A Security Pattern for Untraceable Secret Handshakes

Angel Cuevas
Department of Telematic Engineering
University Carlos III of Madrid
acrumin@it.uc3m.es

Laurent Gomez, Annett Laube
SAP Research Sophia-Antipolis

laurent.gomez @sap.com, annett.laube @sap.com

Abstract

A security pattern describes a particular recurring secu-
rity problem that arises in specific contexts and presents a
well-proven generic solution for it. This paper describes an
Untraceable Secret Handshake, a protocol that allows two
users to mutually verify another’s properties without reveal-
ing their identity. The complex security solution is split into
smaller parts which are described in an abstract way. The
identified security problems and their solutions are captured
as SERENITY security patterns. The structured description
together with motivating scenarios makes the security so-
lution better understandable for non-security experts and
helps to disseminate the security knowledge to application
developers.

1. Introduction

Today’s pioneer organizations recognize that perfor-
mance accelerates when information security is driven into
the very framework of a business. Security experts devel-
oped and standardized sufficient security solutions to satisfy
security requirements for specific contexts. Most of these
standards provide comprehensive methodologies for speci-
fying, implementing and evaluating security of IT products.
Rarely non-specialists are capable of correctly interpreting
such standards. Several standardized methodologies were
developed to support the development of secure systems.
Most of these standards provide comprehensive methodolo-
gies for specifying, implementing and evaluating security
of IT products. Unfortunately, security experts are the inter-
preters of such standards. The description of these standards
in natural language limits their ability in passing knowledge
to novice security users. The fundamental added value of
adopting the security patterns approach is providing secu-

Paul El Khoury

LIRIS University of Claude Bernard Lyon I

SAP Research Sophia-Antipolis
paul.el.khoury @sap.com

Alessandro Sorniotti
Institut Eurecom Sophia Antipolis
alessandro.sorniotti @eurecom.fr

rity for non-security experts [23][25].

Application developers transform clients’ requirement
specifications into business applications. Business solutions
and security solutions are often designed and developed at
different coordinates of space and time. Considering the
lack of expertise application developers are in general inca-
pable of being compliant to security regulations protecting
the clients’ business.

Security patterns capture security expertise abstract and
concrete at the same time. This approach fits well as can-
didate link between security experts and application devel-
opers to encompass business applications with a security
shield.

This paper focuses on capturing the security solution for
Secret Handshakes described in [2] and [24] as security
patterns, following the SERENITY methodology [16][25].
Parties cooperating in hostile networked environments of-
ten need to establish an initial trust. Trust establishment
can be very delicate when it involves the exchange of sensi-
tive information, such as affiliation to a secret society or to
an intelligence agency.

Secret Handshakes are first introduced in 2003 by Bal-
fanz et al. [2] as mechanisms designed to prove group mem-
bership and share a secret key between two fellow group
members. The purpose of these protocols is — as pointed out
in [26] — to model in a cryptographic protocol the folklore
of real handshakes between members of exclusive societies,
or guilds.

Even though there are several ways for implementing
the secret handshake protocol, our purpose is to capture the
properties and functionalities that are common to all im-
plementations. Therefore, any particular solution could be
derived from the defined patterns. Furthermore, capturing
expertise as a pattern makes security solutions for a given
problem more general. It is easier for non-security experts
to find a suitable solution for a particular problem by search-

ing into the patterns’ library through properties and features.

The paper is organized as follows. In Section 2, we
overview Security Patterns. Section 3 proposes two scenar-
ios to illustrate the use of secret handshakes in real-world
applications. We describe the proposed security solution
detailed in Section 4 and define an abstract model used to
capture this security solution as a combination of patterns.
Next, Section 5 describes the security patterns and integra-
tion scheme of the proposed solution in more detail. Related
works are discussed in Section 6 and finally in Section 7 we
conclude and explain future work.

2 Security Patterns Overview

To accomplish the security patterns’ ‘mission’, a list of
objectives summarized in four fundamental steps [23] has
to be achieved. First, most of the novice security users
should understand how experts approach key security prob-
lems. Second, security experts should be able to identify,
name, discuss and teach both problems and solutions effi-
ciently. Third, problems should be solved in a structured
way. Fourth, dependencies and side-effects should be iden-
tified and considered appropriately. The connotation of
these objectives emerged as appealing for research studies.

The usual natural language description for security pat-
terns opens room for different interpretation of solutions
provided and problems described by these patterns. Hence,
none of the previously four objectives of the patterns’ mis-
sion can be achieved.

First known contribution to security patterns, is the work
fromJ. Yoder and J. Barcalow proposing to adapt the object-
oriented solutions to recurring problems of information se-
curity [28]. Seven patterns were presented to be used when
dealing with application security. A natural evolution of
this work is the proposal presented by Romanosky in [19].
It takes into consideration new questions that arise when se-
curing a networked application.

Following this particular path, Schumacher et al. [22]
presented a set of security patterns for the development
process. Fernandez and Pan [12] describe patterns for the
most common security models such as Authorization, Role-
Based Access Control and Multilevel Security. Recently in
[13] the same authors highlighted the need to develop ad-
ditional security patterns for database systems in order to
integrate it into secure software development methodology.
These security patterns had a shy adoptions in the security
field. Indeed their description in natural language limits
their applicability and forbid any reasoning mechanism.

The SERENITY EU project through a list of narrow yet
complex studies [25][16][8][21] tackles the security pat-
terns objectives.

The SERENITY partners presented in [25] the SEREN-
ITY model of secure and dependable applications. More-

over, using security patterns they showed how it addresses,
along with the tools provided, the challenge of developing,
integrating and dynamically maintaining security mecha-
nisms in open, dynamic, distributed and heterogeneous
computing systems.

One of the essential proposals from SERENITY is to
provide novice users the SERENITY Security & Depend-
ability pattern package. This package comprises the experz-
proofed security solutions and tested plug-and-play deploy-
able implementations.

The research interest in security patterns focuses in par-
ticular on capturing solutions for recurring security prob-
lems that arise in specific contexts. The granularity of se-
curity problems analyzed and captured in a pattern, can be
quite different. Usually a complex security solution is not
captured in a single pattern. Solutions consisting of several
patterns cover better the generality aspect of the abstract so-
lution.

To have an intuitive description for the solution proposed
in this paper, we adopt the SERENITY approach using three
artefacts. The description of these artefacts enable selec-
tion, adaptation, usage and monitoring at runtime by auto-
mated means. The hierarchy is composed by three artefacts,
Security Classes, Security Patterns and Security Implemen-
tations. Although this paper emphasized the use of Security
Pattern artefact, [20][3][9][5] present an intuitive and exten-
sive description of all of them.

In SERENITY, security patterns are detailed descrip-
tions of abstract security solutions that contain all the infor-
mation necessary for the selection, instantiation and adap-
tation performed on them. Such descriptions provide a pre-
cise foundation for the informed use of the solution and en-
hance the trust in the model.

An integration scheme (IS) is an additional artefact defin-
ing the combination of security patterns. Since complex
solutions rely on the use of several patterns, they have to
be defined as integration schemes. In the IS, the relations
among the patterns are established in order to describe a
complex security solution.

This paper relies on the SERENITY representation of se-

curity patterns [21][25] to transfer the first three objectives
of security patterns for the Untraceable Secret Handshakes
to non-security experts. The most important parts of a secu-
rity pattern description are in the following:
Problem/requirements and context: The problem is the
vulnerable part in an asset that can also be described as re-
quirements which need to be solved. The context defines
the recurring situation where the problem/requirement can
occur.
Solution: The solution is defined as a mechanism that is
used to resolve the corresponding requirement/problem. It
defines the sequential flow of operations in solving the se-
curity problem.

Pre-Conditions: They indicate assumptions and restric-
tions related to the deployment of the pattern. Before ap-
plying a pattern, users or applications in some cases should
check the satisfyability of these pre-conditions. Obviously,
pre-conditions are elements used during the selection of
suitable patterns for a particular problem.

Properties: They describe which security elements the pat-
tern is providing. This is the basic element used to discrim-
inate whether a pattern is useful for a security problem or
not.

Features: They are additional characteristics to the pat-
terns’ properties. They are additional criteria in selecting
the suitable patterns.

Consequences: They are the effects of the compromise re-
sulting from the application of the pattern’s solution. In par-
ticular cases, using security patterns implies an increase in
cost (economic, more complex mechanisms, etc.).

3 Scenarios

In this section, we want to show how untraceable secret
handshakes are used in real-world applications. Our first
example comes is an use case from the EU Project R4eGov
[11] for Mutual Legal Assistance in international crimes.
Several EU justice forces cooperate in order to solve cross-
boundary criminal cases. EU regulations define official pro-
cesses that must imperatively be followed by operating of-
ficers: in particular, these processes mandate which insti-
tutions must cooperate upon each particular case. During
such collaboration, for instance, a member of France’s Min-
istere de la Défense must cooperate with a member of the
Bundesnachrichtendienst, Germany’s intelligence service,
to investigate on an alleged internal scandal. The two offi-
cers may need to meet secretly, and authenticate themselves
on-the-fly. Both are definitely reluctant to disclose their af-
filiation and purpose to anybody but the intended recipient.

A scenario from another business domain is the Incom-
patible chemicals in proximity use case from the Co-
BIs project [7]. Let us assume that drums are stored in a
warehouse; each drum contains a liquid chemical and is
equipped with a wireless sensor that is able to perform a
secret handshake with other sensors in proximity. Drums
can contain some reactive chemicals: the proximity of these
drums must be considered dangerous. The goal is to gen-
erate safety-critical alerts based on an untraceable secret
handshake. The drums get property credentials related to
their containing chemicals and a list of references to match
the reactive liquids. After a successful matching, an alert
is generated and sent to the storage manager. The security
features of the secret handshakes described in [24] allow to
exchange information of the containing chemicals without
revealing them on a wireless channel. Drums with danger-
ous contents can not be identified or traced.

4 Solution Description

A Secret Handshake, first introduced in [2], is a mecha-
nism devised for two users to simultaneously prove to each
other possession of a property, for instance membership to
a certain group. The ability to prove and verify is strictly
controlled by a certification authority, that issues property
credentials and matching values respectively allowing to
prove to another user and to verify another user’s possession
of a property. Users are not able to perform a successful
handshake without the appropriate credentials and match-
ing values; in addition protocol exchanges are untraceable
and anonymous.

We present a pattern for Untraceable Secret Handshakes
with proof of group membership as described in [2] or [24]:
users are required to possess credentials and matching val-
ues issued by a trusted certification authority in order to be
able to prove and to verify possession of a given property.
Therefore the certification authority retains the control over
who can prove what and who can disclose which creden-
tials. However verification is dynamic, in that it is not re-
stricted to own properties.

A Secret Handshake is performed between two parties,
in the following also called users. To carry out a Secret
Handshake each user needs a credential and matching val-
ues. A credential is a certification of the user’s property
by a trusted entity. The entity responsible for the certifica-
tion of properties is the Certification Authority (CA). The
CA is a trusted entity that after a successful verification of
a property grants the user a credential. The process of certi-
fying credentials is captured in the security pattern Property
Certification. Each user that wants to use the Secret Hand-
shake protocol has to perform this step.

The matching value allows a user to verify that the other
user has a particular certified property. The user can get one
or more matching values from the CA. The CA, according
to a set of policies, delivers the matching values to a re-
questing user after verifying his identity and the context.
The process of obtaining the matching values is also de-
scribed in the security pattern Property Certification. The
policy with the relationships between property credentials
and matching values has to be defined beforehand.

The secret handshake itself is carried out between 2 users
and can be repeated infinitely. It consists of 2 parts: the
secure match of properties and the proof that both parties
possess the same key after the matching.

The secure match is initiated by one of the users, e.g.,
user A. The user A sends an internal state, e.g., a nonce, to
the user B. User B replies with another nonce and his hidden
credential, computed from the received state and his prop-
erty credential. When user A receives the hidden credential
from user B, he is able to match it with his matching values
(see e.g. [24] for details about the used cryptographic algo-

rithms). To complete the matching protocol, user A com-
putes his hidden credential and sends it to user B. This be-
haviour is described by the security pattern Secure Match
and has to be applied to both parties.

After a successful matching both parties, user A and B,
own a secret, for instance a key, that can be used to secure
the further communication between the two. In order to
prove that both parties have the knowledge of the same key
the security pattern Mutual Key Proof of Knowledge (Mu-
tual Key PoK) can be used. The parties exchange encrypted
information to prove their knowledge without disclosing the
key directly.!

USER A CA USER B
context context
property {ential property credential
Property
certification
context context
match. values match. values
state 1
Secure state 2, hidden credential2 Secure
Match hidden credential1 Match
challenge 1
Mutual Mutual
Key challenge 2 Key
PoK challenge 3 PoK

Figure 1. Conceptual Model

Figure 1 depicts the Untraceable Secret Handshake
model highlighting the interactions and data flow between
the entities and the tasks described by security patterns. The
conceptual model helps to understand the dependencies of
the security patterns and the interaction of the different ac-
tors.

5 Security Patterns and Integration Scheme

Following our abstract model, we identified the follow-
ing three security patterns: Property Certification, Secure
Match and Mutual Key Proof of Knowledge. The integra-
tion scheme that describes our security solution entirely is
named Untraceable Secret Matching. In this section, each
of them is defined in detail.

5.1 Property Certification Pattern
Problem/requirements and context: The secure match-

ing is based on the mutual verification of user’s properties.
In a first step, the possession of a given property has to be

'Depending on the real setup, also other protocols could be used to
prove the knowledge of an identical key. For example, both users could
send their keys to a TTP that verifies the keys and returns the verification
result.

verified by a Trusted Third Party (TTP). This TTP certifies
the property for an identified user by issuing a credential. In
a second step, each user needs matching values. The match-
ing values are given by a TTP according to a policy.
Solution: The pattern defines the following operation:

e certifyProperty: The input of this function is the ap-
plication context of the handshake. The context con-
tains all information needed to decide about the pos-
session of a predefined property, e.g., the user’s iden-
tity and the process he is envolved in. The possession
of the user’s property is verified in the given context
and if this was successful, a credential representing the
property is returned (further named property creden-
tial).

o getMatchingValues: The input of this function is the
application context of the matching. According to the
policy, the operation returns a set of Matching Values.

Pre-Conditions:
e The entity applying this pattern is a trusted party.

e A list of properties that can be certified and a policy
how to match the different properties has been defined.

e Communications channels are secured.

Properties: Certification, Policy Enforcement

Features: None

Consequences: The issued property credentials have been
kept secret and stored in a safe place. A revocation list has
to be maintained.

5.2 Secure Match Pattern

Problem/requirements and context: A user wants to per-
form a secret handshake with another user in order to verify
that the other party possesses a matching property.
Solution: The pattern defines the following operations. In
Figure 2 the protocol between the 2 parties is shown.

e initiate: An internal state, e.g., a nonce value, is sent
to the other party to initiate the handshake.

e hideCredential: A hidden credential is generated
from the received state and the property credential of
the user and randomized. The result is sent together to
the other party.

e match: Input of the operation is the received hid-
den credential from the other party, the owned prop-
erty credential and the matching values. The operation
checks, if the received credentials matches one of the
matching values. The result of the match is a key.

USERA1 USER2

F initiate() :State1

setState(State 1)

hideCredentiallPropCredentialz,
L State1) :HiddenCradential2, State2

setStatelState2)

[y

T‘__ setHiddenCredentialHiddenCredential2)

-
E hideCredential(FrapCredential, State)
HiddenCre dentialt

setHiddenCredential{HiddenCredential1)

matehiPrapCradentiall,
HiddenCredentialz,
MatchingValue [} :Heyd

|

1

\

mateh(PropCredential2,
HiddenCredentiall,

MatehingValues2[]) :Key2

Figure 2. UML diagram - Secure Match

Pre-Conditions:

e The entity applying this pattern possesses a property
credential and a non-empty set of matching values.

e Both parties involved in the match must apply the same
pattern implementation to ensure interoperability.

Properties: Identification, Property Validation
Features: Untraceability, Key establishment, Fairness
Consequences: None

5.3 Mutual Key PoK Pattern

Problem/requirements and context: A user possesses a
secret key. He wants to verify if another user possesses the
same key without disclosing his own key.

USER1 USERZ

J]‘__l challengeKeyZ, Challenge1):Challenge?
setChallenge(Challenge3) -
\Flvarifyﬂ(eﬂ. Challenged) P roveResult?

El]‘—_| challenge(Keyl, State) Challenge

setChallengs(Challenge 1)

h J

setChallenge(Challenge2)

F 3

werity(Key1. Challenge2) :ProveResult]

hall Weyt, Chall) :Chall

Figure 3. UML diagram - Mutual Key PoK

Solution: The pattern defines the following operations. In
Figure 3 the protocol between the 2 parties is shown.

e challenge: A challenge is sent to the other party, con-
taining e.g., an internal state (random number) en-
crypted with the owned key.

o verify: The answer to the challenge and the internal
state for the current instance of the pattern are pro-
cessed; this operation returns true in case the two users
indeed share the same key.

Pre-Conditions:
e The entity applying this pattern possesses a key.

e A protocol that specifies how to reply to a challenge is
agreed on both sides.

Properties: Key verification

Features: Non-disclosure of own key

Consequences: The mutual protocol is unfair since one
user knows first if the other party possesses the same key
and can therefore exploit his advantage by not replying his
side of the challenge.

5.4 Integration Scheme: Untraceable Se-
cret Matching

This integration scheme describes the full solution made
of a combination of the defined security patterns. It syn-
chronizes the operations among the patterns in order to pro-
vide the desired security solution.

The sequence of the IS operations for the proposed so-
lution are provided in Table 1. We used the keyword roles
of the SERENITY security patterns’ language [25] in order
to separate between the two users of the protocol using the
same security pattern.

The IS contains the security property Mutually Authen-
tication for the complex security solution. Additional secu-
rity features of the IS are:

e Resistance to impersonation
e Anonymity

o Untraceability

e Resistance to replay attacks

In addition, this IS describes the list of components (pat-
terns) used for providing the complex solution. All the pre-
conditions defined in the embedded patterns have to be con-
sidered before IS can be applied.

6 Related Work

After the introduction of secret handshakes in 2003 by
Balfanz et al. [2] many papers have further investigated
the subject. New schemes have been introduced, achieving
for instance reusable credentials (the possibility to gener-
ate multiple protocol exchanges out of a single credential

Table 1. IS Operations

Property Certification Pattern «— CA
Secure Match Pattern < SMP
Mutual Key PoK Pattern <— MKPP
SMP « roles: USER1 and USER2
MKPP « roles: USER1 and USER2

CA certifyProperty(in:Identity 1, in:Context1, out:PropCredentiall);
CA certifyProperty(in:Identity2, in:Context2, out:PropCredential2);

CA.getMatchingValues(in:Identity 1, in:Context1, out:MatchingValuel[]);
CA.getMatchingValues(in:Identity2, in:Context2, out:MatchingValue2[]);

USERI1.SMP.initiate(out:State1);

USER2.SMP hideCredential(in:PropCredential2, in:Statel,
out:HiddenCredential2, out:State2);

USERI1.SMP.hideCredential(in:PropCredential 1, in:State2,
out:HiddenCredential 1, out:State3);

USER1.SMP.match(in:PropCredential 1, in:HiddenCredential2,
in:MatchingValuel[], out:Key1);

USER2.SMP.match(in:PropCredential2, in:HiddenCredentiall,
in:MatchingValue2[], out:Key2);

USER1.MKPP.challenge(in:Key]1, in:State1, out:Challengel)
USER2.MKPP.challenge(in:Key?2, in:Challenge1, out:Challenge2)
USER1.MKPP.verify(in:Key1, in:Challenge2, out:ProveResult1)
USER1.MKPP.challenge(in:Key1, in:Challenge2, out:Challenge3)
USER2.MKPP.verify(in:Key2, in:Challenge3, out:ProveResult2)

with no loss in untraceability) and dynamic matchings (the
ability to verify membership for groups different from one’s
own).

Castelluccia et al. in [6] introduce the concept of CA-
Oblivious encryption and show how to build a Secret Hand-
shake scheme from such a primitive. Users are equipped
with credentials and matching references (in this particu-
lar case embodied by a public key and a trapdoor) that
allow them to pass off as a group member and to detect
one. In [17], Meadows introduces a scheme that is sim-
ilar to Secret Handshakes, despite the fact that the secu-
rity requirements are slightly different — for instance, un-
traceability is not considered. In [14], Hoepman presents
a protocol, based on a modified Diffie-Hellman key ex-
change [10], to test for shared group membership, allowing
users to be a member of multiple groups. In [26], Vergnaud
presents a secret handshake scheme based on RSA [18].
In [27], Xu and Yung present the first secret handshake
scheme that achieves unlinkability with reusable creden-
tials: previous schemes had to rely upon multiple one-time
credentials being issued by the certification authority. How-
ever, the presented scheme only offers a weaker anonymity.
In [15], Jarecki, Kim and Tsudik introduce the concept of
affiliation-hiding authenticated key exchange, very similar
to group-membership secret handshakes; the authors study
the security of their scheme under an interesting perspec-
tive, allowing the attacker to schedule protocol instances in
an arbitrary way, thus including MITM attacks and the like.
However their scheme is not suitable in our context, since it

only allows to verify own group membership and does not
consider untraceability of protocol exchanges.

In [1], Ateniese et al. present the first Secret Hand-
shake protocol that allows for matching of properties dif-
ferent from the user’s own. Property credentials are issued
by a certificate authority.

7 Conclusion and Future Work

In this paper, we described the Untraceable Secret Hand-
shake protocol as SERENITY security pattern (due to the
limitation of this paper not all details could be provided).
To our knowledge is this one of the first attempts to de-
scribe a cryptographic scheme as formal security pattern.
While applying the SERENITY methodology to a new area,
some weaknesses of the pattern approach became evident.
Especially the description of the final solution as integration
scheme needs more details than a simple sequence of opera-
tions. We suggest to use a standard modeling language, like
UML or UMLSec, to describe the complex data flow and in-
teractions in the protocol. This has also the advantage that
these languages are well-known by application developers
and the diagrams, e.g., sequence diagrams, are easier to un-
derstand. Information about operations that can be done in
parallel, repeated, omitted or those relying on secure chan-
nels, can be easily added.

Another weakness of the pattern approach is the pattern
selection process. Can an application developer or architect
responsible to implement one of the scenarios from Section
3 identify the right security properties from the use case de-
scription or a specification? Security properties like "Mu-
tual Authentication” with *Untraceability’ have a meaning
only for security experts. Here, we see the need to express
the security requirements and security properties and fea-
tures in a way non-security experts understand.

Beside the discovered issues of the SERENITY pat-
tern approach, the abstract description of the cryptographic
protocol helps to understand the use of the cryptographic
schemes for secret handshakes. These schemes are in gen-
eral difficult to understand for non-crypto experts and there-
fore the security pattern approach will help to spread the
knowledge in the security community and also among ap-
plication developers and architects. Following the SEREN-
ITY methodology, each security pattern contains one or
more possible implementations (Security Implementations),
which give concrete examples of the solution. In our case,
we developed in the context of the WASP project a solu-
tion based on web services to mutual authenticate mobile
Wireless Sensor Network gateways with different backend
applications. A second solutions is based on Ptolemy II [4]
and simulates the CoBIs scenario described in Section 3.

In the future, we will further improve the methodology
to describe security solutions as patterns. The revocation

scheme for the Untraceable Secret Handshake is a candi-
date for our next security pattern and will complement the
solution described in this paper.

Acknowledgment

This work is partially funded by the European Commis-
sion under the Framework 6 IST Projects "Wirelessly Ac-
cessible Sensor Populations (WASP)”. and ”System Engi-
neering for Security and Dependability (SERENITY)”.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

G. Ateniese, M. Blanton, and J. Kirsch. Secret handshakes
with dynamic and fuzzy matching. In Network and Dis-
tributed System Security Symposuim, pages 159-177. The
Internet Society, 02 2007. CERIAS TR 2007-24.

D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Stad-
don, and H.-C. Wong. Secret handshakes from pairing-based
key agreements. In IEEE Symposium on Security and Pri-
vacy, pages 180-196, 2003.

A. Benameur, P. E. Khoury, M. Seguran, and S. K. Sinha.
Serenity in e-business and smart items scenarios. Secu-
rity and Dependability for Ambient Intelligence, Series: Ad-
vances in Information Security, Vol. 55, 2009.

C. Brooks, E. Lee, X. Liu, S. Neuendorffer, H. Zheng, and
Y. Zhao. Introduction to Ptolemy II. In UCB/ERL M05/21
Heterogeneous concurrent modeling and design in Java,
volume 1. University of California at Berkeley, 2004.

P. Busnel, P. E. Khoury, S. Giroux, and K. Li. Achiev-
ing socio-technical confidentiality using security pattern in
smart homes. The Third International Symposium on Smart
Home, 2008.

C. Castelluccia, S. Jarecki, and G. Tsudik. Secret hand-
shakes from ca-oblivious encryption. In ASIACRYPT, pages
293-307, 2004.
COBIS Consortium.
004270.

L. Compagna, P. E. Khoury, F. Massacci, R. Thomas, and
N. Zannone. How to capture, model, and verify the knowl-
edge of legal, security, and privacy experts: a pattern-based
approach. In ICAIL, pages 149-153, 2007.

A. Cuevas, P. E. Khoury, L. Gomez, and A. Laube. Se-
curity patterns for capturing encryption-based access con-
trol to sensor data. The Second International Conference on
Emerging Security, 2008.

W. Diffie and M. Helman. New directions in cryptography.
IEEE Transactions on Information Society, 22(6):644—-654,
november 1976.

Europol, Eurojust, T. Van Cangh, and A. Boujraf.
Wp3-cs2: The Eurojust-Europol case study. at
http://www.rdegov.eu/resources, 2007.

E. Fernandez and R. Pan. A Pattern Language for Security
Models. In In Proc. of PLoP’01, 2001.

E. B. Fernandez, J. Jiirjens, N. Yoshioka, and H. Washizaki.
Incorporating database systems into a secure software de-
velopment methodology. 19th International Workshop on

COBIS. FP STREP Project IST

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

Database and Expert Systems Applications, pages 310-314,
1-5 September 2008, Turin, Italy.

J.-H. Hoepman. Private handshakes. In F. Stajano, C. Mead-
ows, S. Capkun, and T. Moore, editors, ESAS, volume
4572 of Lecture Notes in Computer Science, pages 31-42.
Springer, 2007.

S. Jarecki, J. Kim, and G. Tsudik. Beyond secret hand-
shakes: Affiliation-hiding authenticated key exchange. In
CT-RSA, pages 352-369, 2008.

A. Mana, C. Rodolph, G. Spanoudakis, V. Lotz, F. Massacci,
M. Molideo, and J. S. Lopez-Cobo. Security Engineering for
Ambient Intelligence: A Manifesto. 1GI Publishing, 2007.
C. Meadows. A more efficient cryptographic matchmaking
protocol for use in the absence of a continuously available
third party. Security and Privacy, IEEE Symposium on, page
134, 1986.

R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM, 21(2):120-126, 1978.

S. Romanosky, editor. Security Design Patterns. 2001.

F. Sanchez-Cid and A. Mana. Patterns for automated man-
agement of security and dependability solutions. Ist Inter-
national Workshop on Secure systems methodologies using
patterns (SPattern’07), 2007.

F. Sanchez-Cid, A. Munoz, P. El Khoury, and L. Compagna.
XACML as a Security and Dependability (S&D) pattern for
Access Control in Aml environments. In Ambient Intelli-
gence Developments - Aml.d, Sept. 2007.

M. Schumacher. Security Engineering with Patterns: Ori-
gins, Theoretical Models, and New Applications. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2003.

M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad. Security Patterns : In-
tegrating Security and Systems Engineering (Wiley Software
Patterns Series). John Wiley & Sons, March 2006.

A. Sorniotti and R. Molva. A Provably Secure Secret Hand-
shake with Dynamic Controlled Matching. Proc. of 24th
International Information Security Conference (IFIP SEC),
2009.

G. Spanoudakis, A. Mana Gomez, and K. Spyros, editors.
Security and Dependability for Ambient Intelligence. Series:
Advances in Information Security , Vol. 55, Springer, April
2009.

D. Vergnaud. RSA-Based Secret Handshakes.
pages 252-274, 2005.

S. Xu and M. Yung. k-anonymous secret handshakes with
reusable credentials. In CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications secu-
rity, pages 158-167, New York, NY, USA, 2004. ACM.

J. Yoder and J. Barcalow. Architectural Patterns for Enabling
Application Security. In In Proc. of PLoP’97, 1997.

In WCC,

