for low
complexity hardware implementation as it doesn’t contain
computationally involved operations such as SVD or matrix
inversion. Figure 5 illustrates a sample implementation for the

2Ki,: refers to theith row of K
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Fig. 5. Simplified hardware implementation of the overall simplified parametric MB-BSS system

Simplified MB-BSS Algorithm. The overall structure consists
of two major functional sections:

1) ”Threshold Decision” Unit: This block has two inputs
which are the real components of the separator outputs.
This block determines whether an update is necessary or
not by threshold comparison. It has two outputs denoted
by signZ and Data Select. If an update is not necessary,
signZ is set to 0. Otherwise signZ indicates the sign
of the maximum magnitude real output of the separator
(which is V (i) given by (26)), and Data Select is the
index of this maximum (which ism(i)).

2) ”Arithmetic Operations” Unit: This block is used to
perform the algorithm updates on the parameters for the
unitary separator based on the control signals generated
by the threshold decision unit.

As this sample implementation suggests, the proposed adaptive
receiver structure could be implemented using a relativelylow
complexity structure. The next section presents the perfor-
mance of the proposed algorithms.

V. SIMULATION RESULTS

In this section, we present the simulation performance of
both Windowed MB-BSS algorithm and its simplified version.
In the simulations, we assume

• Each polarization uses 4-QPSK signalling.
• The fiber link has a total mean DGD level of 10 ps.

The symbol rate is assumed to be5 GSym/s. Therefore,
according to Figure 3, SISIR is typically more than30dB
which implies that the effects of ISI due to PMD is
negligible. In other words, the performance of the re-
ceiver would be limited by the noise and the polarization
separation performance.

• The output of the fiber channel is assumed to be corrupted
by amplifier spontaneous emission (ASE) noise caused by
erbium doped fiber amplifiers (EDFAs) which is modeled
as Additive White Gaussian Noise (AWGN).

• The receiver Analog to Digital Converters (ADC) are
assumed to have a precision of 5 bits.

A. Simulation Results for the Windowed MB-BSS Algorithm

We first present simulation results for the windowed version
of the MB-BSS algorithm. In these simulations, the SNR
(where noise component is due to ASE only) level is chosen
as 20dB. The receiver employs a moving window version
of the algorithm described above, where each window has a
length of 30 samples. The simulation results for the windowed
MB-BSS algorithm are shown in Figure 6, where (a) is the
constellation plot for one of the polarization components at
the compensator input, (b) is the constellation plot for oneof
the polarizations at the compensator output after convergence.
Figure 6-(c) shows the Signal to Interference Noise power
Ratio (SINR) as a function of iterations. According to this
figure, SINR quickly and successfully converges to the vicinity
of 20dB limit in about100 iterations. This would correspond
to a time span of3000 symbols which would be equivalent to
0.6µs. Since random variations in fiber polarization state occur
in millisecond time scales, the algorithm would be successful
in both acquiring the initial separation level and tracking
the channel variation due to the fiber induced polarization
fluctuation.

In order to illustrate the behavior of the moving window
algorithm over many different realizations of the fiber channel,
we repeated the simulation for 10000 different realizations
of the fiber channel for an SNR level of 20dB. In each
simulation run, we recorded the final SINR value achieved
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Fig. 6. MB-BSS simulation result for SNR = 20 dB for moving window ap-
proach (a) The corrupted channel output, (b) The separator output (recovered
sources) , (c) SINR convergence curve.

at the output of the separator. Then we obtained the empirical
distribution (probability density function (pdf)) of the SINRs
based on these 10000 values. In order to illustrate the effect
of the symbol-rate we performed these experiments for both 5
Gymbols/sec and 20 GSymbols/sec. The empirical probability
distribution functions obtained in these simulations are shown
in Figure 7. As can be seen from these figures, for 5Gysm-
bols/sec symbol rate the output SINR is closely distributed
around 20dB. This indicates that the algorithm, successfully
recovers orthogonal polarization signals. In 20Gsymbols/sec
symbol rate, since the ISI component of the channel becomes
strong, the SINR level is distributed around 12-20dB. The al-
gorithm is still successful in separating polarizations, however,
the ISI component caused by the time dispersion degrades the
SINR level. This is not a surprising result, as we noted earlier
that the algorithm introduced in this article doesn’t handle the
time dispersion effects due to PMD.
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Fig. 7. Windowed Algorithm: Output SINR distributions (after the con-
vergence of the algorithm) for 5Gsymbols/sec and 20GSymbols/sec. (ASE
SNR=20dB)

B. Simulation Results for the Simplified Parametric MB-BSS
Algorithm

In order to illustrate the performance of the simplified MB-
BSS algorithm, we repeated the earlier simulation setup with
the new algorithm. However, the SNR (due to ASE) level
is decreased to10dB, which is even more challenging than
the previous example. Figure 8 shows the simulation results,
where (a) and (b) are again the constellation plots at the input
and output of the receiver compensator respectively for one
of the polarization components. The convergence of SINR as
a function of iterations is displayed in Figure 8. According
to this figure approximately 760 updates are sufficient for the
convergence. This data duration corresponds to 0.152µs at 5
Gsym/s. We can, therefore, conclude that simplified parametric
MB-BSS has also fast convergence behavior with sufficient
performance level. Over the various channel and noise sce-
narios that we experimented, typically both the windowed
algorithm and the simplified parametric algorithm achieve very
similar SINR levels, i.e., there is no loss in using the simplified
algorithm.

In order to evaluate the performance of the simplified
algorithm on various realizations of the fiber channel, we
repeated the above experiment for 10000 times. We calculated
the empirical pdfs for SINRs for both 5Gsymbols/s and
20Gsymbol/s, which are shown in Figure 9. Similar to the
windowed version, the SINR values are at the close vicinity
of the 10dB level, especially for 5Gsymbols/sec case. The
performance degradation in 20Gsymbols/sec is not high due
to the fact that the ISI level in this case is mostly below the
noise level corresponding to 10dB SNR level for the channel.

To conclude, based on the simulation results, for both
windowed and simplified parametric algorithms, both of the
algorithms are successful in achieving separation of polariza-
tion components.

VI. CONCLUSION

In this work, we proposed a framework for the development
of adaptive receivers for fiber optic systems employing the
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Fig. 8. Simplified parametric MB-BSS simulation result for SNR = 10 dB (a)
The corrupted channel output, (b) The separator output (recovered sources) ,
(c) SINR convergence curve.

PDM scheme. The use of the PDM scheme promises potential
increase of the data transmission rate if the receiver success-
fully counteracts the space mixing caused by the fiber induced
polarization fluctuation phenomenon. The MB-BSS based
framework targets to achieve this goal, where the proposed
algorithms could lead to increase in data rates due to the fact
that near perfect polarization separation can be achieved using
an unsupervised adaptive structure. The simulation results
illustrate that the proposed approach can achieve near optimal
performance levels. Due to its fast convergence speed, in
micro-second time scales, the tracking of the non-stationary
fiber channel is possible.
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