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Abstract—A recent work presents a regressive noise Whitening can be achieved by means of IIRf{hite
model for the data-dependent correlated noise, at the [mpulse Responsg filters. According to [[3] the
output of a magnetic recording channel detector. This regressive noise model is closer to the actual noise,
paper generalizes this channel model, considering digital 5\ |\R \whithening would require less predictors
equalization and a more efficient correlation matrix, in .
order to make a comparison with the usual detector in a and, as a consequence, the corresponding detec-
more realistic environment. Simulation results show that tor would be smaller compared to the AR (#
the regressive detector performs better when the number of Regressiveversion. An alternative approach able to
trellis states is lower than needed, while both approaches counteract the increasing number of channel states,
are comparable when the number of states matches thewjth g joint detection-coding scheme, is shown in
channel memory. 4]

Index Terms—data-dependent channel noise, perpen- The present work generalizes the noise regressive
dicular magnetic recording, regressive and autoregress& model formerly presented by S. Gratrix il [3]
models, non—statlonary. process, Tay_lor expansion, linear by proposing a first-order model for the noise on
model, Cholesky factorization, Viterbi algorithm. . . . .

magnetic recording channel which considers more
than three-banded correlation matrix. This extension
|. INTRODUCTION is more realistic, given the present day channel

The state-of-the-art of data detection in pedensities, and it easily includes the effect of the
pendicular magnetic recording (PMR) channels digital equalization (se¢_1I-D) (se€.1IlIB). In this
based on data-dependent Gauss-Markov detectoaper, the channel conditions under which this
[1]. The reader can find irf_[2] a complete presemrodel is acceptable are reviewed (dec. 1lI-F). Then
tation of this approach. According to this approackhe noise regression coefficients, used to solve the
data-dependent correlated noise results to be auttli- (M aximum Likelihood problem, are proved
regressive and then it can be whitened by meatascoincide with the model coefficients themselves
of data dependent FIRs iffite ImpulseResponsg (sec.[IlI-G). The section Il[-K suggests a simple
This is the approach widely adopted in presentethod to avoid numerical instabilities during the
day read channels implementations. Recently, a véW. detection. Finally, the performances of the re-
interesting paperl [3] highlighted that such modgressive detector are compared to the autoregressive
implies an exponential increase in the number of a realistic context.
states in the detector trellis against a linear increase
of the channel density. As a consequence, the con- 1. SIGNAL MODEL
tinuous request for higher density would result iR Read-Back Waveform
an unsustainable growth of the detector complexity.
More interestingly, the aforementioned paper argurf

that such growth is mostly due to the inherent . .
fpise components on magnetic channel, the read-

non-Markov nature of the media noise. The pap K form can be described by the followin
assumes a simple linear model of the read chanegﬁat;gﬁye orm can be described by the toflowing

derived from the first order Taylor approximation:.
According to this approximation, data-dependent r(t) = Zakh(t — kT +7,) +e(t) (1)
correlated noise results to be regressive and then heZ

Assuming that transition jitter and AWG
dditive White Gaussian are the two predominant



b, are the information bitsy, = b, — b,._1, T' is the is convergent with very high probability. The first
bit interval, 7;, ~ N(0, o 2) represents the amount obrder approximation of channel noise results[[7][8]:
position jitter int = kT, e( ) is AWG noise. For an d

ideal perpendicular magnetic channel, the transition(t) & r,(t) + Z aka@h(t — kT) + e(t) (10)

responséi(t) is defined as: keZ
= rqlt) +v(t 11
Nt a(t) +v(t) (11)
h(t) = erf | =gy (@) where:
T.CBD
ria(t) = agh(t — k7T) (12)
where the parametd?il, is the width ofdh(t)/dt keZ
at half height andCBD represents the channel bl%ndy ) is the noise component.
density: . Let hk the first derivative of.(¢) evaluated int = &T.
CBD = 0 (3) The signalr(t) sampled at=kT results to be:
Moreover, both the stochastic proces$es} and e S i i QpiThihs +ex  (13)

{ex} are assumed to be strictly stationary, white and
mutually independent.

1=—00

The accuracy of this approximation is already
o demonstrated in [3].
B. SNR definition It is reasonable to assume that

The Signal-to-Noise Ratio is defined as:

h(t) =0 for |t| > AT (14)
1
SNRap = 10logy N L (4) where) depends oi€BD. As a result, the first order
© ° approximation of the noise becomes:
where N, is the single-sided AWGN power spectral \
density and}, is twice the media noise vari- _ i
ance; the parametenix expresses the percentage k= ZA W—iTh—ifti + € (15)
of AWGN power with respect to the overall noise o
power: L
_ N, B. Equalization
e = N, + M, () Typically, the sampled read-back signal is equal-
. ized by a dlglteﬂ filter f; here, let us suppose that the
so that:
equalization is applied to the symbol-time sampled
N, = miz . 105N fas/10 (6) signalr:
Mo = (]_ — mm) . ]_0_SNRdB/10 (7) Teqg = (rid + V) %< f (16)
The variances? of jitter random variabler can be g X Ceq e
derived from, as follows: =it Y aeime i+ e (17)
i=—\y
M,/2 = —a Z ( o hlt = kT) ) (8) where the parameters;, \, are the so-called pre-

and post-cursor of the equalized transition response:

[1l. REGRESSIVE MODEL OF NOISE hzq =0 fork> /\P’ k< _/\f (18)

A. Taylor Expansion of Read-Back Signal andf:
Assuming h(t) infinitely differentiable V¢, and he, = h«f (19)
o; < T, the Taylor expansion of(t — 7): e — exf (20)
eq —
gy alZ
h(t+T) (9)  ‘digital signals are named with bold font
Z i! dtl 24 is the digital convolution



On the contrary, if the equalizator filt€ris defined In fact,

over an oversampled grid ande N is the over- E[r%] =0 forj>0 (27)
sampling factor, the expression of the equivalent

time-invariant impulse responsk., associated to because the zero-mean normal function is even.

transition jitter noise becont&s Remarkably,under the first order approximation
noise on magnetic channel z&ro-mean
et = { [ Z(St—zT/p o f(O)} ], (1)

D. Noise Autocorrelation

where: p Noise autocorrelation has a finite length and
Z f:6(t —iT/p) (22) depends both on the stored binary sequenand
P on the time instant=kT":
and2pl’ 41 is the number of samples of the digital v . )
signalf. R(0)W = E[ng[b] = 07 > (ax—ih{")* + 02 Y f?
i=—Ay i=—pl
Finally, the first-order approximation of the noise
when digital equalization is taken into account is:R(7)" = E[nyng_,|b] = o7 Z ap_hSht . +
z—f)\er’y
¢ e T—)
ap—iTo—ihs" + €3 (23) g
i:z/\f ’ +o? Z fifitory for ~v
i=—pl

It is evident from [(2B) that the noise at the outp%(v)(k) — Elngng_.|b] = 0 for 7 .
of the equalizer remains Gaussian; the introduction - (28) '
of the equalizer only affects the spectrum shape
of Gaussian noise and the jitter impulse respongéere:
which changes fronh (see e@.15) td*. .
The stochastic procesa is non-stationary and, w = min(Ay+As+1, 20'+1) (29)
accordingly, noise samplie, is datg-dependerﬂnd It is clear that every correlation coefficient does
its value depends on the pattesy.: not depend on the whole binary sequertsebut
v)-
e = (b, 1bkx, - - b)) (24) only on the patteri3,’:
In the following we assume that the sampled read-  E[nini_|b] = Elngn_, 8] (30)
back signal is equalized by a digital filtéy whose N 31
coefficientsf; are defined as irl_(22). g i, ks ] 1)
More precisely, correlation coefficients hinges on

2 Ha .
C. Noise Mean {a;}, so it is assumed that:

When the Taylor series inl(9) is not limited to the Elngni_,|BY] = E[nknk_w\ﬁgj)] (32)

first term, the noise mean is given by: _ _ _
where3 is the boolean negation ¢f; this property

i) q% is known aspolar symmetry
nk’ak Z Ag—g Z ' dt2i (ZT)
T=—A
! (25) E. Noise Regressive Model
where: Following [3], this section reviews the assump-
> tions which make the magnetic channel nois®a-
ST = {[dtgj 25 t—— ]*f )} ,_stationary regressive modéke this one:
(26) w—1 "
N = Z & )fk—i (33)

3x¢ is the convolution defined in the continuous domain i=0



where cl(.k) € R depends on the instarit = k7" in general, the autocorrelation matrRR is semi-

and {¢} are random variables I.1.D~ N(0,1); positive definite.
according to this hypothesis, the stochastic procdssother words, for anya = [a; ... ay] € RY:
n can be conceived as the output ai@n-stationary

_ T T
w-taps FIR digital filter excited by white gaussian aRa = aE[n 'nja (39)
noise. = E[(an”)(na")] (40)
= El(an")*} > 0 (41)

The unknown quantitie&l(’“) can be found by

matching the correlation coefficients of the twéS @ consequence, the only circumstance wiere

different noise expressions {I5+33) and by solvirfg" Not be factorized as in (36) is when:

the following iterative non-linear system: FJaeRY: E[(an”™)? =0 < planT=0) =1
(42)

that is the condition for which noise samples are

linearly dependent.

R(0)®) = 3=t ?
R1)® = =t ety

(34)
R(y)® = Z?:;l c@(’“)cgfj) y<w—1 The properties of autocorrelation matrix can be
usefully considered in two different instances:
Since the binary sequentehas a finite lengthVv, . if 0. =0, there exist some particular binary

the firstew — 1 samples of noise sequence can be patterns which imply linear dependence among

expressed as:

k—1
nE = Zcﬁk)ék_i for k € [1; 0 — 1]

=0

(35)

As a consequence, we may re-formulate the system
(34) into the matricial form:

Ry = Cp)Co) (36)

whereR ) is the Qzw—1)-diagonal autocorrelation
matrix of n andCy, is the upper triangular matrix

of coefﬁcients{cgk)}:

R(b) = E[I’ITH] (37)
Cy(iyi+ )= je(0;m—1], i€ [1;N]
Cwy(i,i+7) =10 ]<0,j>2w (38)

Commonly, the matrix producC , C,) is called
the Cholesky decompositionf R .

It is remarkable that the noise expression[in (33)
is admissible if and only if noise izero mean
Under the first-order approximation of noisy read-
back signal, noise is zero-mean (see sedtion [Ill-C).

F. Linear Dependent Noise

The Cholesky decomposition of a square matrix
A is possible if and only ifA is positive definite;

noise samples; two examples will be shown.
1) Let

'191 = [bk_/\p_g...bk+)\f.+2] = [0011}

ApH2 A3

In this case, noise samples andn,; can be
written as:

= = [hg! /Ay e

- [bk,)\p,Q...bk+)\f+3] == [00100]

Ap+2 Ar+3
so that:

_ 1 eq 1 €eq
ng = akaho +ak+1Tk+1h_1
_ €q €q
N1 = akahl + ak+1Tk+1h0
_ €q €q
Niy2 = axTehy + a1 Trphy

The aim is to demonstrate that exist, B) €
R? such that:

(43)

The unknown quantitiesi, B satisfy the fol-
lowing linear system:

i ) [4] _ [
hi b [B] T i

which is solvable ifii"* — hhS? £0.

N = Angg1 + Bnjgpo

(44)



As a general rule it is possible to assertSince{{,ny_1,nx_2...} are all zero-mean normally
that, under the first-order approximation, thdistributed random variables, it follows that they are
stochastic process is linearly dependent mutually independent and:

if and only if it exists a subsef\ of noise

samples generated by the linear combination E(&klni—i) = E(&) = 0 (49)
of the same sef) of random variables: in the By definition of linear stochastic model, the terms
first case,A = {ng,nis1},Q = {7.}; in the /" are theregression coefficientsf the random
secondA = {ng, Npy1, Nkt @ = {7k, Try1}.  variablen, on:

This is possible only if there are within the

1

whole sequencé at least two subsequences Ny = [P, (50)

containing no transitions respectively of lengtand then:

Y > Ay + 2,99 > Ap + 3; consequently, the 1

\?vri(t)r??\tf)i”ty thatn is linearly dependent rises Elngn}_,] = Zagk)nk—i (51)
' i=1

Moreover, the variance of, assuming to know the

A n n f the former rulegi . .
» As a consequence of the former ruleifz0 value ofn,_y,...,n; is the variance of:ék)gk:

the matrix R is positive definite, because the
presence of equalizeAWG noise makes it Varlngnt_,] = Var[cPe,] = cg“>2 (52)
impossible to find a subset of noise samples,
generated by the same set of random vanabl&.”ven that¢,, ~ N(0, 1):

So, it has been mathematically demonstrated under . (k)

which channel conditionso( # 0) the regressive  P(n&[n;_1,b) = Za Nj—i, C (53)

noise model[(33) is well-founded.

Remarkably enough, the former considerations afge last equation stresses the fact that the stored

valid even if the read-back signal is not equalizedhinary patternb is known.

G. Non-Markovianity of Noise H. Maximum Likelihood Algorithm

Referring to equatior (33), the iterative substitu- It IS easy tO.ShOW [.5] that the expression .Of the
maximum-likelihood binary sequence is equivalent

tion:
to:
1 w—1 (b—i) N
s — (= 366 V0 B T e 82, USY) (59
J:
(45) b
results in:
= argiax HN Za s, e’ (55)
(k) i=
ng = c0 &+ a; nk i (46)
Z where the sequencSzE:
where a\*) are real time-dependent coefficients; if Sy = bk, - brix,] (56)
the noise sequence length 1§, the last equation can pe considered tratateof the Viterbi trellis.
becomes: The log-likelihood metrid\I® associated to the state

®) k-1 ®) tran5|t|onS,(€b)l — S(b is:
= 6.+ aPm; ke[,N] (@7) L
= MP = In [Cgﬂ + 5—’“ (57)
Noise sampley; results to be the sum of the linear
comblnatlon of all previous noise samples and @fhere c[(]k and §,ﬂ are determined irevery state
the termcO §k, which isuncorrelatedwith them:  and ineverytemporal step of the trellis by the joint

El&ng—)= 0 Vk, i>1 (48) 4 is a random variableg,, is its realization.



solution of the non-linear systerh (34) and of thehe first order approximation (see section 1lI-C).

equation: It is valuable that, even if; were so high to make
o1 unacceptable the first order approximation, the
¢, = (Lk) (g — Z FE, ) (58) estimated noise samples would remaero mean
o i=1

. , Even the autocorrelation contributes
In order to solve the aforementioned equation ™) : :
it is necessary to keep in memory the value é%(ﬂﬁ ) Vk, that are used to solve the iterative

the following 0.5 + 1.5 — 1 coefficients in non-linear _systerri_:(34) n each node of the trellis,
correspondence of every node of the trellis: can be estimated in the ergodic way:

~ 1 A
{Ek_i, i€[l;w— 1]}; R(VW(W)) =N Z TeTlo—ry (64)

,3("/) k:B}(:)Eﬂ(“/)
k—v e ; e 1]
{Ci—w velw—1]ie[yw 1]’} (59 Wwhere Ny is the number of recurrences of the

The equation[{88) can be interpreted as the whitepattern 3" within the entire sequenck and the
ing of the noise sequence in correspondence tefmsn, are computed through equationsl{60,61).
every trellis path through an IIR digital filter, which It is important to stress that both the estimates
is the exact inverse of the FIR filter generating th®&0Q) and [(64) are computeuff-line for every value
noise sequence. of the patternsx andg.

|. Detector Calibration J. Complexity

In correspondence of every Viterbi trellis state, If the estimator suggested i (61) is used, then
the knowledge of the noise sampig is necessary the knowledge of the pattern:
(see e.58) and, under the first-order approximation, o

the following expression is valid:
B E 60 IS necessary to estimate the noise samplein
ny, = 1 — Elri|ou] (60) correspondence of every state transition of Viterbi

where E[r;|a;] can be ergodically estimated as: trellis; so, let us define the newxtendedstate,
which takes into account also the ISI part:

k= [Dk-max(yr)-1 -+ Dkymax(r;1]  (65)

~ 1
Elrylag = r; ol =&l Vi
e = N aza ¢ b= [romaxopt - Brimasoy]  (66)
Z (61) Hence, the number of trellis states of the regressive
where: detector becomes:
o = [bg-r.—1 be—1, - brir,] (62) NEPG = gmaxQple)tmax(Ay.fa) 1 (67)
. ~ S
and I,, I. are respectively the pre- and post-cursor = 181 (68)
of the dibit response. where IST = I, + I, + 1, because typicallyi, >

The expected value of the former estimator can ke ; . ) /
expressed as: ?

Elng] = Elr] — E[ 1 Z el } K. Numerical Instability

Najen It has been demonstrated that, given the binary
patternb;, which is associated with thieth trellis
path, the iterative resolution of the non-linear
It is important to underline that the last equalitgystem[(34) is equivalent to the on-the-fly Cholesky
holds for any degree of approximation order ofdecomposition of noise autocorrelation matrix
noise because, if, > \s, I. > ),, the samples R,).
e, {ri, 1 1 @l = &'*’} can all be considered to
be realizations of the same random variable. Unfortunately, each element &, can only be
Hence, the estimatof (b0) is unbiasedly under statistically estimated as ib_(64), and the probability

i:aéev:dlev

=0 <= [, >N\, I.> ), (63)



T
—®— AR 4st

that the matrixR ) be non-definite (even if, #

0) rises with the decreasing (Nﬂm, Njev; in this

case, the Cholesky decomposition ﬁtbi) would
not be allowed.
Since the following three statements are valid:

« a matrix is positive definite if and only if all
its eigenvalues are positive;

» supposing that the eigenvalues of the square
matrix R, are (9 U0, the eigenval-
ues of R +wl are {1\ +w,..., v +w};

« the principal diagonal of the matricdy,), Vi
are constituted by the term&(0|8*)), while
changing3©:

then, if the minimum eigenvalue,,;,, is negative it

- O- REG 4st

——ARSst [}
- 0- REG 8st
—%— AR 16st [

REG 16st

i i i
14.6 14.8 15

SNR

i
14.4

Fig. 1: SFR vs. SNR

is reasonable to carry out the replacement:

R(0|8) — R(O0[8) + [V

Vynin, = 10N Vﬁs)
7,8

(69)
(70)

performances converge faster to the optimum
compared to the AR detector when the trellis state
number rises. However, it is worth anticipating here
that 2'+/51 states may not be strictly necessary
to achieve most of the performance gain of the

after the detector calibration, in order to guarante@; getector and several variations of the canonical
the numerical stability of the non-linear SySterﬁpproaCh are available. For example, the number

along every trellis path.

In the absence of the equalizatothe terms
R(0|8")
varianceo?

of predictors can be left equal to ISI without
increasing the number of states; despite suboptimal,
this approach generally provides most of the gain.

are the only ones depending on &/GN  per combinations in between this approach and
- (see eq.28), so the equatiénl(69) can hiq canonical one can be easily envisioned.

interpreted as a fictitious increase of the parameter

mix.
Remarkably, the physical explanation of this m
thematical trick is in accordance with the remar

in section [(III=F).

Both detectors have been simulated in a realistic

%erpendicular channel model, directly implementing

e jittered channel represented by equatibh (1)
(see Sectiorill), withmiz = 0.2. For both the

implementations 4, 8 and 16 states are compared.
IV. COMPARISON BETWEEN THE REGRESSIVE The AR detector always adopts the maximum
AND THE AR APPROACH number of predictors (1, 2 and 3 for 4, 8, and 16
As already mentioned before, the great advantaggates, respectively). The user bit density (defined
of regressive approach is expected to be the l@s the product betweddBD and the code rate) is 2
number of Viterbi trellis states, which exponentiallyvhich approximately leads to an ISI of 2-3 samples
increases with the intersymbol interference lengtiter a Generalized Partial Response equalization.
only. In fact, the number of predictors do@®t Sectors with 512 bytes user data are protected with
depend on the number of states and the informatianG F'(2'°) Reed-Solomon code with correction
on all of the past noise samples is contained in tpewer ¢t = 20 symbols. The figuréll demonstrates
storedlIR coefficients (see €g.59). that the 4-states regressive detector performances
In the AR-based trellis, the number of predictorare about 0.3 dB better than the 4-states AR
L' determines the number of states which grovdetector in terms of SFR &8tor Failure Rate) vs.
exponentially with the suni’ + IS1. SNR. When the number of states rises, the two
It stands to reason that the two different methoasethods tend to be equivalent because the number
tend to be closely related when the numldérof of predictorsL’ of the AR detector approach to the
AR predictors approaches to the effective channeffective channel memory length.
memory lengthL. Hence, the regressive detector



The authors believe that the results presentedtonbe not perfectly in line with the one contained
[3] are affected by the channel model choice. In faah the original work [3], is justified by the adoption
the detectors are compared with a channel moadla more realistic channel model which makes it
developed according to the first order approximavident that the assumptions of the two approaches
tion, which matches exactly the assumptions of tlage different approximations of the actual channel.
regressive detector. For this reason, the performance
gains in favour of the regressive detector result to As reviewers suggest, it would be interesting to
be exaggerated. Actually, both regressive and Ad®mpare the regressive detector performance with
channel assumptions are an approximation of thlieose obtained by using reduced states AR-detectors
channel. The approximations become closer eashich often perform very close to the optimum
other when the number of states grows. Neverthere with an appreciable lower complexity [11]. An
less, the present work result confirms that, givenimteresting line of development could be the applica-
limited number of states, the regressive model cajmn of regressive detectors to the multidimensional
tures more accurately the noise characteristics d@noint-end presented in|[9]. Furthermore, the detector
makes the regressive detector a powerful detectioould be extended in order to include nonlinear
method. When the detection performances are to to@nsition shift noise [10].
maximized both approaches seems to be comparable
and other considerations arise. The calibration of the REFERENCES
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