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Abstract. In this paper, we present a new attack attribution method
that has been developed within the WOMBAT4 project. We illustrate
the method with some real-world results obtained when applying it to
almost two years of attack traces collected by low interaction honeypots.
This analytical method aims at identifying large scale attack phenom-
ena composed of IP sources that are linked to the same root cause. All
malicious sources involved in a same phenomenon constitute what we
call a Misbehaving Cloud (MC). The paper offers an overview of the var-
ious steps the method goes through to identify these clouds, providing
pointers to external references for more detailed information. Four in-
stances of misbehaving clouds are then described in some more depth to
demonstrate the meaningfulness of the concept.

1 Introduction

There is no real consensus on the definition of “attack attribution” in the cyber
domain. Most previous work related to that field tend to use the term “attri-
bution” as a synonym for traceback, which consists in “determining the identity
or location of an attacker or an attacker’s intermediary” [25]. In the context of
a cyber-attack, the obtained identity can refer to a person’s name, an account,
an alias, or similar information associated with a person or an organisation. The
location may include physical (geographic) location, or any virtual address such
as an IP address or Ethernet address. The rationale for developing such attri-
bution techniques is mainly due to the untrusted nature of the IP protocol, in
which the source IP address is not authenticated and can thus be easily spoofed.
4 Worldwide Observatory of Malicious Behaviors and Threats - http://www.wombat-

project.eu



An extensive survey of attack attribution techniques used in the context of IP
traceback can be found in [25].

In this paper, we refer to “attack attribution” as something quite different
from what is described here above. We are primarily concerned with larger scale
attacks. In this context, we aim at developing an analytical method to help
security analysts in determining their root causes and in deriving their modus
operandi. These phenomena can be observed through many different means (e.g.,
honeypots, IDS’s, sandboxes, web crawlers, malware collecting systems, etc). In
most cases, we believe that attack phenomena manifest themselves through so-
called “attack events”, which can be observed with distributed sensors that are
deployed in the Internet. Typical examples of attack phenomena that we want
to identify vary from worm or malware families that propagate through code
injection attacks [9], to established botnets controlled by the same people and
targeting machines in the IP space. All malicious sources involved in the same
root phenomenon constitute what we call a Misbehaving Cloud (MC).

The structure of the paper is as follows: Section 2 describes the experimental
environment used to validate the method presented. Section 3 offers a high level
overview of the attack attribution method defined within the WOMBAT project
and Section 4 gives some more information on the multi criteria fusion approach
used in the method. Section 5 discusses a couple of illustrative examples obtained
by applying the method on honeynet traces, and Section 6 concludes the paper.

2 Description of the experimental environment

This paper offers an empirical analysis of some attacks collected during two
years by a set of low interaction honeypots deployed all over the world by the
Leurré.com Project [10]. We refer the interested reader to [8, 19] for an in-depth
presentation of the data collection infrastructure. From an analytical viewpoint,
our attack attribution method builds upon previous results, namely [18, 4, 16,
24, 17]. For the sake of clarity, we start by introducing some important terms
that have been defined in these previous publications.

2.1 Terminology

1. Platform: A physical machine running three virtual honeypots, which em-
ulate three distinct machines thanks to honeyd [20]. A platform is connected
directly to the Internet and collects tcpdump traces that are gathered on a
daily basis in a centralized database [10].

2. Source: an IP address that has sent at least one packet to, at least, one
platform. An IP address remains associated to a given Source as long as no
more than 25 hours5 elapse between two packets sent by that IP. After such

5 By grouping packets by originating sources instead of by IPs, we minimize the risk
of mixing together the activities of two distinct physical machines (as a side effect
of the dynamic address allocation implemented by ISP’s).



a delay, the IP will be associated to a new source identifier if we observe it
again.

3. Attack: refers to all packets exchanged between a malicious source and a
platform.

4. Cluster: all the sources that execute the same attack against any of the
platforms constitute an (attack) Cluster. In practice, such a cluster groups
all malicious sources that have left highly similar network traces on our
platforms. How to identify clusters and how those clusters look like are issues
that have been explained in other publications [18, 8].

2.2 Honeynet dataset

Machines used in the Leurré.com project are maintained by partners all over the
world, on a voluntary basis. Some of these platforms can thus become unavail-
able. In the context of this paper, we wanted to apply our analytical method
on a dataset that would be, as much as possible, unimpacted by these opera-
tional issues. Therefore, we have selected a subset of 40 stable platforms from
all platforms at our disposal. A total of 3,477,976 attacks have been observed
by those platforms. We represent the total number of attacks per day over the
whole analysis period (800 days, from Sep 2006 until November 2008), as a time
series denoted by TS. Similarly, we can represent, for each platform, the number
of attacks observed on it, on a daily basis. This leads to the definition of 40
distinct attack time series (each made of 800 points), denoted by TSX where X
represents a platform identifier.

We can go even further in splitting our time series in order to represent
which type of attack was observed on which platform. To do this, we split each
TSX into as many time series as there are attack clusters, as defined before.
These newly obtained time series are represented by Φ[0−800),ci,pj

∀ cluster ci and
∀platformpj . That is, the ith point of the time series Φ[0−800),X,Y represents the
amount of sources attacking, on day i, the platform Y by means of the attack
defined by the cluster identifier X . We represent by TS L2 the set of all these
observed cluster time series (in total, 395,712 time series).

In [17], it has been shown that a large fraction of these time series barely
vary in amplitude on a daily basis. This continuous, low-intensity activity is also
referred to as the Internet background radiation [13]. In this paper, we do not
consider those flat curves, and we instead focus on time series that show some
significant variations over time, indicating the existence of some ephemeral phe-
nomena. To automatically identify these time series of interest, we have applied
the method presented in [17], which finally gives a subset of time series denoted
by TS L2′. In our dataset, TS L2′ contains now only 2,127 distinct time se-
ries. However, they still comprise a total of 2,538,922 malicious sources. TS L2′
represents the set of time series we have used for this analysis.
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Fig. 1. An example of M-event, composed of seven µ-events (on seven different plat-
forms) that are correlated in the same time interval. Cluster 60332 corresponds to a
malicious activity on the VNC port (5900/TCP).

3 Overview of WOMBAT attribution method

The WOMBAT attack attribution method is made of two distinct steps. In the
very first one, we identify periods of time where some of the time series from
TS L2′ exhibit a pattern that indicate that a specific phenomenon worth of
interest is happening. We call a micro attack event such period of time for a
given time series from TS L2′. Moreover, we call macro attack event a group of
micro attack events that are correlated during the same period of time.

The second step of the method consists in characterizing each of these micro
attack events and in trying to establish connections between them. All micro
attack events that share enough features constitute what we call a Misbehaving
Cloud (MC). We hypothesize that all malicious sources involved in a Misbehav-
ing Cloud have a common root cause. By identifying them and studying their
global behavior, we hope to get a better insight into the modus operandi and
the strategies of those responsible for them.

We further detail the two steps of the method in the next subsections.

3.1 Step 1: Micro and Macro attack events identification

Definition (µ-event): A micro attack event (or µ-event) is defined by a tuple
(T , Ci) where T represents a limited period of time (typically a few days) during
which a significant attack activity is observed, and Ci represents the time series
corresponding to cluster C observed on the platform i.
Definition (M-event): A set of micro attack events observed over the same
period of time, and during which the corresponding time series are strongly
correlated is defined as a macro attack event (or M-event).

Figure 1 illustrates this concept by representing a M-event composed of seven
µ-events that are correlated in the same time interval.



Identification of µ-events. The micro attack event identification relies mostly
on some well-known signal processing techniques. The goal is to segment the time
series into periods of interest. Such periods are characterized by some intense
period of activities isolated by periods of very stable or non existent activities.
Several techniques exist to detect abrupt changes in a signal [1]. In this paper,
the method we have used is the one that has been precisely presented in [15].

Identification of M-event. Once we have identified all µ-events of interest in
our dataset, we need to identify all those that are strongly correlated over the
same period of time, which form thus a M-event. The problem is not as trivial as
it may sound, because i) µ-events may have overlapping periods, and ii) within a
given period of time, several distinct phenomena may have taken place. Here too,
we have presented and compared various approaches and we refer the interested
reader to [17, 15] for an in-depth explanation of the algorithms used.

3.2 Step 2: Multi criteria fusion of attack events features

The purpose of this second step consists in deciding whether several distinct
µ-events are likely due to a same root phenomenon (i.e., the same Misbehaving
Cloud), on the basis of different characteristics derived from the network traffic
generated by malicious sources involved in such events.

Our approach is based on three components:

1. Attack Feature Selection: we determine which attack features we want to
include in the fusion process, and we thus characterize each µ-event according
to this set of features;

2. Graph-based Clustering: a graph of µ-events is created regarding each fea-
ture, based on an appropriate distance for measuring pairwise similarities.
Fully connected components can then be identified within each graph;

3. Multi criteria fusion: the different graphs are then combined using an agre-
gation function that models some dynamic behavior.

This approach is mostly unsupervised, i.e., it does not rely on a preliminary
training phase to attribute µ-events to larger scale phenomena. In the next
Section, we describe the three steps of this method.

4 On the Multi criteria fusion approach

4.1 Attack Features Selection

In most clustering tasks, the very first step consists in selecting some key char-
acteristics from the dataset, i.e., salient features that may reveal meaningful
patterns [6]. In this analysis, we have selected some features that we consider
useful to analyze the behavior of global phenomena.

One of the key features used in this attribution technique is the spatial dis-
tributions of malicious sources involved in µ-events, in terms of originating coun-
tries and IP blocks. Looking at these statistical characteristics may reveal attack



activities having a specific distribution of originating countries or IP networks,
which can help for instance to confirm the existence of “unclean networks” [3].
In practice, for each µ-event, we create a feature vector representing the distri-
bution of countries of sources (as a result of the IP to geolocation mapping), or
a vector representing the distribution of IP addresses (grouped by their Class
A-prefix, to limit the vector’s size).

We have also selected an attack characteristic related to the targeted plat-
forms. Looking at which specific platform has observed a µ-event is certainly
a pertinent feature. At the same time, we combine this information with the
M-event identification, since (by definition) M-events are composed of µ-events
that are strongly correlated in time (which indicates a certain degree of coordi-
nation among them).

Besides the origins and the targets, the type of activity performed by the
attackers seems also relevant. In fact, worm or bot software is often crafted with
a certain number of available exploits targeting a given set of TCP or UDP
ports. So, it makes sense to take advantage of similarities between the sequences
of ports that have been probed or exploited by malicious sources.

Finally, we have decided to compute, for each pair of µ-events, the ratio
of common IP addresses. We are aware of the fact that, as time passes, some
machines of a given botnet (or misbehaving cloud) might be cured while others
may get infected (and thus join the cloud). Additionally, certain ISPs apply a
quite dynamic policy of IP allocation for residential users, which means that
infected machines can have different IP addresses when we observe them at
different moments. Nevertheless, considering the huge size of the IP space, it is
still reasonable to expect that two µ-events are probably related to the same
root phenomenon when they have a high percentage of IP addresses in common.

To summarize, and to provide a short-hand notation in the rest of this paper,
for each µ-event we define a set of features that we denote by:

F = {Fi} , i ∈ {geo, sub, targ, ps, cip}

where:





geo = geolocation, as a result of mapping IP addresses to countries;
sub = distribution of sources IP addresses (grouped by Class A-subnet);
targ = targeted platforms + degree of coordination (M-event membership);
ps = port sequences probed or targeted by malicious sources;
cip = feature representing the ratio of common IP addresses among sources;

4.2 Graph-based Clustering

The second component of our attribution method implements an unsupervised
clustering technique that aims at discovering groups of strongly connected µ-
events, when these are represented within a graph. In [22, 23], we have given a
detailed description of this graph-based clustering technique. However, to make
this paper as self-contained as possible, we briefly describe the high-level prin-
ciples of this technique.



As defined by Jain and Dubes in [6], many typical clustering tasks involve
the following steps:

i) feature selection and/or extraction (as described in the previous Subsection);
ii) definition of an appropriate distance for measuring the similarities between

pairs of elements with respect to a given feature;
iii) application of a grouping algorithm, such as the classical hierarchical clus-

tering or K-means algorithm;
iv) data abstraction (if needed), to provide a compact representation of each

cluster;
v) optionally, the assessment of the clusters quality and coherence, e.g. by means

of validity indices.

Steps (iv) and (v), while important, lie outside the scope of this paper. In-
stead, we will simply use four anecdotal examples to intuitively demonstrate the
quality, i.e., the meaningfulness, of the groups created by the method. Steps (ii)
and (iii) are described here after.

Choosing a distance function How to measure pairwise similarities between
two feature vectors is obviously an important step, since it will have an impact
on the coherence and the quality of the resulting clusters.

When we have to deal with observations that are in the form of probability
distributions (or frequencies), like in the case of features Fgeo and Fsub, we need
to rely on statistical distances. One commonly used technique is the Kullback-
Leibler divergence [7]. Let p1 and p2 be for instance two probability distributions
over a discrete space X , then the K-L divergence of p2 from p1 is defined as:

DKL(p1||p2) =
∑

x

p1(x) log
p1(x)
p2(x)

(1)

which is also called the information divergence (or relative entropy). Because
DKL is not considered as a true metric, it is usually better to use instead the
Jensen-Shannon divergence (JSD) [11], defined as:

JS(p1, p2) =
DKL(p1||p̄) + DKL(p2||p̄)

2
(2)

where p̄ = (p1 + p2)/2. In other words, the Jensen-Shannon divergence is the
average of the KL-divergences to the average distribution.

Finally, to transform pairwise distances dij to similarity weights simij , we
still have to define a mapping function. Previous studies found that the similarity
between stimuli decay exponentially with some power of the perceptual measure
distance [21]. As customary, we can thus use the following functional form to do
this transformation:

sim(i, j) = exp(
−dij

2

σ2
) (3)

where σ is a positive real number that affects the decreasing rate of w.



Measuring pairwise similarities for the other considered features (Ftarg, Fps, Fcip)
is more straightforward. In those cases, we can use simpler distance functions,
such as the Jaccard similarity coefficient. Let s1 and s2 be two sample sets (for
instance with Fps, s1 and s2 are sets of ports that have been probed by sources of
two µ-events), then the Jaccard coefficent is defined as the size of the intersection
divided by the size of the union of the sample sets, i.e.:

sim(i, j) =
|s1

⋂
s2|

|s1
⋃

s2|

The Jaccard similarity coefficient can also be used to compute the ratio of
common IP addresses between attack events (Fcip). Regarding Ftarg, a simple
weighted means is used to combine two scores: i) one score in [0, 1] as given by the
simple comparison of the two targeted platforms, and ii) another score (also in
[0, 1]) indicating whether two µ-events belong to the same M-event (indicating
a time coordination).

Grouping algorithm In this step, we formulate the problem of clustering
µ-events using a graph-based approach. The vertices (or nodes) of the graph
represent the patterns (or feature vectors) of the µ-events, and the edges (or
links) express the similarities between µ-events, as calculated with the distance
metrics described before. Then, we can extract so-called maximal cliques from
the graph, where a maximal clique is defined as an induced subgraph in which
the vertices are fully connected and it is not contained within any other clique.
To do this, we use the dominant sets approach of Pavan et al. [14], which proved
to be an effective method for finding maximal weighted cliques. This means that
the weight of every edge (i.e., the relative similarity value) is also considered
by the algorithm, as it seeks to discover maximal cliques whose total weight is
maximized.

By repeating this process, we can thus create an undirected edge-weighted
graph Gi for each attack feature Fi, in which the edges are similarity weights
∈ [0, 1] that can be seen as relatedness degrees between µ-events (where a zero
value indicates totally unrelated events). Then, the clique algorithm extracts one
set of cliques per feature, which reveals the cohesions among µ-events regarding
each Fi.

4.3 Multi-Criteria Aggregation

Definition (Aggregation function). An aggregation function is formally de-
fined as a function of n arguments (n > 1) that maps the (n-dimensional) unit
cube onto the unit interval: f : [0, 1]n −→ [0, 1], with the following properties [2]:

(i) f(0, 0, . . . , 0︸ ︷︷ ︸
n-times

) = 0 and f(1, 1, . . . , 1︸ ︷︷ ︸
n-times

) = 1

(ii) xi ≤ yi for all i ∈ {1, . . . , n} implies f(x1, . . . , xn) ≤ f(y1, . . . , yn)



Aggregation functions are used in many prototypical situations where we
have several criteria of concern, with respect to which we assess different options.
The objective consists in calculating a combined score for each option, and this
combined output forms then a basis from which decisions can be made. For
example, aggregation functions are largely used in problems of multi criteria
decision analysis (MCDA), in which an alternative has to be chosen based on
several, sometimes conflicting criteria. Usually, the alternatives are evaluated
from different attributes (or features) that are expressed with numerical values
representing a degree of preference, or a degree of membership.

In our application, we have n different attack features given by the Fi’s,
and thus a vector of criteria x ∈ [0, 1]n can be constructed from the similarity
weights, i.e., xi = Ai(j, k), with Ai being the similarity matrix of graph Gi corre-
sponding to attack feature Fi. Our approach consists in combining the n values
of each criteria vector x (which reflect the set of all relationships between a pair
of µ-events), in order to build an aggregated graph G′ =

∑
Gi from which we

can then extract the connected components. A straightforward but rather sim-
plistic approach would consist in combining the criteria using a simple arithmetic
mean, or by assigning different weights to each criteria (weighted mean). How-
ever, this does not allow us to model more complex behaviors, such as “most
of”, or “at least two” criteria to be satisfied in the overall decision function.
Yager has introduced in [26] a type of operator called Ordered Weighted Av-
eraging (OWA), which allows to include certain relationships between multiple
criteria in the aggregation process. An OWA aggregation operator differs from a
classical weighted means in that the weights are not associated with particular
inputs, but rather with their magnitude. As a result, OWA can emphasize the
largest, smallest or mid-range values. It has become very popular in the research
community working on fuzzy sets.

Definition (OWA). For a given weighting vector w, wi ≥ 0,
∑

wi = 1, the
OWA aggregation function is defined by:

OWAw(x) =
n∑

i=1

wix↘(i) =< w,x↘ > (4)

where we use the notation x↘ to represent the vector obtained from x by
arranging its components in decreasing order: x(1) ≥ x(2) ≥ . . . ≥ x(n).

It is easy to see that for any weighting vector w, the result of OWA lies
between the classical and (=min) and or (=max) operators, which are in fact
the two extreme cases when w = (0, 0, . . . , 1) (then OWAw(x) = min(x)) or
when w = (1, 0, . . . , 0) (then OWAw(x) = max(x)). Another special case is
when all weights wi = 1

n , which results in obtaining the classical arithmetic
mean.

To define the weights wi to be used in OWA, Yager suggests two possible ap-
proaches: either to use some learning mechanism with sample data and a regres-
sion model (i.e., fitting weights by using training data and minimizing the least-
square residual error), or to give some semantics to the wi’s by asking an expert



to provide directly those values, based on domain knowledge. We selected the
latter approach by defining the weighting vector as w = (0.1, 0.35, 0.35, 0.1, 0.1),
which translates our intuition about the dynamic behavior of large-scale attack
phenomena. It can be interpreted as: at least three criteria must be satisfied, but
the first criteria is of less importance compared to the 2nd and 3rd ones (because
only one correlated feature between two µ-events might be due to chance only).

These weights must be carefully chosen in order to avoid an unfortunate
linkage between µ-events when, for example, two events involve IP sources orig-
inating from popular countries and targeting common (Windows) ports in the
same interval of time (but in reality, those events are not due to the same phe-
nomenon). By considering different worst-case scenarios, we verified that the
values of the weighting vector w work as expected, i.e., that it minimizes the
final output value in such undesirable cases. Moreover, these considerations en-
able us to fix our decision threshold to an empirical value of about 0.25, which
has been also validated by a sensibility analysis. In other words, all combined
values that are under this threshold will be set to zero, leading to the removal
of corresponding edges in the aggregated graph G′.

Finally, we can easily identify misbehaving clouds by extracting the connected
components (or subgraphs) from G′. As a result, for any subset of events of a
given MC, we will find a sufficient number of evidences that explain why those
events have been linked together by the multi criteria aggregation process.

5 Experimental Results

5.1 Overview

When applying the technique described in Section 3.1 to the dataset described
in Section 2.2, we obtain 690 M-events which consist of 2454 µ-events. We use
these µ-events as input for the multi-criteria fusion approach (Section 4), and
we consequently identify 83 Misbehaving Clouds (MCs), which correspond to
1607 µ-events, and 506,835 attacking sources. The phenomena involve almost all
common services such as NetBios (ports 139/TCP, 445/TCP), Windows DCOM
Service (port 135/TCP), Virtual Network Computing (port 5900/TCP), Mi-
crosoft SQL Server (port 1433/TCP), Windows Messenger Service (ports 1025-
1028/UDP), Symantec Agent (port 2967/TCP), and some others. Figure 7a
shows the distribution of µ-events per MC. As we can see, in most cases, the
MCs contain few µ-events. However, around 20% of MCs contain more than
15 µ-events, and some even contain up to 300 events. Figure 7b represent the
CDF of the MCs lifetime. Such lifetime is defined as the time interval, in days,
between the very first and the very last attack event of a given MC. As showed
in Figure 7b, 67% of MCs exist during less than 50 days but around 22% of
them last for more than 200 days.

Figure 7c represents the CDF of the number of platforms targeted by MC.
As showed in the Figure, in 94% of the cases, the MCs are seen on less than 10
platforms.
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Fig. 2. Some global characteristics of the obtained MCs

These various characteristics suggest that the root causes behind the exis-
tence of these MCs are fairly stable, localised attack processes. In other words,
different places of the world do observe different kind of attackers but their
modus operandi remain stable over a long period of time. We are, apparently,
not that good at stopping them from misbehaving.

5.2 Case Studies

It is certainly not our intention to detail extensively the behavior and character-
istics of every MC that has been found in our 2-year data set. Instead, in this
Section, we detail only four MCs, which, although anecdotal, still reflect the
kind of findings that our method can provide automatically. Table 1 provides
some high-level characteristics of these four MCs phenomena under study. Each
MC is analyzed in some detail in the following pages.

MC2: Worm-behaving cloud. MC2 consists of 122 µ-attack events. These
µ-events exhibit a shape which is fairly similar to the one left by a typical worm:
its trace exists for several days, it has a small amplitude at the beginning but
grows quickly, exhibits important drops that can correspond to subnets being



Table 1. High-level characteristics of four MCs under study. The colon Root cause
refers to the presumed type of phenomenon, based on the results of the attack attri-
bution method.

MC Id Nr Events Nr Sources Duration Root cause Targeted ports
2 122 45,261 741 Worm-behaving 1433T (MSSQL), 1025T (RPC), 139T (Netbios),

cloud 5900T (VNC), 2967T (Symantec)
3 56 48,007 634 UDP spammers 1026U (Windows Messenger)

(botnet)
10 138 26,243 573 P2P Unusual ephemeral ports (TCP)
20 110 195,018 696 UDP spammers 1026U, 1027U, 1028U

(botnet)

cured or blacklisted, and it eventually dies slowly (see [15] for a more formal
description of this class of phenomena).

The interesting thing with MC2 is that it is made of a sequence of worm-like
shaped µ-events. The lifetime of this MC is 741 days! It is composed of µ-events
that have targeted a number of distinct services, including 1025T, 139T, 1433T,
2967T and 5900T. The results of the multi-criteria fusion algorithm indicate that
those µ-events have been grouped together mainly because of the following three
features: geographical location, targeted platform, and ports sequence. Moreover,
a detailed analysis reveals that an important amount of IP addresses is shared
by many µ-events composing this MC.

To illustrate the kinds of µ-events found in this MC, Figures 3a and 3b
represent four µ-events time series. Figure 3a represents two of them, namely
e626 and e628, consisting of activities against Microsoft SQL Server (1433/TCP).
Whereas Figure 3b represents the other two, namely e250 and e251, consisting
of activities against a Symantec Service (2967/TCP). Figure 3c zooms on these
last two µ-events from day 100 to day 150. We can observe the slow increase of
the two curves that are typical of worm-related attacks [15, 27].

The two µ-events on the left (resp. middle) share 528 (resp. 1754) common
IP addresses with each other. Given these elements, we are tempted to believe
that e626 and e628 (resp. e250 and e251) are generated by the same worm, called
WORM A (resp. called WORM B). Both worms, WORM A and WORM B, tar-
get the same two platforms: 25 and 64. Furthermore, we found that these four
µ-events share an important amount of common compromised machines. This
could indicate that both worms, before having contacted our honeypots, had
contaminated a relatively similar population of machines. A plausible explana-
tion could be that both had been launched from the same initial set of machines
and that they were using the same, or similar, code to choose their targets.

From the attack vector point of view, these two worms have nothing in com-
mon since they use very different types of exploits. Furthermore, they have been
active in different periods of time. However, the analysis reveals that they ex-
hibit a very similar pattern both in terms of propagation strategy and in terms
of success rates. Thus, even if the infection vector differs between the two, the
starting point of the infection as well as the code responsible for the propagation
are, as explained, quite likely very similar. This reasoning can be generalized
to all 122 µ-events, revealing the high probability that all these different attack
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Fig. 3. Attack time series (nr of sources by day) of some µ-events from MC2, targeting
(a) MS SQL Server (1433/TCP), (b) Symantec agent (2967/TCP). Fig. (c) is a zoom
on (b).

phenomena have some common root cause(s). This does not, per se, mean that
all these attacks are due to the very same person or organisation -even if this is
likely- but it indicates that the same core piece of code has probably been reused,
from a very similar starting point to launch a number of distinct attacks. This
reveals some aspect of the modus operandi of those who have launched these
attacks and this is an important piece of information for those who are in charge
of identifying these misbehaving groups and their tactics.

MC3 and MC20: Windows Messenger Spammer. In this other case
study, we look at two distinct MCs: MC3 and MC20. Both are made of µ-
events that have exclusively tried to send spam to innocent victims thanks to
the Windows Messenger service, using UDP packets. Both MCs have been ob-
served over a large period of time, more than 600 days in both cases. Even if
they, conceptually, look similar, there are important differences between MC3
and MC20. First, the targeted ports are not identical: in MC3, UDP packets
are being sent to three different UDP ports, namely 1026, 1027 and 1028, while
in MC20 packets are sent exclusively to the 1026 UDP port. Then, as illus-
trated in Fig.4 where we can see the cumulative distribution (CDF) of sources
IP addresses (grouped by /8 blocks of addresses), we observe that MC3 is uni-
formly distributed in the IPv4 space. This result is absurde since large portions
of the IPv4 space can not be allocated to individual machines (multicast, bogons,
unassigned, etc.) and, in all these regions, it is impossible to find compromised
machines sending spams. If we find these IPs in packets hitting our honeypots,
it clearly means that these are spoofed IP addresses. Furthermore, the uniform
distribution of all the IP addresses in that MC leads us to believe that all other
IPs are also spoofed. On the other hand, MC20 has a constant distribution
pointing exclusively to a single /8 block owned by an ISP located in Canada6.
A likely explanation is that those spammers have also used spoofed addresses

6 Actually, a closer inspection of sources IP addresses reveals they were randomly
chosen from only two distinct /16 blocks from this same /8 IP subnet.
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Fig. 4. CDF’s of originating IP subnet distributions for the largest phenomena.

to send UDP messages to the Windows Messenger service, and they have been
able to do so for 600 days without being disturbed!

To further validate these results, we also looked at the payloads of the UDP
packets by computing a hash for each packet payload. What we discovered is
quite surprising: all payloads sent by the sources have exactly the same mes-
sage template, but the template was different for the two clouds. Fig.5 and
Fig.6 show the two different templates used by spammers of MC3 and MC20
respectively. Regarding MC3, we also observe many alternate URL’s, such as:
32sys.com, Fix64.com, Key32.com, Reg64.com, Regsys32.com, Scan32.com, etc,
whereas spammers in MC20 use apparently almost7 always the same URL
(www.registrycleanerxp.com).

This knowledge has been derived from the observation of the MCs automat-
ically built by our method. This illustrates the richness and meaningfulness of
the analyses that can be performed. At this point, there are still two questions
left unanswered when we look at those two UDP spam phenomena:

i) Do all those UDP packets really use spoofed IP addresses, and how were
they sent (e.g., from a single machine in the Internet or from a very large
botnet)?

ii) Could it be that those two phenomena have in fact the same root cause, i.e.,
the same (group of) people running in parallel two different spam campaigns?

7 For MC20, only a few instances of spam messages were observed with a different
URL: nowfixpc.com



SYSTEM ALERT - STOP! WINDOWS REQUIRES IMMEDIATE ATTENTION.
Windows has found CRITICAL SYSTEM ERRORS.

To fix the errors please do the following:
1. Download Registry Cleaner from: http://www.wfix32.com
2. Install Registry Cleaner
3. Run Registry Cleaner
4. Reboot your computer
FAILURE TO ACT NOW MAY LEAD TO DATA LOSS AND CORRUPTION!

Fig. 5. Spam template used in MC3.

Local System User
CRITICAL ERROR MESSAGE! - REGISTRY DAMAGED AND CORRUPTED.

To FIX this problem:
Open Internet Explorer and type: www.registrycleanerxp.com
Once you load the web page, close this message window

After you install the cleaner program
you will not receive any more reminders or pop-ups like this.

VISIT www.registrycleanerxp.com IMMEDIATELY!

Fig. 6. Spam template used in MC20.

To answer the first question, we have extracted from the UDP packets the
Time To Live (TTL) value of their IP headers. We have computed the distribu-
tions of these TTL values for both phenomena, grouped by targeted platform.
The results, illustrated in Fig.7, seems to confirm our intuition about spoofed
UDP packets, since these TTL distributions are too narrow to originate from
a real population of physical machines. In both cases (MC3 and MC20), we
observe that the TTL distributions have a width of about 5 hops, whereas TTL
distributions for non-spoofed packets are normally much larger, certainly when
sources are largely distributed. As a sanity check, we retrieved the TTL distribu-
tions for another phenomenon, which has been validated as a botnet of machines.
As one can see in Fig.8, the TTL distributions are much larger (around 20 hops)
than for spoofed UDP packets. Another finding visible in Fig.7 is the unusual
initial value used for TTL’s, which also indicates that those packets were proba-
bly forged using raw sockets, instead of using the TCP/IP protocol stack of the
operating system.

Finally, trying to answer the last question (same root cause or not), we looked
at one additional feature of the attacks. We generated a distribution of sources by
grouping them based on the day and hour of the week they have been observed
by our platforms (using the same universal time reference, which is GMT+1 in
this case). As one can see in Fig.9, the result is very intriguing: although there
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Fig. 8. TTL distribution of TCP packets for a phenomenon (MC28) attributed to a
botnet targeting ports 445T and 139T (grouped by targeted platform).

is no privileged day or time interval in the week on which we observe a specific
pattern, the UDP traffic created by MC3 (in dashed) and MC20 (in green)
look apparently synchronized. Since both phenomena have lasted more than 600
days, it is quite unlikely that such correlation could be due to chance only. So,
while we have no true evidence to verify this, we can reasonably assume that
both phenomena have been orchestrated by the same people, or at least using
the same software tool and sets of compromised machines.

MC10: P2P aberrations MC10 is a very interesting, yet intriguing, cloud.
Our technique has grouped together 138 µ-events that have been observed over
a period of 573 days. All these events share a number of common characteristics
that we have some difficulty to explain:

1. The vast majority of these µ-events target a single platform, located in
China. A very few µ-events have also hit another platform in Spain.

2. The vast majority of these µ-events originate from Italy and Spain only.
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Fig. 9. Distribution of malicious sources grouped by weekdays. For each MC, a data
point represents the accumulated number of sources observed for a given day and hour
of the week.

3. All these µ-events exist during a single day.
4. All these µ-events target a single high TCP port number, most of them

not being assigned to any particular protocol (e.g. 10589T, 15264T, 1755T,
18462T, 25618T, 29188T, 30491T, 38009T, 4152T, 46030T, 4662T, 50656T,
53842T, 6134T, 6211T, 64264T, 64783T, 6769T, 7690T)

5. these µ-events share a substantial amount of source addresses between them.
6. A number of high port numbers correspond to port numbers used by well

known P2P applications (e.g., 4662/TCP, used by eDonkey P2P network).

This last remark leads us to hypothesize that this extremely weird type of
attack traces may have something to do with P2P traffic aberrations. It can be a
misconfiguration error or, possibly, the side effect of a deliberate attack against
these P2P networks, as explained in [12, 5], in which authors argued that it is
possible to use P2P networks to generate DDoS attacks against any arbitrary
victim.

Also, Figure 9 highlights the fact that these 138 µ-events are not randomly
distributed over the hours of the week but that, instead, they seem to exist on
a limited number of recurrent moments.

All these elements tend to demonstrate the meaningfulness of grouping all
these, apparently different, attack events. Even if we are not able, at this stage,
to provide a convincing explanation related to their existence, our method has,
at least, the merit of having highlighted the existence of these, so far, unknown
phenomena.

It is our hope that other teams will build upon this fundational result to
help all of us to better understand these numerous threats our approach has
identified.



6 Conclusions

In this document, we have presented the WOMBAT attack attribution method.
We have explained its motivations, its principles, the various steps it was made
of, as well as some of the interesting results it had delivered so far. We have
applied that technique to 2 years of attack traces captured on 40 low interaction
honeypots located all over the world. It is worth noting that the method could
as easily be applied on completely different threats-related events. In fact, the
interim Symantec report published mid October 2009 on the analysis of rogue
AV web sites offers results of the application of this very same method to the
problem of understanding the modus operandi of malicious users setting up rogue
AV campaigns.

It is our hope that people will be interested in trying to understand the
rationales behind the Misbehaving Clouds we have identified. We are eager to
share as much information as possible with such interested parties. Similarly, we
are looking forward in having other opportunities to apply this method to other
security datasets that future partners would be willing to share with us.
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