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Abstract

An asynchronous Direct Sequence Code Division Multiple Access (DS-CDMA) system employ-

ing periodic spreading sequences is considered to be operating in a frequency selective channel. The

cyclostationary spread signal is received at multiple sensors and/or is sampled multiple times per chip

(oversampling), leading to a stationary vector-valued received signal. Hence, such a model represents

a very particular multi-input multi-output (MIMO) system with plentiful side information in terms

of distinct spreading waveforms for the input signals. Depending upon the finite impulse response

(FIR) length of the propagation channel, and the processing gain, the channel of a certain user spans

a certain number of symbol periods, thus inducing memory or intersymbol interference (ISI) in the

received signal in addition to the multiple-access interference (MAI) contributed by concurrent users.

The desired user’s multipath channel estimate is obtained by means of a newblind technique which

exploits the spreading sequence of the user and the second-order statistics of the received signal. The

blindMinimum Mean Square Error-Zero Forcing(MMSE-ZF) receiver orprojectionreceiver is sub-

sequently obtained. This receiver represents the proper generalization of theanchoredMOE receiver

[1] to the asynchronous case with delay spread. Classification of linear receivers obtained by various

criteria is provided and the MMSE-ZF receiver is shown to be obtainable in a decentralized fashion

by proper implementation of the unbiased minimum output energy (MOE) receiver, leading to the

minimum variance distortionless response (MVDR) receiver for the signal of the desired user. This

MVDR receiver is then adapted blindly by applying Capon’s principle. A channel impulse response

is obtained as a by-product. Lower bounds on the receiver filter length are derived, giving a measure

of the ISI and MAI tolerable by the receiver and ensuring its identifiability.
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Récepteur Aveugle D́ecentraliśe pour les Syst̀emesà Accès Multiple par
Repartition de Codes (AMRC) Asynchrones pour des Canaux̀a Trajets

Multiples

Résuḿe

Dans cette article, nous traitons du probl`eme de l’annulation d’interf´erences dans un syst`emeà Ac-

cès Multiple par R´epartition de Codes (AMRC) par s´equences directes, pour des canaux s´electifs en

fréquence et des conditions asynchrones. Le signal ´etalé cyclostationnaire est rȩcu par des antennes

multiples ou est sur-´echantillonné par rapport `a la période chip. Il est donc converti en un signal vec-

toriel qui est stationnaire. Le sur-´echantillonnage ou/et les antennes multiples donnent naissance `a un

système multi-entr´ees multi-sorties (MIMO) qui est abondant en connaissancesa priori, dans la forme

des séquences d’´etalement distinctes pour les signaux d’entr´ee (utilisateurs). En fonction de la longueur

du cananl proprement dit, qui est `a réponse impulsionnelle finie (RIF), et au facteur d’´etalement, l’ordre

du canal total d’un utilisateur s’´etale sur un certain nombre de symboles, engendrant la m´emoire ou

l’interf érence entre symboles (ISI). L’interf´erence d’acc`es multiples (MAI) est ajout´ee par les utilisa-

teurs concurents. L’estimation du canal de l’utilisateur donn´e est obtenue par une nouvelle technique

aveugle qui utilise la s´equence d’´etalement de l’utilisateur et les statistiques de l’ordre deux du signal

rȩcu. En cons´equence, le r´ecepteur minimisant l’erreur quadratique moyenne-foŗcage `a zéro (MMSE-

ZF), est obtenu. Ce r´ecepteur r´eprésente la g´enéralisation au cas asynchrone et pour les canuax `a trajets

multiples, du récepteur ancr´e, celui-là même qui minimise l’énergieà la sortie [1].

Nous classifions les diff´erents récepteurs lin´eaires obtenus par des crit`eres diverses et montrons que le

récepteur MMSE-ZF peut ˆetre déterminé d’une mani`ere décentralis´ee en appliquant le crit`ere MOE non-

biaisé. Cela nous donne ainsi le r´ecepteur `a réponse sans distortion `a minimum de variance (MVDR)

pour le signal de l’utilisateur donn´e. Le récepteur MVDR est ensuite adapt´e en aveugle en appliquant

le principe de Capon. Cela nous donne, par ailleurs, l’estimation de la r´eponse impulsionnelle du canal.

Ainsi, nous dérivons les bornes inf´erieures sur la longueur du filtre de r´eception, obtenant alors, des

mesures de l’ISI et du MAI tol´erables par le r´ecepteur.
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1 Introduction

Multiuser detection [2] has been the focus of intense academic research during the last decade, follow-

ing the advent of DS-CDMA systems as potential candidates for wireless cellular networks. Capacity

of wireless systems is mostly interference limited. For classical FDMA/TDMA systems, this is mostly

intercell (cochannel) interference. For CDMA systems equipped with the conventionally used matched

filter detector, the interference consists mainly of intracell cochannel interference. The goal of multiuser

detection is to mitigate the influence of interference. Industrial interest in multiuser detection has also

struck a strident note with the emergence of the major third generation proposals for cellular mobile com-

munications based upon wideband DS-CDMA, some of which, e.g. [3] contain the necessary provisions

for the application of multiuser algorithms.

For communications over an additive white Gaussian noise (AWGN) channel, and synchronous DS-

CDMA users, transmission of mutually orthogonal waveforms for all users results in a perfectly orthog-

onal system. A conventional matched filter receiver, matched to the desired user’s spreading sequence

results in automatic interference rejection. This behavior of the matched filter persists irrespective of

the powers of interferers due to the orthogonality of the modulation scheme. However, any diversion

from this ideal system, e.g., choice of non-orthogonal spreading codes, deviation of the TX-RX filters

from a Nyquist pulse, non-optimality of the RX timing, mutual asynchrony of users, multipath prop-

agation, or a combination of these phenomena results in a non-zero interference term at the output of

the matched filter. Now, the relative powers of interfering users have a significant impact on this term,

thus giving rise to the much dreadednear-farproblem [2]. When powers can be perfectly controlled

[4], then, under asynchronous conditions in an AWGN channel, the matched filter receiver is still an

optimal decentralized receiver from the average signal to interference plus noise (SINR) maximization

point of view, if aperiodic (noise-like) spreading sequences spread successive symbols of users. This

behavior of the matched filter is explained by the nature of PN interference from other users (cyclosta-

tionary with chip period, hence stationary after chip rate sampling) which essentially acts much the same

way as uncorrelated channel noise. Consequently, the performance might still be acceptable yielding a

reasonable bit-error rate if the number of users is much lesser than the processing gain (small loading

fraction, yielding far lower capacity than an orthogonal system). In a multipath channel, the matched

filter is the coherent RAKE receiver [4], which is matched to the cascade of the spreading sequence and

the propagation channel, thus combining the delayed multipath signals coherently. The noise-like nature

of the interfering users persists at the RAKE output, but now, the phenomenon of dimensional crowd-

ing creeps in, since each interferer’s delayed multipath component contributes as an extra interference.
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Most studies [5] (and references therein) show that the RAKE easily becomes interference limited for

moderate loading fractions.

The search for near-far resistant multiuser detectors debuted with [6] where the optimum detector for

asynchronous multiple-access Gaussian channels was presented. However, owing to the huge complexity

(exponential in number of users) of the optimum detector, it was considered to be impractical in heavily

loaded systems. Simpler, linear multiuser detectors (complexity linear in number of users) like the

decorrelating detector and the minimum mean square error (MMSE) detector were proposed in [7] [8]

and [9] respectively. The desirable feature of these detectors is that they are near-far resistant to varying

degrees [2]. However, when these detectors are formulated as linear operators on the RAKE outputs for

the multiple users (which are sufficient statistics if the rest of the signal is AWGN), then theinformation

complexityof these detectors is fundamentally the same as for the optimum detector, i.e., knowledge of

parameters like delays, spreading sequences and received powers (for the MMSE detector) is needed for

the implementation of these algorithms. We shall classify these receivers asjoint multiuser detectors,

where one attempts to jointly detect the symbols of all users. In order to estimate the parameters like

arrival delays, path amplitudes, and phases, some training information will necessarily be required for

all users.

Another breakthrough step in multiuser detection, following developments in the field ofblind channel

identification and detection [10], was the introduction of theblind adaptive multiuser detector[1], where

it was shown that the multiuser problem could be cast in a single userdecentralizedframework, thus

enabling multiple access interference cancellation based on single user information (desired user delay

and spreading sequence). In this framework, the linear receiver operates directly on the received signal.

The receiver in [1] is the so-calledanchoredminimum-output energy (MOE) receiver. The anchored

receiver is split into two components - one fixed, and proportional to the desired user’s signature wave-

form (matched filter receiver), while the other, its orthogonal complement. The algorithm constrains the

inner product of the received signal with the desired user spreading sequence to be fixed, thus restricting

the optimization problem to within the constrained space. No effort is made to exploit the structure of

the MAI except for the assumption of it being uncorrelated with the desired signal. A decentralized

scheme of this nature can evidently be of considerable interest in some applications, like at the mobile

terminal in a cellular network, where knowledge of interferer parameters is not readily available, or as

a suboptimal/initialization approach at the base station. Blind adaptive multiuser detectors based on

second-order statistics (non-decision directed/ data-aided) are developed for the case of short/periodic

spreading sequences, leading to cyclostationarity at symbol period.
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The problem addressed in [1] was that of DS-CDMA communications over a flat channel (no delay

spread) [11]. A constrained optimization scheme was proposed in [12] for multipath channels by forcing

to zero the receiver response to all but one of the multipath components. An immediate performance

loss was noticeable resulting from the rejection of a major part of the desired signal energy contained

in the other paths. This signal cancellation effect was alleviated in [13], where the receiver’s output

energy was minimized subject to a fixed response constraint for the desired signal. Connections with the

Caponphilosophy were drawn in that paper. The above mentioned receivers can be shown to converge

asymptotically (SNR! 1) to the zero-forcing (ZF) or the decorrelating solution. It was shown in

[14] that in order to accommodate a number of users approaching the code space dimension (spreading

factor), longer receivers are required for the ZF solution to be achievable. Moreover, we presented in [14]

the optimal MMSE receiver for multipath channels and asynchronous conditions, obtained by applying

multichannel linear prediction to the received cyclostationary signal. Direct estimation of the MMSE

receiver from spreading sequence properties and the noise subspace was introduced in [15] following

the observation that the MMSE receiver vector dwells in the signal subspace. The ZF and the MMSE

detectors in the case of high data-rate systems in dispersive channels inducing significant ISI, were

investigated in [16]. The channel estimate in this work was obtained as a generalization to longer delay

spreads of the subspace technique originally proposed in [17]. Both these schemes, however, evoke

a high computational complexity since a subspace decomposition is required. It is worth mentioning

that in the context of blind methods based on second-order statistics and spatio-temporal processing

techniques [18], direct sequence CDMA systems allow quite robust channel estimation (compared to

TDMA systems) due to the bandwidth expansion and integrateda priori knowledge and structure in

terms of distinct spreading sequences that enables separation of user signals.

We propose, in this work, a new decentralized blind minimum mean-square error zero-forcing (MMSE-

ZF) receiver for DS-CDMA systems in multipath channels. The receiver is MMSE-ZF in the sense that

among all ZF receivers, it is the one that minimizes the mean-square error. The MMSE-ZF receiver

is also called the projection receiver [19] or the decorrelating detector [7]. This blind receiver exploits

spreading sequence properties in conjunction with the second-order statistics of the received signal to

estimate the FIR channel for the desired user at a low cost. The delay spread is assumed to be possibly

more than a symbol period, and can be different for different users.

The rest of the paper is organized as follows. We present the DS-CDMA signal model in the section 2. In

section 3, the non-blind MMSE-ZF receiver is derived and its interpretation in terms of existing methods

is provided. Section 4 lays the groundwork for the blind MMSE-ZF receiver by providing analogies be-
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tween the interference cancellation problem and some related results from the array processing literature.

Section 5 is dedicated to the derivation of the blind MMSE-ZF receiver through an alternate and simple

method, namely the unbiased minimum output energy (MOE) criterion. Blind channel estimation via the

blind MMSE-ZF algorithm is also discussed. An alternate interpretation of the MMSE-ZF receiver as a

Generalized Sidelobe Canceler (GSC) is also discussed. Finally, simulation examples are presented in

section 6 and concluding remarks in section 7.

2 Multiuser Data Model

Fig. 1 shows the baseband signal model. TheK users are assumed to transmit linearly modulated signals

over a linear multipath channel with additive Gaussian noise. It is assumed that the receiver employsM

sensors to receive the mixture of signals from all users. The receiver front-end is an anti-aliasing low-

pass filter. The continuous-time signal received at themth sensor can be written in baseband notation

pulse-shaping
filter

channel

RX filter S/Pp(t) w
m
k (t)

h
m
k (t)

v
m(t)

bk(p)ak(n)
P ck(p)

y
m(n) y

m(p)
J=Tc

(1=Tc-Chip Rate)

hmk (p)
ak(n)

P ck(p) y
m(p)

ak(n)
gmk (n) ym(n)

vm(n)

v
m(p)

Figure 1: Signal model in continuous and discrete time, showing only the contribution from one user.

as

ym(t) =

KX
k=1

X
n

ak(n)g
m
k (t� nT ) + vm(t), (1)

where theak(n) are the transmitted symbols from userk, T is the common symbol period,gmk (t) is the

overall channel impulse response (including the spreading sequence, and the transmit and receive filters)

for the kth user’s signal at themth sensor, andfvm(t)g is the complex circularly symmetric AWGN

with power spectral densityN0. Assuming thefak(n)g andfvm(t)g to be jointly wide-sense stationary,

the processfym(t)g is wide-sense cyclostationary with periodT . The overall channel impulse response

gmk (t), is the convolution of the spreading codeck andhmk (t), itself the convolution of the chip pulse
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shape, the receiver filter, and the actual channel representing the multipath environment. This can be

expressed as

gmk (t) =

P�1X
p=0

ck(p)h
m
k (t� pTc), (2)

whereTc is the chip duration. The symbol and chip periods are related through the processing gain/spreading

factorP : T = PTc. S/P in fig 1 denotes serial to parallel conversion (vectorization) with downsampling

of a factorJ . Sampling the received signal atJ (oversampling factor) times the chip rate, we obtain the

wide-sense stationaryPJ � 1 vector signalym(n) at the symbol rate. It is to be noted that the over-

sampling aspect (with respect to the symbol rate) is inherent to DS-CDMA systems by their very nature,

due to the large (extra) bandwidth and the need to acquire chip-level resolution. This aspect directly

translates into temporal diversity and explains the interference cancellation capability of these systems.

We consider the channel delay spread between thekth user and all of theM sensors to be of length

lkTc. Let nk 2 f0; 1; � � �P � 1g be the chip-delay index for thekth user:hmk (nk) is the first non-zero

J � 1 chip-rate sample ofhmk (p). Let us denote byNk, the FIR duration ofgmk (t) in symbol periods.

It is a function oflk, nk, andP . We nominate the user1 as the user of interest and assume thatn1 = 0

(synchronization to user1). The symbol sequences for other users are relabelled (delayed or advanced),

so that their relative delay with respect to user1 falls in [0; T ).

LetN =
PK

k=1Nk. The vectorized oversampled signals atM sensors lead to a discrete-timePMJ � 1

vector signal at the symbol rate that can be expressed as

y(n) =

KX
k=1

N
k
�1X

i=0

gk(i)ak(n� i) + v(n)

=

KX
k=1

Gk;N
k
Ak;N

k
(n)+v(n)=GNAN(n)+v(n),

(3)

y(n)=

264 y1(n)...
yP (n)

375 ,yp(n)=

264 y
1
p(n)
...

yMp (n)

375 ,ymp (n)=

264 y
m
p;1(n)

...
ymp;J (n)

375
Gk;N

k
= [gk(Nk � 1): : :gk(0)] , GN = [G1;N1

: : :GK;N
K
]

Ak;N
k
(n) = [ak(n�Nk + 1) : : :ak(n)]

T , AN (n) =
�
AT
1;N1

(n) : : :AT
K;N

K

(n)
�T

, (4)

and the superscriptT denotes transpose. For the user of interest (user 1),g1(i) = (C1(i) 
 IMJ)h1,

where,h1 is thel1MJ � 1 propagation channel vector given by

h1 =

264 h1;1...
h1;l1

375 , h1;l =

264h
1
1;l
...
hM1;l

375 , hm1;l =

264 h
m
1;l(1)

...
hm1;l(J)

375 ,
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 denotes the Kronecker product, and the Toeplitz matricesC1(i) are shown in fig. 2, where the band

consists of the spreading code(c0 � � �cP�1)T shifted successively to the right and down by one position.

For the interfering users, we have a similar setup except that owing to asynchrony, the band in fig. 2 is

�����������������������
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�����������������������

����������������

����������������

C1(N1 � 1)

C1(0) P

l1

Figure 2: The Code Convolution MatrixC1.

shifted downnk chip periods and is no longer coincident with the top left edge of the box. We denote by

C1, the concatenation of the code matrices given above for user 1:C1 = [CT
1 (0) � � �C

T
1 (N1 � 1)]T .

It is clear that the signal model above addresses a multiuser setup suitable for joint interference cancella-

tion provided the timing information and spreading codes of all sources are available. As we shall see in

the following, it is possible to decompose the problem into single user ones, thus making the implemen-

tation suitable for decentralized applications such as at mobile terminals or as a suboptimal processing

or initialization stage at the base station. To this end, let us stackL successivey(n) vectors in a super

vector

Y L(n)=TL(GN )AN+K(L�1)(n)+V L(n), (5)

where,TL(GN ) = [TL(G1;N1
) � � � TL(GK;N

K
)] andTL(x) is a banded block Toeplitz matrix withL

block rows and
�
x 0p�(L�1)

�
as first block row (p is the number of rows inx), andAN+K(L�1)(n) is

the concatenation of user data vectors ordered as
h
AT
1;N1+L�1

(n); AT
2;N2+L�1

(n) � � �AT
K;N

K
+L�1(n)

iT
.

We shall refer toTL(Gk;N
k
) as the channel convolution matrix for thekth user. Consider the noiseless

received signal shown in fig. 3 for the contribution of user 1, from which the following observations can

be made. Due to the limited delay spread, the effect of a particular symbol,a1(n � d), influencesN1

symbol periods, rendering the channel a moving average (MA) process of orderN1 � 1 [20]. We are

interested in estimating the symbola1(n� d) from the received data vectorY L(n). One can notice that

a1(n� d) appears in the portionY N1
of Y L(n). The shaded triangles constitute the ISI, i.e., the effect

of neighboring symbols onY N1
. The contributions from the other (interfering) users to the received data
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��
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��
��
��=

a1(n � d)

A1;N1
(n)TL(G1;N1

)Y L(n)

Y N1

eg
1

Figure 3: ISI for the desired user.

vector have a similar structure. Note that to handle ISI and MAI, it may be advantageous to consider the

longer received data vectorY L(n).

3 The MMSE-ZF/Projection Receiver

In the multiuser problem given in (5), there exists a multitude of possible zero-forcing constraints, rang-

ing from zero MAI only, or zero ISI only, to zero forcing for both MAI and ISI, which we shall consider

here. For the purpose of our problem, let us consider the ZF or the zero-distortion constraint, which can

be written as,

FH
T (GN ) = eTd , (6)

where,eTd = [0 � � �0j

dz }| {
0 � � �0 1 0 � � �0j0 � � �0], with d the ”equalization” delay for the desired user.

Considering all user symbolsak(n) to be uncorrelated, the received signal covariance matrix can be

written asRY Y = �2aT T
H + �2vI, whereT replacesT (GN) to simplify the notation. The MMSE-ZF

receiver is by definition the solution to the MMSE criterion under the ZF constraint, which can be written

as

min
F :FHT =eT

d

FHRY Y F = �2a + min
F :FHT =eT

d

FHRV VF

) min
F :FHT =eT

d

FHF (7)

Let us further express the receiver vectorF as

F = T F 1 + T
?F 2, (8)

where,T ? spans the orthogonalcomplement ofT and satisfiesPT ? = P?
T , wherePX = X(XHX)�1XH

is the projection operator onto the column space of the matrix X. From the ZF constraint,F H
T = eTd =
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FH
1 T

HT , and therefore,

F 1 = (T H
T )�1ed. (9)

Hence,F = T (T HT )�1ed + T ?F 2, whereF 2 is the unconstrained part which becomes zero upon

solving the minimization problem in (7). ThusF = T (T HT )�1ed, and we can write the MMSE-ZF

criterion as:

min
F :FHT =eT

d

FHRY Y F = �2a + �2ve
T
d

�
T
H
T
��1

ed. (10)

The ZF solution in the noiseless case gives the distortionless response for the desired user’s signal.

We can provide one more interpretation of the MMSE-ZF receiver in terms of a projection receiver as

indicated in the following proposition.

Proposition 1: The MMSE-ZF receiver is equivalent to a projection receiver [19] that first projects the

received data onto the orthogonal complement of the subspace spanned by ISI and MAI, and then projects

the resulting vector onto a one-dimensional subspace that is matched to the signal part that remains in

the data.

Proof: See appendix A.

The MMSE-ZF receiver derived above needs the knowledge of the channel convolution matrix (arrival

delays and impulse responses of all user channels) for its implementation. However, as we shall see in

the sequel, it is possible to determine this receiver blindly in a decentralized fashion, as a solution of

Capon’s method applied to the minimum variance distortionless response (MVDR) criterion.

4 Linearly Constrained Minimum Variance Beamforming

It is insightful to compare the problem of blind ISI and MAI rejection to that of beamforming and

direction of arrival (DOA) estimation in the antenna array processing literature [21]. Let us look at a

generic DOA estimation problem of a single narrowband source located at an angle�0 with respect to an

antenna array. The observation or snapshot vectorY (n) at the array output is

Y (n) = S(�0)a(n) + V (n), (11)

with S(�0) being thearray responseor steeringvector associated with the look-direction� 0, andV (n)

the complex additive (spatially) white Gaussian noise (AWGN) vector.a(n) is the sampled source sig-

nal, with variance�2a. In this problem there are two unknowns, namely the direction of arrival�0 (and
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the corresponding steering vector) and the source signala(n). In the first instance, we shall consider�0

known. A beamformer with the weight vectorF is employed to obtain the estimateâ(n) = F HY (n),

where the superscriptH stands for Hermitian transpose. Intuitively, any desirable beamformer should

emphasize signals arriving from the direction�0, while the noise must be suppressed. We therefore im-

pose the zero-distortion constraint,F HS(�0) = 1, on the beamformer, and minimize its output variance

EjFHY (n)j2 subject to this constraint. The weight vector of the linearly constrained minimum variance

(LCMV) beamformer is the solution to the problem

min
F :FHS(�0)=1

Ejâkj
2
$ min

F :FHS(�0)=1
FHRY Y F = MV, (12)

which results in

F =
1

SH(�0)R
�1
Y Y S(�0)

R�1
Y Y S(�0), MV =

�
SH(�0)R

�1
Y Y S(�0)

��1
. (13)

At this point we realize that we do not yet know�0. However, we can obtain�0 by Capon’smethod [22]

as the argument of the maximum of the minimum variance over all possible look directions. Thus,

b� = argmax
�

�
SH(�)R�1

Y Y S(�)
��1

= argmin
�
SH(�)R�1

Y Y S(�)

= S�1 (Vmax(RY Y )) = S�1 (S(�0))=�0, (14)

sinceRY Y = �2aS(�0)S
H(�0) + �2vI , and assuming a proper normalization ofS(�). We denote by

Vmax(RY Y ), the eigenvector ofRY Y associated with the maximum eigenvalue.

Note that Capon’s approach could be extended to the multisource case if the sources are uncorrelated

and if they are treated jointly. Here, we shall stick to the decentralized single source formulation of

the Capon’s method. The rest of the developments in this paper are based upon the striking similarity

between the purely spatial (beamforming) problem discussed above, and the ISI and MAI cancellation

issue depicted in fig. 3. In particular, we show in the sequel that in the DS-CDMA problem, given certain

conditions on the number of concurrent users and their channel orders, partial knowledge of the channel

vectors,gk(i)’s in terms of distinct spreading code matrices,Ck(i)’s, leads to an unambiguous estimate

of the channel vector for the desired user.

5 Connections between Linear Receivers

We can classify the unbiased linear MOE1 receiver in terms of the other optimization criteria as indicated

in the following proposition.

1a derivative of the minimum variance distortionless response (MVDR) method, and a particular instance of the linearly

constrained minimum-variance (LCMV) criterion
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Proposition 2: The minimum mean-squared error (MMSE), and the minimum output energy (MOE) are

interchangeable criteria under the unbiased constraint, and are equivalent to the maximization of the

output SINR.

arg min
F :FHeg1=1

MSEunbiased = arg min
F :FHeg1=1

OE = arg max
F

SINR, (15)

Proof: (i) Consider first, the MMSE criterion

MSE = Eja1;n�d � â1j
2 = Eja1;n�d � F

HY j2

= �2a � �2aF
Heg1 � �2aegH1 F + FHRY Y F| {z }

output energy

) min
FH~g1=1

MSE = unbiased MOE (16)

,

proving the first equality in (15).

(ii) The signal part inY L(n) is Y s = eg1a1;n�d, whereas the interference (MAI & ISI) plus noise is

Y in = T L
�A + V L, where,T L is the same asTL(GN) with the columneg1 removed. Then, for an

arbitraryF , assuming uncorrelated symbols, we obtain,

SINR =
FHRsF

FHRinF
=

�2aF
Heg1egH1 F

FH
�
RY Y � �2aeg1egH1 �F , (17)

from where,

max
F

SINR $ min
F

SINR�1
$ min

F

FHRY Y F

�2ajF
Heg1j2

) min
F :FHeg1=1

FHRY Y F ,
(18)

which is the unbiased MOE criterion of (19). �

5.1 Relationships between Various Constraints

At this juncture, we are able to identify the relationship between the unbiased linear MOE and the

unbiased linear MMSE approaches which give the same receiver filterF . Note that the unbiased MMSE

yields the MMSE-ZF in the noiseless case and so does the unbiased MOE. A further observation is that

the unbiasedness constraint is not the distortionless constraint (the ZF constraint) given by (6). It is only

the ZF (distortionless) constraint which guarantees the minimum variance (�2
a) with a fixed response for

the desired user signal, which is the desired goal in the original MVDR approach.

In [13], the authors interpreted zero distortion of the Capon’s method as unbiasedness, and maximized

the MOE to obtain the channel impulse response for the desired user. It was also shown that the dis-

tinct spreading sequences allowed identifiability of users’ channel responses. However, unbiasedness is
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a weaker constraint as compared to the zero distortion constraint. Intuitively, with only the unbiasedness

constraint, the other symbols (ISI) remain present in the estimator output and do not allow the applica-

tion of the single user form of Capon’s principle, which corresponds to the maximization of the MOE

(minimum variance) under the zero-distortion constraint. However, unbiased MOE on noiseless data cor-

responds to the MMSE-ZF, which in turn is equivalent to zero forcing MOE on noiseless data. Hence, in

conclusion, we can determine the MMSE-ZF receiver by applying the unbiased MOE on denoised data,

leading to a simple treatment of the problem.

5.2 Blind Unbiased Linear MOE Receiver

Suppose thatF is a linear FIR receiver applied to the received data,Y L(n). The goal is to obtain a linear

estimate of the transmitted symbol,a1(n � d) for the desired user symbol (with a possible delay ofd

symbols). Then,̂a1(n � d) = FHY L(n) is the linear estimate of the desired symbol. Finite alphabet

information can later be applied to the this estimate to determine the symbol value.F is said to be

unbiasedif F Heg1 = 1, where,eg1 = TH
1 h1 (see fig. 3), withT 1 =

�
0 CH

1 0

�

 IMJ being the

signature matrix for the desired user.eg1a1(n�d) is the contribution ofa1(n�d) toY L(n). The energy

at the output of the receiver (noiseless case) can be written asEjFHY L(n)j
2 = FHRd

Y Y F , where the

superscriptd stands for noiseless or denoised data. The unbiased MOE criterion proposed in [13], which

is a generalization of the instantaneous channel case of [1], is in principle a max/min problem solved in

two steps with,

step:1 unbiased MOE

min
F :FHeg1=1

FHRd
Y Y F ) F =

1egH1 R�d
Y Y
eg1R�d

Y Y
eg1, (19)

with MOE(ĥ1) =
1

egH
1
R�d

Y Y

eg
1

, followed by,

step:2 Capon’s method

max
^h1:k

^h1k=1

MOE(ĥ1)) min
^h1:k

^h1k=1

ĥ
H

1

�
T 1R

�d
Y Y T

H
1

�
ĥ1, (20)

from where,ĥ1 = Vmin(T 1R
�d
Y Y T

H
1 ), which is the estimate (upto a scalar phase factor) of the desired

user’s FIR channel response.
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5.3 Discussion

The minimum output energy (MOE) receiver, first proposed in [1] was developed for asynchronous users

in the AWGN channel, where the channel is simply represented by a complex gain factor. The linear

receiverF can be expressed asF = c1 + x, where,c1 is the fixed component, viz., the desired user’s

spreading sequence, andx is it orthogonal complement (xHc1 = 0), i.e., a blocking transformation for

the desired signal. The fixed response,kc1k = 1, (theanchor) constrains the desired signal’s output

variance to an arbitrary constant, which is determined by the channel gain, and the MOE criterion min-

imizes the output variance of the rest. The receiver is therefore determined blindly upto a scale factor.

This receiver, upon scaling the output response to unity for the desired signal corresponds to the un-

biased MMSE-ZF receiver of section 3, leading to a distortionless (ZF) response in the noiseless case.

The extension to the multipath channels of this scheme is elaborated upon in [13]. However, in the later

appraoch, the distortionless response (and thus the proper implementation of Capon’s method) will only

be guaranteed if denoised statistics were employed in the MOE cost function.

5.4 Unbiased MOE via the Generalized Sidelobe Canceler

The generalized sidelobe canceler (GSC) [21], is a particular implementation of the LCMV beamformer.

Hence, the unbiased MOE criterion, which itself is a particular instance of the LCMV approach can be

implemented in the GSC fashion as elucidated in the following. Let us denote by

T 1=
�
0 CH

1 0

�

 IMJ , and T 2 =

24 I 0 0

0 C?
1 0

0 0 I

35 
 IMJ , (21)

the partial signature of the desired user and its orthogonal complement employed, respectively, in the

upper and lower branches of the GSC, as shown in fig. 4.C?H
1 is the orthogonal complement ofC1, the

tall code matrix given in section 2 (C?
1 C1 = 0). Then,CH

1 Y N1
= T 1Y L and the matrixT 2 acts as a

blocking transformation for all components of the signal of interest. Note thatPTH
1

+ PTH
2

= I, where,

PX is the projection operator (projection on the column space ofX). Then the LCMV problem can be

written as

min
F :FHTH

1
=(hH

1
h1)�1h

H

1

FHRd
Y Y F = min

F : FHTH
1 h1 = 1

FHTH
1 h?1 = 0

FHRd
Y Y F , (22)

where,
�
h1 h?1

�
is a square non-singular matrix, andhH1 h

?
1 = 0. Note that in the LCMV problem

(GSC fomulation) there is a number of constraints to be satisfied. However, imposing the second set
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of constraints, namelyFHTH
1 h

?
1 = 0 has no consequence because the criterion automatically leads to

their satisfaction once,spanfRd
Y Y g \ spanfTH

1 g = spanfTH
1 h1g, i.e., when the intersection of the

signal subspace and the subspace spanned by the columns ofT H
1 is one dimensional.

The matrixT 1 is nothing but a bank of correlators matched to thel1 delayed multipath components of

user1’s code sequence. Note that the main branch in fig. 4 by itself gives an unbiased response for the

desired symbol,a1(n � d), and corresponds to the (normalized) coherent RAKE receiver. For the rest,

we have an estimation problem, which can be solved in the least squares sense, for some matrixQ. This

interpretation of the GSC corresponds to the pre-combining (or pathwise) interference (ISI and MAI)

canceling approach (see [5] and references therein).

The vector of estimation errors is given by

Z(n) = [T 1 �QT 2]Y L(n). (23)

Since the goal is to minimize the estimation error variances, or in other words, estimate the interference

term in the upper branch as closely as possible fromT 2Y L(n), the interference cancellation problem

settles down to minimization of the trace of the estimation error covariance matrixRZZ for a matrix

filterQ, which results in

Q =
�
T 1R

dTH
2

��
T 2R

dTH
2

��1
, (24)

and where,Rd is the noiseless (denoised) data covariance matrix,RY Y , with the subscript removed for

convenience. The outputZ(n) can directly be processed by a multichannel matched filter to get the

symbol estimate,̂a1(n� d), the data for the user1.

â1(n� d) =
1egH1 eg1FHY L(n) =

1egH1 eg1hH1 (T 1 �QT 2)Y L(n) (25)

The covariance matrix of the prediction errors is then given by

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

T 1

Y
L
(n)

Q

Z(n)
kcorrelator

T 2

hH1

rake

â1(n� d)1

~gH
1
~g
1

Figure 4: GSC implementation of the MMSE-ZF receiver.

1999/6/21 page 16 of 28



RZZ=T 1R
dTH

1 �T 1R
dTH

2

�
T 2R

dTH
2

��1
T 2R

dTH
1 , (26)

From the above structure of the interference canceler, we observe that whenT 1 (Y L � eg1a1(n)) can be

perfectly estimated fromT 2Y L, the matrixRZZ is rank-1 in the noiseless case! Using this fact, the

desired user channel can be obtained (upto a scale factor) as the maximum eigenvector of the matrix

RZZ , sinceZ(n) = (CH
1 C1)
 IMJh1~a1(n�d). It can further be shown easily that ifT 2 = T?

1 , then

T 1R
�1
Y Y T

H
1 =

�
T 1T

H
1

�
R�1
ZZ

�
T 1T

H
1

�
, (27)

where,RZZ is given by (26), andQ, given by (24), is optimized to minimize the estimation error

variance. Rd replacesRY Y in the above developments. From this, we can obtain the propagation

channel estimate for the desired user,ĥ1 as ĥ1 = Vmaxf
�
T 1T

H
1

��1
RZZ

�
T 1T

H
1

��1
g. The above

structure results in perfect interference cancellation (both ISI and MAI) in the noiseless case, the evidence

of which is the rank-1 estimation error covariance matrix, and a consequent distortionless response for

the desired user. In the noiseless case (v(t) � 0), we have the following two cases of interest.

5.4.1 Uncorrelated symbols

In the absence of noise, withi.i.d. symbols, the stochastic estimation ofT 1Y fromT 2Y is the stochastic

estimation ofT 1TL(GN )A from T 2TL(GN )A with RA = �2aI . Hence, it is equivalent to the deter-

ministic estimation ofT H
L (GN )T

H
1 from T H

L (GN )T
H
2 : kT H

L (GN )T
H
1 � T H

L (GN)T
H
2 Q

H
k22. Then,

given the condition

spanfTH
1 g \ spanfTL(GN )g = spanfTL(GN)e

0

dg

) spanfTL(GN )g � spanfTH
2 g � spanfeg1g

* TL(GN )e
0

d = TL(G1;N1
)ed = eg1 = T 1h1,

(28)

and where,e
0

d anded are vectors of appropriate dimensions with all zeros and one1 selecting the desired

column inTL(GN ) andTL(G1;N1
) respectively. We can write the channel convolution matrixTL(GN )

as

TL(GN ) = eg1e0Hd + TL(GN )Pe0?
d

= [eg1 TH
2 ]B, (29)

for someB. Then we can write,

T H
L (GN)

�
TH

1 � T
H
2 Q

H
�
=

e
0

dh
H
1 T 1T

H
1 +BH

�eg1TH
1

0

�
�BH

�
0

T 2T
H
2

�
QH

= e
0

dh
H
1 T 1T

H
1 +BH

1 egH1 TH
1 �B

H
2

�
T 2T

H
2

�
QH .

(30)

Note thate
0H
d B

H
i = 0; i 2 f1; 2g. This implies that the first term on the R.H.S. of (30) is not predictable

from the third. Therefore, if the second term is perfectly predictable from the third, then the two terms

cancel each other out andRZZ turns out to be rank-1, andĥ1 =
�
T 1T

H
1

��1
Vmax (RZZ).
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5.4.2 Correlated symbols

In the case of correlated symbols, with a finite amount of data, given the conditions in (28), it still holds

thatspanfT H
L (GN )T

H
2 g = spanfP

e
0?
d

TL(GN )g. Now, we can write the received vectorY L(n) as

Y L(n) = TL(GN )A = TL(GN)e
0

da1(n� d) + T L
�A. (31)

Now, the estimation ofT 1Y in terms ofT 2Y = T 2TL(GN )A = T 2T L
�A is equivalent to estimation

in terms of �A. gT 1Y jT 2Y = T 1Y � dT 1Y

= T 1Y �

�
T 1R

d
Y Y T

H
2

��
T 2R

d
Y Y T

H
2

��1
T 2YgT 1Y j �A

= T 1TL(GN)e
0

d~a1(n� d)

= T 1T
H
1 h1~a1(n� d)j �A

. (32)

This results in, �
T 1R

�d
Y Y T

H
1

��1
= �2

~a1(n�d)j �A
h1h

H
1 , (33)

The rank-1 results in a normalized estimate of the channel. It must however be noted that the estimation

error variance of the desired symbol is now smaller (�2
~a1(n�d)

< �2a).

5.5 Identifiability Conditions for Blind MMSE-ZF Receiver

Continuingwith the noiseless case, or with the denoised version ofRY Y , i.e.,Rd
Y Y = �2aTL(GN )T

H
L (GN),

min
F :FHeg1=1

FHRd
Y Y F = �2a, i� FH

TL(GN ) = e
0H
d , (34)

i.e., the zero-forcing condition must be satisfied. Hence, the unbiased MOE criterion corresponds to ZF

in the noiseless case. This implies thatMOE( êg1) < �2a if êg1 6� eg1. We consider that:

(i). FIR zero-forcing conditions are satisfied, and

(ii ). spanfTL(GN)g \ spanfTH
1 g = spanfTH

1 h1g.

The two step max/min problem boils down to

max
ĥ1:kĥ1k=1

ĥ
H

1

�
T 1T

H
1

��1
T 1TLP

?
T H

L
TH
2

T
H
L T

H
1

�
T 1T

H
1

��1
ĥ1, (35)
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where,P?
X = I�X(XHX)�1XH . Then identifiability implies thatTLP?

T H
L
TH
2

T H
L = TH

1 h1h
H
1 T 1 =eg1egH1 , or

P?
T H
L
TH
2

T
H
L (GN ) = P

e
0

d

T
H
L (GN), (36)

Condition (i) above implies thate
0

d 2 spanfT H
L (GN )g. From condition (ii), sinceTH

1 h1 = TL(GN)e
0

d,

we have

spanfTL(GN )T
H
2 g = spanfP?

e
0

d

T H
L (GN )g

spanfT H
L (GN )g = spanfT H

L (GN )T
H
2 g�spanfe

0

dg
(37)

from which,T H
L (GN )=PT H

L
TH
2

T H
L (GN)+Pe0

d

T H
L (GN ), which is the same as (36).

5.5.1 A Note on Sufficiency of Conditions

We consider first the conditions (i). Furthermore, in the following developments, we consider that

K < PMJ , which is easily achievable with a small (e.g,2) multiple sensor and/or oversampling factor.

The effective number of channels is given by(PMJ)e� = rankfGNg, whereGN is given in (3). Let

G1(z ) =
PN1�1

n=0 g1(n)z
�n be the channel transfer function for user1, with G(z ) = [G1(z ) � � �GK(z )].

Then let us assume the following:

(a). G(z ) is irreducible, i.e., rankfG(z )g = K; 8z .

(b). G(z ) is column reduced: rankf[g1(N1 � 1) � � �gK(NK � 1)]g = K.

Given that the above two conditions hold, the channel convolution matrixT (GN) is full rank w.p. 1,

and the FIR lengthL required is given by,

L � L =

�
N �K

(PMJ)e� �K

�
. (38)

Note that condition (a) holds with probability1 due to the quasi-orthogonality of spreading sequences.

As for (b), it can be violated in certain limiting cases e.g., in the synchronous case wheregk(Nk � 1)’s

contain very few non-zero elements. Under these circumstances, instantaneous (static) mixture of the

sources can null out some of thegk(Nk � 1) (more specifically, at mostK � 1 of them). ThenN gets

reduced by at mostK � 1. However, even then,L given by (38) remains sufficient.

The condition (ii ) can be restated as the following dimensional requirement:

rankfTL(GN )g+ rankfTH
1 g 6 rowfTL(GN )g+ 1, (39)

from where, under the irreducible channel and column reduced conditions,

L � L =

�
N �K + l1MJ � 1

(PMJ)e� �K

�
, (40)
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where,l1 is the channel length for user1 in chip periods. If (40) holds, then condition (ii ) is fulfilled w.p.

1, regardless of theNk’s, i.e., thespanfTH
1 g does not intersect with all shifted versions ofg k’s, 8k 6= 1,

which further means that no confusion is possible between the channel of the user of interest and those

of other users, whether the mixing is static (same orders) or dynamic (different channel lengths), with

lengths measured in symbol periods.

5.5.2 Violation of condition (ii)

If the channel lengthl1 is over-estimated, such thatN1 gets over-estimated, then condition (ii ) is violated

w.p. 1. In that case, more than one shifted versions ofg1 will fit in the column space ofT H
1 . The

estimated channel in that case can be expressed asbG1(z ) = G1(z )b(z), where,b(z ) is a scalar polyno-

mial of the order that equals the amount by which the channel has been over- estimated. An adhoc but

expensive solution to this would be to try all orders forN 1 and stop at the correct one. Once, the delay

estimates have been obtained, however, overestimation of the channel order is highly unlikely in most

DS-CDMA systems, where, the delay spread< P , and in which case,Nk = 2 for a synchronized user

k.

5.6 Two-Sided Linear Prediction

We can give one more interpretation of the MMSE-ZF receiver in terms of two-sided linear prediction

(TSLP) of the received signal. Let us consider the noiseless case (v(t) � 0), and replace theT 1 andT 2

in (21) by,

T 1 =
�
0 IPN1

0
�

 IMJ , and T 2 =

�
I 0 0

0 0 I

�

 IMJ , (41)

This corresponds to theleast squares smoothingapproach of [23] in a single user case. We can pro-

ceed with a similar treatment as previously discussed in section 5.4 for the GSC implementation of the

unbiased MOE algorithm. However, now,

rankfRZZg � K, (42)

whereK denotes the number of users with channel orders shorter than or equal toN1 [24] [25]. A

mixture (instantaneous when channel orders are the same) of different users’ channels is now obtained.

In the event ofK = 1 (the desired user), the composite channel vectoreg1 can be obtained from the

rank-1RZZ , although the stacking factorL required will be much longer thanL given by (40).
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From the above discussion it is obvious that the TLSP has some capability of multiuser interference

cancellation in very special situations (N1 < Nk, 8k 6= 1). However, for the DS-CDMA system in

question, the presence ofC?
1 term in the blocking matrixT 2 ”cleans up” the contribution of interfering

users without regard to their channel orders, and highlights the great degree of robustness of the system

vis-à-visthe channel identification issue.

6 Numerical Examples

We considerK = 5 asynchronous users in the system with a spreading factor ofP = 16. The channel

for thejth user is modeled as a FIR channel of orderlk ranging from8 � 21 chip periods for different

k’s. The channel delay spread is therefore shorter than one symbol period for some users while longer

for others. Near-far conditions prevail in that the interfering users are randomly (ranging from8 to 10

dB.) stronger than the user of interest. Fig. 5 shows the bit error-rate performance of the blind MMSE-
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Figure 5: Error rate performance for spreading factor, P=16, and K=5 users.

ZF receiver and the MMSE receiver (�2a
bR�1

Y Y eg1). It can be seen that the performance depends on the

quality of the correlation matrix estimate. Better results are therefore obtained if more data is available.

This figure highlights the major drawback in the implementation of second-order statistics based linear

receiver algorithms. Under power controlled conditions, with good choice of spreading sequences, and

a small loading fraction, a simple RAKE receiver may outperform the linear receivers, unless a good

estimate ofbRY Y is available. On the other hand, as seen in fig. 6, the channel is estimated fairly

accurately (normalized mean squared error2 (NMSE) of the order of -25 dB at 20 dB. SNR) with70

symbols from the rank-1 RZZ (see section 5.4). Performance of the noise-subspace based algorithm

2NMSE= E kh1�
^
h1k

2

kh1k
2

=

1

L

P
L

i=1

kh1�
^
h
(i)

1 k
2

kh1k
2
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Figure 6: Channel estimation performance for spreading factor, P=16, and K=5 users.

[17] is also shown for several input SNR’s. In fig. 7 and 8, we show the performance of blind MMSE-
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Figure 7: Output SINR performance of different receivers in near-far conditions for spreading factor,

P=16, and K=5 users.

ZF receiver in near-far and power-controlled conditions, respectively, and compare it with that of the

theoretical MMSE (RY Y = �2aTL(GN )TL(GN )+�2vI). A data record of200 data samples is employed

to estimate the receivers. It comes as no surprise that the optimal unbiased MMSE is not approached by

any of the other receivers due to finite data effect. A theoretical curve for the MMSE-ZF is also provided.

fig. 9 shows the quality of the channel estimates for the case when denoised statistics are employed in

the unbiased MOE algorithm.
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Figure 8: Output SINR performance of different receivers in power-controlled conditions for spreading

factor, P=16, and K=5 users.
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Figure 9: Normalized channel estimation MSE for the denoised and non-denoisedRY Y , for spreading

factor, P=16, and K=5 users
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7 Conclusions

The blind MMSE-ZF receiver for DS-CDMA was presented. The receiver was shown to be the proper

extension of the anchored MOE receiver [1] to the general asynchronous case in multipath channels,

leading to the distortionless response for the desired symbol of the desired user. It was also demonstrated,

that the receiver is obtainable from the blind unbiased linear MOE criterion in a decentralized manner.

A simpler implementation in the form of a Generalized Sidelobe Canceler (GSC) or the MVDR was also

shown. In terms of its implementation, the blind algorithm, like the MMSE linear receiver, requires a

large amount of data for the estimation of the channel covariance matrix thus making it rather impractical

for rapidly changing environments (fast fading) and large numbers of users(K ! P ). Such algorithms

can find their utility in indoor wireless LANs where channels change at relatively slow rates and a fair

amount of data is available for the estimation of the covariance matrix. A possible implementation can

be at the uplink, where, knowledge of spreading codes and timing of all users in the cell can be exploited

to obtain a better̂RY Y .

Identifiability conditions of the blind MMSE-ZF receiver, for channels of arbitrary length (even longer

than a symbol period) were given and it was shown that the channel is blindly identifiable w.p.1 (upto a

scalar phase factor), unless it is overestimated.

A Appendix

The MMSE-ZF receiver was derived in section 3 asFH = eTd (T
HT )�1T H . Where, we express a

column permuted version of the channel convolution matrixT (GN ) asT =
�eg1 �T

�
. Then,eg1 = T ed,

anded = [1 0 � � � 0]. Let us further define a square transformation matrix,P , given by

P =

�
1 0

X I

�
, (43)

so that

T P =
�eg1 �T

� � 1 0

X I

�
=
h
P?
�T
eg1 �T

i
, (44)

and where,X = �( �T
H �T )�1 �T

Heg1. Then, the MMSE-ZF receiver can be written as

FH = eTd
�
(T P )H(T P )

��1
(T P )H

= eTd

�
1 0

X I

� " egH1 P?
�T
eg1 0

0 �T
H �T

#�1 "
(P?

�T
eg1)H
�T
H

#

=
1egH1 P?
�T
eg1 egH1 P?

�T
, (45)
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whereP?
�T

is the projection operator that projects the received data vectorY L(n) onto the low rank

subspace defined by the orthogonal complement of the subspace spanned by the columns of�T , andeg1 is

the projection on the one-dimensional subspace matched to the desired signal. �
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