
Secret Handshakes with Revocation Support

Alessandro Sorniotti1,2 and Refik Molva2

1 SAP Research,
805, Docteur Maurice Donat,

06250 Mougins, France,
2 Institut Eurécom

2229, Route des Crêtes
06560 Valbonne, France
first.last@eurecom.fr

Abstract. Secret Handshake is becoming an ever more popular research subject in the field of privacy-
preserving authentication protocols. Revocation of credentials in Secret Handshakes is a difficult chal-
lenge, as it mixes the conflicting requirements of tracing revoked users and of the untraceability and
unlinkability of legitimate protocol players. The schemes proposed in the literature are either limited
versions of secret handshake supporting revocation, or they support more complete versions of secret
handshake with no possibility of introducing revocation. In this paper we present a simple protocol
that allows a user to prove to a verifier possession of a credential. Credentials can be revoked simply
by publishing a value in a revocation list. This protocol is extremely flexible, as with it, we can achieve
revocation for each of the different nuances of Secret Handshakes known in the literature. We prove
the security of the new scheme without random oracles.

1 Introduction

The topic of secret handshakes is gaining momentum in research, as evidenced by the number of recent
publications on the subject [1, 21, 10, 23, 12]. The concept has been introduced by Balfanz and colleagues
in [5]; secret handshake protocols can be used by two parties to share a key only if they both belong to a
common secret group. The protocol makes sure that an outsider, or an illegitimate group member does not
learn anything by interacting with a legitimate user or eavesdropping on protocol exchanges.

The original protocol proposed by Balfanz et al. [5] suffered from a number of shortcomings, namely it
only allows users to prove membership to the same group, and it requires multiple credentials, as exchanged
credentials are traceable over multiple executions. These shortcomings have been fixed by subsequent schemes
that support the reuse of credentials and allow to match properties different from a user’s own [10, 25, 15,
14, 21].

In spite of these enhancements, Secret Handshakes still suffer from significant limitations due to the
inherent difficulty of supporting revocation of credentials. Revocation indeed represents an interesting chal-
lenge: on the one hand, protocol messages need to be untraceable; on the other, revocation requires means
of tagging credentials in order to single out the revoked ones and refuse any interaction with users bearing
them.

So far this problem has still not been solved: among the schemes presented in the literature, there are
either limited versions of secret handshake schemes that support revocation [27, 5, 10], or other schemes that
support more complete versions of secret handshake with no possibility of introducing revocation, at least
not without radical changes to the protocol [1, 23].

The contributions of this paper are manifold: (i) we present a novel scheme called RevocationMatching, a
building block for addressing in a comprehensive way all Secret Handshake scenarios known in the literature,
with the additional feature of revocation; (ii) with RevocationMatching we can build each of the different
“flavors” of secret handshake, own-group membership secret handshakes [5, 10, 18, 25, 27], secret handshakes
with dynamic matching [1] or secret handshake with dynamic controlled matching [23], adding revocation

support to each. In addition, (iii) our scheme supports the existence of multiple CAs, which also represent
an interesting advancement to the state of the art of Secret Handshakes.

In all the different schemes that we propose, credentials can be efficiently revoked. After their revocation,
credentials naturally lose their untraceability; however, as we shall see, only users authorized to match a given
credential will be able to trace the revoked credential; for other users, the credential will still be unlinkable
and untraceable. We analyze the security of RevocationMatching and of the derived Secret Handshake schemes
without random oracles, by reduction to intractable problems.

We organize the rest of this paper as follows: in Section 2 we present the related work and underline the
contributions of this paper; in Section 3 we present the preliminaries and we give an intuitive overview of
how the solution is designed. Section 4 illustrates RevocationMatching, whereas Section 5 shows how it can
be used to address all known Secret Handshake protocols in the state of the art, with revocation support.
Section 6 analyzes the security of the scheme and Section 7 concludes with some outlook on future work.

2 Related Work and Contribution

The goal of this Section is to walk the reader through the related work carried out in the field of secret
handshakes, highlighting the different existing protocols and positioning the contribution of this paper.

Secret Handshakes have been introduced by Balfanz et al. [5] as a mechanism devised for two users to
simultaneously prove to each other possession of a property, for instance membership to a certain group. The
ability to prove and verify is strictly controlled by a certification authority, that issues property credentials
and matching references respectively allowing to prove to another user, and to verify another user’s, possession
of a property. Balfanz’ original scheme, as many other schemes in the literature, only supports proving and
verifying membership to the same group: for this reason, we shall call this family of schemes own-group
membership secret handshakes. The proposed scheme supports revocation, but has a number of drawbacks,
for instance the fact that it relies on one-time credentials to achieve untraceability. After this seminal work,
many papers have further investigated the subject of secret handshake, considerably advancing the state
of the art. The work by Castelluccia et al. [10] has shown how, under some specific requirements (namely
CA-obliviousness), secret handshakes can be obtained from PKI-enabled encryption schemes. Other schemes
have followed this approach [25, 15] offering similar results, albeit with different nuances of unlinkability.
Almost all the schemes in this family support revocation of credentials; however the functionalities offered
are limited to proving and verifying membership to a common group.

[14, 21] show how leveraging on authenticated key exchanges, we can build Secret Handshakes. Shin and
Gligor [21] use password-authenticated key exchanges to establish a common key, provided that there is
a match of one common interest or “wish”. This protocol is very similar to the family of Secure Match-
making protocols [4, 28]. Protocols in this family support revocation but suffer from a drawback: the CA
cannot exercise any control over who has the right to match which property. While this is a good feature in
matchmaking-like scenarios, it is an undesirable feature in more sensitive scenarios (see [23]). In addition,
schemes in this family are again limited to proof and verification of membership to a common group.

An advancement on this front has recently been put forward by Ateniese et al. [1], who have introduced
dynamic matching and Sorniotti et al. [23] who have proposed the similar concept of dynamic controlled
matching. Both schemes allow more flexible types of handshakes: members of different groups, or more
generally, users holding credentials for different properties, can conduct a successful secret handshake if
credentials match the other user’s matching references. The difference between the two schemes is the control
that the CA retains over the matching ability. Both schemes are extremely flexible, covering the functionalities
of own-group membership secret handshakes and adding dynamic matching; however, neither of them support
revocation of credentials.

A related topic is represented by oblivious signature-based envelopes (OSBEs), introduced by Li et al.
in [16]; using OSBE, a sender can send an envelope to a receiver, with the assurance that the receiver will
only be able to open it if he holds the signature on an agreed-upon message. Nasserian and Tsudik in [19]
argue – with no proofs – that two symmetric instances of OSBE may yield a Secret Handshake: however
OSBE does not consider unlinkability and untraceability, as it requires the explicit agreement on a signature

beforehand. Camenisch et al. have shown in [9] how dynamic accumulators [20, 6] can be used to achieve
efficient revocation for anonymous credentials. However dynamic accumulators, quoting Balfanz [5], are ill-
suited for secret handshakes, mainly due to the fact that when a verifier has checked that a prover’s witness
belongs to the accumulator, he has already disclosed the prover’s affiliation and can then selfishly refuse
to reveal his own witness, or can reveal a fake one. Turning accumulator based asymmetric membership
verification into symmetric handshakes is indeed an interesting open challenge. In addition, it is not possible
to control who can verify what, dynamic matching cannot be supported, and finally, tracing traitors is not
feasible.

The scheme that we present in this paper can reproduce the functionalities of the different families of
secret handshakes that we have discussed in this Section, with the built-in revocation support. In addition,
our scheme supports as well the existence of multiple CAs, which represent an interesting advancement to
the state of the art of Secret Handshakes.

3 An overview of the solution

In this Section we give the reader an insight on the reasons and choices behind the actual design of the
scheme.

At first, let us describe the notation used in the sequel of the paper. Given a security parameter k, let G1,
G2 and GT be groups of order q for some large prime q, where the bit-size of q is determined by the security
parameter k. Our scheme uses a computable, non-degenerate bilinear map ê : G1 × G2 → GT for which
the Symmetric External Diffie-Hellman (SXDH) problem is assumed to be hard. The SXDH assumption in
short allows for the existence of a bilinear pairing, but assumes that the Decisional Diffie-Hellman problem
is hard in both G1 and G2 (see [1] for more details).

We then describe how we represent strings into group elements. Following [7, 26], let g̃ R← G2; let us also
choose n + 1 random values {yi}ni=0

R← Z∗q ; we assign g̃0 = g̃y0 , g̃1 = g̃y1 , . . . , g̃n = g̃yn . If v ∈ {0, 1}n is an
n-bit string, let us define h(v) = y0 +

∑
i∈V (v) yi ∈ Z∗q , where V (v) represents the set of indexes i for which

the ith bit of v is equal to 1. We also define H̃(v) = g̃0
∏
i∈V (v) g̃i = g̃h(v) ∈ G2.

Our starting objective is to design a scheme that helps a prover convince a verifier that she owns the
credential for a property; however, the verification will be successful only for entitled verifiers. The exchange
must satisfy the standard security requirements for Secret Handshakes, detector and impersonator resistance
and untraceability of properties and identities. On top of this, we also want to support revocation of creden-
tials. To this end, we need some means of secretly “labeling” each credential, so that we can later on reveal
the label and use it as a handle to refuse handshake instances embedding it. In this section we try to walk
the reader through the design of the solution.

Let us assume that g and g̃ are generators of G1 and G2 respectively. Also, t ∈ Z∗q is a master secret.
Then, given a property p, matching references can be formed as g̃h(p)t ∈ G2 and given to verifiers; in order
to successfully authenticate as a possessor of property p, a prover must then prove knowledge of gh(p)t ∈ G1.
However, instead of simply giving that value to the prover, we pick a random value x ∈ Z∗q , different for every
credential, and give x and g(x+h(p)t) to the prover. g(x+h(p)t) is the credential and x is the aforementioned
tag, called identification handle in the rest of this paper, used to identify credentials that need to be revoked.

Then, a prover can be authenticated by a verifier as follows: the verifier sends a challenge ê (g, g̃)m

and receives
〈
gr(x+h(p)t), gr

〉
from the prover, where r is a random number, used by the prover to salt

the handshake message. The prover can compute K = (ê (g, g̃)m)rx and the verifier can compute K ′ =(
ê
(
gr(x+h(p)t), g̃

)
/ê
(
gr, g̃h(p)t

))m
; if the authentication is successful, K and K ′ are the same.

If the credential is to be revoked at some point, all we need to do is reveal g̃x, called revocation handle in
the rest of the paper. This way, the verifier can verify if the credential used by the prover has been revoked,
by checking if ê

(
gr(x+h(p)t), g̃

)
= ê

(
gr, g̃h(p)t · g̃x

)
holds.

Two challenges arise: first, it should be impossible to use the value x in order to trace credentials before
they have been revoked; and second, a user should be forced to send credentials unmodified. The solution

presented above respects the privacy of users: prior to the revocation of a given credential, an attacker cannot
use the identification handle to link two different instances of the handshake to the same user: it is easy to
show that linking the same x through subsequent instances of the protocol, is equivalent to solving DDH in
G1.

However this solution still does not force the attacker to send his credentials unmodified, which would
imply that an attacker can circumvent revocation. In order to prevent this attack, we also introduce another
public parameter W = gw, where w R← Z∗q is kept secret. Each credential is multiplied by a different random
number, for instance gz(x+h(p)t); in addition, the prover also receives g̃z

−1
and g̃(zw)−1

. The verifier then
computes K =

(
ê
(
grz(x+h(p)t), g̃z

−1
)
/ê
(
gr, g̃h(p)t

))m
. In addition we require verifier to also verify that

ê
(
g, g̃z

−1
)

= ê
(
W, g̃(zw)−1

)
.

The protocol introduced in the next Section is not very different from the simple one that we proposed
here. Among the modifications, we include an additional random number used to also salt the terms g̃z

−1

and g̃(zw)−1
, which would otherwise not be randomized and open up to tracing attacks.

4 RevocationMatching: a Prover-Verifier Scheme with revocation capabilities

RevocationMatching is a protocol wherein a prover can convince a verifier that she owns a property. The
active parties are essentially users, that can behave as provers and verifiers, and a trusted entity that we
will call certification authority (CA). Provers receive from the CA credentials for a given property, allowing
them to convince a verifier that they possess that property. Verifiers in turn receive from the CA credentials
matching references for a given property, which allow them to verify the possession of that property. In case
of compromised credentials, the CA adds a value called revocation handle to a publicly available revocation
list: this way, verifiers may refuse to interact with users bearing revoked credentials.
RevocationMatching consists of the following algorithms and protocols:

– Setup: according to the security parameter k, the CA chooses g, g̃, where g is a random generator of
G1 and g̃ of G2. The CA sets e = ê (g, g̃). The CA also picks w, t

R← Z∗q and sets W ← gw and

T ← g̃t. Finally the CA picks {yi}ni=0
R← Z∗q and assigns g0 ← gy0 , g1 ← gy1 , . . . , gn ← gyn and

g̃0 ← g̃y0 , g̃1 ← g̃y1 , . . . , g̃n ← g̃yn ; this way, given a string v, H(v) = gh(v) and H̃(v) = g̃h(v). The
system’s public parameters are {q,G1,G2, g, g̃,W, T, g0, . . . , gn, g̃0, . . . , g̃n, ê, e}. The values w, t, y0, . . . , yn
are instead kept secret by the CA;

– Certify: upon user request, the CA verifies that the supplicant user u ∈ U possesses the property p ∈ P
she will later claim to have during the protocol execution; after a successful check, the CA issues to u
the appropriate credential, which is made of two separate components: an identification handle, later
used for revocation, and the actual credential. To hand out the identification handle for a given pair
(u, p), the CA picks the identification handle xu,p

R← Z∗q , randomly drawn upon each query, and gives
it to the supplicant user. The CA then forms the credential as a tuple credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉
where Cu,p,1 = gz(xu,p+h(p)(t+h(p))), Cu,p,2 = g̃z

−1
and Cu,p,3 = g̃(zw)−1

, where z ∈ Z∗q is randomly drawn
upon each query. The user can verify the validity of the credential by checking that ê(Cu,p,1, Cu,p,2) =
ê(gxu,p , g̃) · ê(H(p), T · H̃(p));

– Grant: upon a user’s request, the CA verifies that – according to the policies of the system – user u
is entitled to verify that another user possesses property p ∈ P. If the checking is successful, the CA

issues the appropriate matching reference matchp =
(
T · H̃(p)

)h(p)
; the user verifies that ê(g,matchp) =

ê(H(p), T · H̃(p));
– Authenticate: let A be a prover and B a verifier. A has credA,p1 and xA,p1 to prove possession of property
p1; B holds matchp2 to detect property p2. The protocol proceeds as follows:

1. B picks m R← Z∗q and sends em to A

2. A picks r, s R← Z∗q and sends B the tuple
〈
gr, (CA,p1,1)rs , (CA,p1,2)s

−1

, (CA,p1,3)s
−1
〉

. A locally com-

putes K = (em)rxA,p1

3. B checks whether

ê
(
W, (CA,p1,3)s

−1
)

= ê
(
g, (CA,p1,2)s

−1
)

(1)

and locally computes

K =

 ê
(

(CA,p1,1)rs , (CA,p1,2)s
−1
)

ê (gr,matchp2)

m

(2)

At the end of the protocol, A and B share the same key K if p1 = p2.
– Revoke: if the credential for property p of user u ∈ U is to be revoked, the CA adds the so-called revocation

handle revu,p = g̃xu,p to a publicly available revocation list Lrev. Notice the tight relationship between
the identification handle xu,p and the corresponding revocation handle revu,p = g̃xu,p .
Let us assume that a given user A is using the protocol to convince user B she owns a property; B receives
〈gr, (CA,p,1)rs , (CA,p,2)s

−1

, (CA,p,3)s
−1
〉

from A. B behaves as follows: first, she performs the check of
Equation 1; then, before computing the key K, she verifies whether A is using a revoked credential by
checking if the following identity

ê
(

(CA,p,1)rs , (CA,p,2)s
−1
)

= ê (gr,matchp · rev) (3)

is verified with any of the revocation handles rev in the list Lrev. If the check is successful, B discards the
current handshake instance. Notice that if B does not have the correct matching reference for the received
credential, Revoke would fail altogether; however, so would Authenticate, in which case, the receiving user
would discard the handshake instance anyway. It is clear that after revocation, credentials can be traced
only by users that possess the matching reference for the property object of that credential; these users
were already potentially able to match the given credential. For other users, past and future transcripts
of handshake instances produced from that credentials are still untraceable and unlinkable.

5 Building Secret Handshakes

In this section, we show how RevocationMatching can be used to build a two-party Handshake scheme. This
scheme helps two users share a key in case of simultaneous successful matching of properties, and gives no
clue about one another’s properties otherwise. The resulting scheme, contrary to many secret handshake
schemes in the state of the art, does not only allow users to verify if they possess the same property (e.g.
if they belong to the same secret group). Our scheme also supports dynamic matching, as introduced by
Ateniese et al. in [1]: with dynamic matching, users can match properties different from the ones they possess.
For instance, a member of CIA and a member of MI5 can successfully authenticate with a secret handshake.
Additional use-cases are described in [23].

We actually consider two different flavors of dynamic matching, thus proposing a total of three different
schemes (four considering the multiple CA scenario): in the first scheme, credentials and matching references
are issued by the certification authority; this way, the CA retains the control over who can prove what and
who can verify what. In the second scheme instead, while credentials are still issued by the certification
authority, matching references can be computed by users without any required intervention by the CA. We
will refer to the first scheme as Secret Handshake with Dynamic Controlled Matching, and to the second one
as Secret Handshake with Dynamic Matching.

Alice : pick r, s, m
R← Z∗q

Alice −→ Bob :
〈
gr, (CA,p1,1)rs , (CA,p1,2)s−1

, (CA,p1,3)s−1
, em

〉
Bob : pick r′, s′, m′

R← Z∗q
Bob −→ Alice :

〈
gr′ , (CB,p2,1)r′s′ , (CB,p2,2)s′−1

, (CB,p2,3)s′−1
, em′

〉
Alice : check that Equation 1 holds, otherwise abort
Alice : check that Equation 3 is not satisfied with any rev ∈ Lrev,

otherwise abort

Alice : compute K1 =
(
em′
)rxA,p1

Alice : compute K2 =

 ê
(

(CB,p2,1)r′s′ , (CB,p2,2)s′−1
)

ê (gr′ , matchp2)

m

Bob : check that Equation 1 holds, otherwise abort
Bob : check that Equation 3 is not satisfied with any rev ∈ Lrev,

otherwise abort

Bob : compute K1 =

 ê
(

(CA,p1,1)rs , (CA,p1,2)s−1
)

ê (gr, matchp1)

m′

Bob : compute K2 = (em)r′xA,p1

Alice ←→ Bob: mutual proof of knowledge of K1 and K2

Fig. 1. Secret Handshake with Dynamic Controlled Matching

5.1 Secret Handshake with Dynamic Controlled Matching

In this scheme, users receive credentials and matching references from the certification authority. Matching
references can only be computed by the CA. Notice that they do not necessarily refer to the same property
as credentials; this way we effectively achieve Secret Handshake with dynamic controlled matching [23].
However, notice that the CA may enforce the policy by which only users owning a given property will receive
the matching reference for it, thus achieving own-group membership secret handshakes too [5, 10, 18, 25, 27].

The secret handshake is achieved by running two symmetric instances of RevocationMatching, wherein
each of the two users plays in turn the role of prover and verifier. Each user will then end up with two keys,
one computed in the role of prover and the other one computed in the role of verifier. We borrow the idea
of computing two separate keys at each user’s side from Ateniese et al. [1]. To seal the handshake, the two
users have to prove one another knowledge of both keys simultaneously, for instance trying to establish a
secure channel with a key resulting from the hash of the concatenation of both keys.

Let us assume that two users, Alice and Bob, want to perform a Secret Handshake and share a key if the
Handshake is successful. Alice owns the tuple 〈credA,p1 ,matchp2 , xA,p1〉 and Bob owns 〈credB,p2 ,matchp1 ,
xB,p2〉. Figure 1 shows how the handshake is carried out.

At the completion of the protocol, Alice and Bob share the same keypair if and only if each user’s
credential matches the other user’s matching reference. If not, one of the two keys, or both, will be different.
By requiring them to prove to one another knowledge of both keys simultaneously, either both users learn
of a mutual matching, or they do not learn anything at all. In particular, they do not learn – in case of a
failed handshake – if just one of the two matchings have failed, and if so which one, or if both did fail.

5.2 Multiple CA support

The scheme also supports the existence of multiple CAs. Multiple CAs may be a requirement when the
properties at stake are – for example – membership to different secret agencies that do not want to delegate
the execution of Certify, Grant and Revoke for security reasons. In a multiple CA scenario, a handshake can
be successful even in hybrid situations in which Alice has a credential for property p1 issued from CA1 and

a matching reference for property p2 issued from CA2 and Bob has a credential for property p2 issued from
CA2 and a matching reference for property p1 issued from CA1.

A multiple CA scenario can be supported as follows: one of the CAs picks {q,G1,G2, g, g̃, T, g0, . . . , gn, g̃0,

. . . , g̃n, ê, e}; the values {yi}ni=0
R← Z∗q and t are shared among all the CAs. Then the CAs jointly generate

W = gw and g̃w
−1

, such that w is unknown: the CAs can achieve this either by using a trusted dealer or
by performing the following joint computation: they organize themselves in a chain; the first node A picks
a
R← Z∗q and sends to B, the next node, ga and g̃a

−1
; B in turn picks b R← Z∗q and sends to the next node gab

and g̃(ab)−1
and so forth until the last node is reached.

Finally, each CA picks a secret value tCA
R← Z∗q and publishes TCA ← gtCA ; the public parameters are

{q,G1,G2, g, g̃,W, T, TCA1 , . . . , TCAn
, g0, . . . , gn, g̃0, . . . , g̃n, ê, e}; each CA keeps the values {yi}ni=0

R← Z∗q , t,
tCA and g̃w

−1
secret.

A given CA forms credentials as credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 where Cu,p,1 = W z(xu,p+h(p)tCA(t+h(p))),

Cu,p,2 =
(
g̃w
−1
)z−1

and Cu,p,3 = g̃z
−1

; the matching reference is formed as matchp =
(
T · H̃(p)

)h(p)tCA

.

The check of Equation 1 becomes ê
(
W, (Cu,p,2)s

−1
)

= ê
(
g, (Cu,p,3)s

−1
)

. Users cannot any longer verify the

correctness of credentials and matching reference; for this reason, the issuing CA also gives the value H(p)tCA

to the supplicant user; the user can verify that ê (H(p)tCA , g̃) = ê
(
TCA, H̃(p)

)
and then use H(p)tCA instead

of H(p) in the verification equations.
Revocation handles must be published in a common revocation list, where all CAs publish revocation

handles. The list is common, public, and there is nothing that gives away which CA is behind which revocation
value. For the rest, the scheme behaves as before.

5.3 Secret Handshake with Dynamic Matching

In the scheme described in this Section, each user can freely compute matching references of his choice:
this way we effectively achieve dynamic matching, in the sense first defined by Ateniese et al. [1]. The
secret handshake with dynamic matching is essentially equal to the scheme introduced in Section 5.1, with
a substantial difference: the parameter T is now equal to g̃, and consequently, t = 1; as a consequence, we
simplify Cu,p,1 = gz(xu,p+h(p)) and matchp = H̃(p) = g̃h(p). Notice that now users are able to create matching
references at their will.

With this scheme, two users with valid credentials can interact expressing wishes on the property certified
by the other user’s credential; wishes are represented by self-generated matching references. Both users at the
end of the protocol share a common key pair if they both own credentials for the property expected by the
other user. Notice that this change makes it impossible to support multiple CAs, as specified in Section 5.2.

Revocation handles are also formed differently, as revu,p = g̃xu,p+h(p). Consequently when a user B

receives from user A
〈
gr, (CA,p,1)rs , (CA,p,2)s

−1

, (CA,p,3)s
−1
〉

, B verifies whether A is using a revoked cre-

dential by checking if ê
(

(CA,p,1)rs , (CA,p,2)s
−1
)

= ê (gr, rev) is verified with any of the revocation handles
rev in the list Lrev. If the check is successful, B discards the current handshake instance and declines any
further interaction.

The change in how the revocation handle is constructed can be explained through the fact that in this
case every user has the right to match any property. A revoked credential therefore loses its untraceability
to every other user. However, the revocation handle still does not reveal anything about the nature of the
certified property.

6 Security Analysis

Before proceeding further, we state two well-known hard problems:

Definition 1 (Decisional Diffie-Hellman Problem). We say that the Decisional Diffie-Hellman Prob-
lem (DDH) is hard if, for all probabilistic, polynomial-time algorithms B,

AdvDDHB := Pr[B(g, ga, gb, gx) = true if x = ab]− 1
2

is negligible in the security parameter. We assume a random choice of g ∈ G1, a, b ∈ Z∗q ; x is equal to ab

with probability 1
2 and is otherwise equal to a random value in Z∗q/{ab} with the same probability.

Definition 2 (Bilinear Decisional Diffie-Hellman Problem). We say that the Bilinear Decisional
Diffie-Hellman Problem (BDDH) is hard if, for all probabilistic, polynomial-time algorithms B,

AdvBDDHB := Pr[B(g, ga, gb, gc, g̃, g̃a, g̃b, g̃x) = true if x = abc]− 1
2

is negligible in the security parameter. We assume a random choice of g ∈ G1, g̃ ∈ G2 and a, b, c ∈ Z∗q ;
x is equal to abc with probability 1

2 and is otherwise equal to a random value in Z∗q/{abc} with the same
probability.

We also introduce the following new intractability assumption; we will give evidence of its hardness in
Appendix A. In demonstrating the complexity assumption, we follow the approach presented by Victor
Shoup in [22] and extensively used by the research community [2, 8, 17]. As an example, the well known SDH
assumption was thus proved by Boneh and Boyen in [8].

Definition 3. [SM Problem] Let w, y,m ∈ Z∗q , let g be a generator of G1 and g̃ be a generator of G2. Let
oracle Ow,y(·) take input x ∈ Z∗q and produce output gz(x+y), g̃z

−1
and g̃(zw)−1

where z is randomly drawn
from Z∗q upon each oracle query. We say that the SM Problem is hard if, for all probabilistic, polynomial-time
algorithms A,

AdvSMA := Pr[A(g, gw, g̃, g̃y, g̃m, Ow,y) = a, as(x∗+y), g̃(sw)−1
, g̃(s)−1

, ê (a, g̃)mx∗]

such that (x∗) /∈ O, is negligible in the security parameter; a ∈ G1. O is the set of queries A makes to oracle
Ow,y. This probability is taken over random choice of g ∈ G1, g̃ ∈ G2, and w, y,m ∈ Z∗q . a ∈ G1 can be
chosen freely by the adversary.

Intuitively, the assumption tells that it is unfeasible to compute a tuple
〈
gs(x∗+y), g̃s

−1
, g̃(sw)−1

〉
for

a new value x∗ and prove knowledge of it, yet having an oracle that can do so for any query. The new
assumption is generic enough to be of independent interest, for instance to realize signature protocols or
oblivious signature-based envelopes. Our assumption could have had a simpler formulation had we chosen
not to embed the proof of knowledge of x∗ in it.

6.1 Security Analysis of RevocationMatching

In this section we analyze the security requirements of RevocationMatching. We base our security analysis
on the security definitions and attacker model presented by Balfanz and colleagues in [5] and Ateniese and
colleagues in [1].

At first, we briefly recapitulate some preliminary definitions: a complete description of the security defi-
nition and attacker model can be found in [5, 1]. A protocol instance is the interaction of two users according
to the rules of the protocol. We say that during a protocol instance a prover sends a handshake tuple. The
handshake tuple contains a property, in that it is formed out of a credential certifying possession of a prop-
erty, which is then the object of the protocol instance. At the end of the Authenticate algorithm, users are
asked to prove to one another knowledge of a locally computed key. It is a necessary prerequisite that the
proof of knowledge does not – in any way – leak the actual value of the key. If the computed key is the same
for both user, we say that the prover has proved to or convinced a verifier that she owns the property object
of the handshake; and that the verifier has verified or detected the presence of a property within a handshake
tuple during a protocol instance.

To analyze the security of RevocationMatching, we identify four different objectives that an attacker might
have. An attacker may:

– detection: try as a verifier to detect a prover’s property without the appropriate matching reference;
– impersonation: try as a prover to convince a verifier that she possesses a given property without the

appropriate property credential;
– linking: try to link different protocol executions to a given user;
– tracing: try to link different protocol executions to a given property;

The sequel of this Section analyzes RevocationMatching with respect to these four requirements. Ap-
pendix B presents proofs of the claims made in this Section. Notice that the proofs do not rely on random
oracles.

Untraceability Consider an adversary A whose goal is to check if two handshake tuples contain the same
property, without owning the legitimate matching reference; an adversary with this ability can link together
the different users that own credentials for a given property. In order to be general enough we consider an
active adversary that engages in protocol executions; this adversary clearly also includes a passive one who
just eavesdrops protocol instances.
To capture the attacker we define a game called TraceProperty. TraceProperty develops as follows:

– Setup: during the setup phase, the challenger generates the parameters of the system;
– Query: during the query phase, A can receive valid credentials, matching references and revocation

handles, and can engage in RevocationMatching protocol execution with legitimate users;
– Challenge: then the challenger randomly chooses two properties p1 and p2 and sends A two handshake

tuples, one for property p1 and the other for property p2; both properties have not been object of a query
in the previous phase; A is then challenged to return true if p1 = p2;

Lemma 1. Suppose that there is a probabilistic, polynomial time adversary A with an advantage

AdvTracePropertyA := Pr[A wins the game TraceProperty]− 1
2

in the TraceProperty game. Then a probabilistic, polynomial time algorithm B solves the Decisional Diffie-
Hellman problem (DDH) with the same advantage.

A proof of Lemma 1 can be found in Appendix B.1.

Unlinkability Consider an adversary A whose goal is to check if two handshake tuples come from the same
user; an adversary with this ability can link together the same user over multiple protocol execution. In order
to be general enough we consider an active adversary that engages in protocol executions; this adversary
clearly also includes a passive one who just eavesdrops protocol instance.

Let us first of all notice that there are two values that can be linked to a user, the identification handle
xu,p, and z, the random number drawn at each call to Certify and used to salt the credentials. Between the
two, xu,p is the only one that can be traced over two different handshake tuples. Indeed, tracing the value
z is impossible, since over successive handshake tuples, it always appears multiplied by a different random
value s chosen at random by the user himself.
To capture the attacker we define a game called TraceUser. TraceUser develops as follows:

– Setup: during the setup phase, the challenger generates the parameters of the system;
– Query: during the query phase, A can receive valid credentials, matching references and revocation

handles, and can engage in RevocationMatching protocol execution with legitimate users;
– Challenge: eventually A receives from the challenger two handshake tuples containing the same property

from users u1 and u2, u1 and u2 being chosen randomly by the challenger; A is challenged to return true
if u1 = u2;

Lemma 2. Suppose that there is a probabilistic, polynomial time adversary A with an advantage

AdvTraceUserA := Pr[A wins the game TraceUser]− 1
2

in the TraceUser game. Then a probabilistic, polynomial time algorithm B solves the Decisional Diffie-Hellman
problem (DDH) with the same advantage.

A proof of Lemma 2 can be found in Appendix B.2.

Detector Resistance Let A be an adversary whose goal is to engage in RevocationMatching protocol
instances and – acting as a verifier – to detect the prover’s property, without owning the appropriate matching
reference. We call detector resistance the resilience to such kind of an attacker.
To capture this kind of attack, we define a game called Detect; Detect develops as follows:

– Setup: during the setup phase, the challenger generates the parameters of the system;
– Query: the adversary A queries the system for an arbitrary number of tuples 〈credui,pi

,matchpi
,

xui,pi , revui,pi〉 for any given pairs (ui, pi) ∈ U × P. She is then free to engage in RevocationMatching
protocol execution with legitimate users;

– Challenge: A chooses a property p∗ for which she does not own the matching reference. Also the
challenger chooses a property p◦, among the ones for which the adversary does not have a matching
reference. Then, challenger and adversary engage in a protocol execution; the challenger – acting as a
prover – presents a credential for property p◦ and the adversary – acting as a verifier – wins the game if
she can correctly whether or not p◦ = p∗;

This game is very similar to TraceProperty, and the reduction to prove it is a straightforward adaptation
of the one used to prove Lemma 1. Indeed an adversary A who has an advantage on the detection of a
property without the appropriate matching reference (Detect game) can clearly link together properties over
multiple handshake instances (TraceProperty game) by repetedly detecting the property in each of them and
linking after the detection.

Impersonation Resistance Let A’s goal be the impersonation of a user owning a non-revoked credential
for a given property. To capture this attacker’s goal we define the a game called Impersonate, which develops
as follows:

– Setup: during the setup phase, the challenger generates the parameters of the system;
– Query: the adversary A queries the system for an arbitrary number of tuples 〈credui,pi

,matchpi
,

xui,pi
, revui,pi

〉 for any given pairs (ui, pi) ∈ U × P. She is then free to engage in RevocationMatching
protocol execution with legitimate users; A eventually decides that this phase of the game is over. The
challenger then issues revocation handles for each credential handed out to the attacker in the previous
phase, thus revoking them;

– Challenge: A then declares p∗ ∈ P which will be the object of the challenge; A is then required to
engage in a RevocationMatching instance with the challenger, and wins the game if she can output the
correct key computed acting as a prover (notice that the same is required in [1, 5]); in order to successfully
win the game, it must not be possible for the challenger to abort the handshake due to the fact that the
credentials used by the attacker have been revoked;

Notice that the game covers a wide range of attacks. Recall that the attacker receives a number of credentials
during the query phase. The attacker can win the game in two ways: (i) forge a brand new credential or
(ii) use an old credential yet circumventing revocation. Let us set Xu,p = xu,p + h(p)(t + h(p)). When the

attacker is challenged, she produces the tuple
〈
gr, grsXu∗,p∗ , g̃s

−1
, g̃(sw)−1

〉
. If we define the set

QA = {Xu,p ∈ Z∗q : A has received gzXu,p , g̃z
−1
, g̃(zw)−1

during the query phase}

then (i) implies Xu∗,p∗ /∈ QA and (ii) implies Xu∗,p∗ ∈ QA. We then define two different games: Impersonate1
is the aforementioned Impersonate game when Xu∗,p∗ /∈ QA, and Impersonate2 when Xu∗,p∗ ∈ QA.

Lemma 3. Suppose that there is a probabilistic, polynomial time adversary A with an advantage

AdvImpersonate1A := Pr[A wins the game Impersonate1]

in the Impersonate1 game. Then a probabilistic, polynomial time algorithm B solves the SM Problem with the
same advantage.

Lemma 4. Suppose that there is a probabilistic, polynomial time adversary A with an advantage

AdvImpersonate2A := Pr[A wins the game Impersonate2]

in the Impersonate2 game. Then a probabilistic, polynomial time algorithm B solves the Bilinear Decisional
Diffie-Hellman Problem (BDDH) with the same advantage.

Appendixes B.3 and B.4 present the proofs of Lemmas 3 and 4, respectively. The presence of two different
games to prove the same security requirement is justified by the fact that the two games cover all possible
scenarios, with no possibility of hidden attacks. Indeed, either the credential produced by the attacker belongs
to a set or it does not, and both cases are covered.

6.2 Security Analysis of Secret Handshake with dynamic controlled matching

In Section 5.1 we showed how to construct a protocol for Secret Handshake with dynamic controlled matching.
The security requirements that have been identified for RevocationMatching in the previous Section must still
hold unmodified for Secret Handshake. In the analysis of the security of secret handshake we require, as in
Section 6.1, that the proof of knowledge of the keys does not – in any way – leak their actual value. In
addition, we require that users prove to each other knowledge of both keys simultaneously. The same is
required by other protocols in the state of the art, for instance in [1]. Examples of how this can be achieved
can be found in [13].

Under these assumptions, it is straightforward how the security games and proofs devised for the latter
can be adapted for Secret Handshakes: indeed untraceability and unlinkability games stay the same. As for
detector and impersonation resistance, the proofs of Section 6.1 tell us that an adversary is not able to run a
successful single instance of RevocationMatching acting as a rogue prover or verifier; as a consequence, given
that a successful Secret Handshake requires two successful symmetric instances of RevocationMatching, an
attacker acting as a rogue prover, verifier or both cannot have success in either of these two games.

6.3 Security Analysis of Secret Handshake with dynamic matching

In Section 5.3 we presented a scheme that achieves secret handshake with dynamic matching, wherein users
can freely compute matching references, thus being able to match any property they want from another user.
As in the previous Section, we require users to prove knowledge of both keys simultaneously, without leaking
any information about them.

Let us first of all make some general considerations about the nature of the protocol. User A has the right
to engage in an arbitrary number of protocol executions with any user B. If A has a legitimate credential for
the wish of B (the matching reference generated by B), and guesses correctly the property object of the B’s
credential, then she has legitimately disclosed the challenger’s property. If she is successful twice, we might
say that she has been able to trace the property over two different protocol instances. Both situations are
acceptable as they do not mean that a user, by simply performing secret handshake repeatedly, trying all
possible matching references, will eventually discover another user’s credential. Indeed, by requiring users to
prove to one another knowledge of both keys, the protocol assures that if A does not have a valid credential
for B’s matching reference, A has no point in trying exhaustively all possible matching references to discover
B’s credential: one of the two instances of RevocationMatching would always fail and so would the handshake.

Among the security requirements sketched in Section 6.2, the ones related to the untraceability of identi-
ties and untraceability of properties are still the same, and the games and proofs provided in Section 6.1 still

hold unchanged. As for impersonation resistance, Impersonate2 does not apply any longer, since revocation
handles are now formed as g̃xu,p+h(p); it is therefore impossible for an attacker to reuse already received
credentials, yet circumventing revocation. Impersonate1 instead remains unchanged and so does its proof.

Finally, the requirement of detector resistance vanishes, since users are explicitly allowed to freely match
any property by computing matching references at their will. However, as we pointed out before, a successful
detection requires the user to own a credential for the other user’s wish.

6.4 Security Analysis of a multiple CA scenario

Due to space restrictions we do not include the proofs of security of a multiple-CA scenario, but leave them
for an extended version of the paper; nonetheless, we give here a sketch of the security analysis.

The handshake tuples produced in a multiple CA scenario are the same as in the normal case, there-
fore the security proofs can be easily adapted from the ones presented in the Appendixes. It remains to
demonstrate that colluding CAs cannot forge credentials and matching references from a target CA∗. Forg-
ing Cu,p,1 = gzw(xu,p+h(p)tCA∗ (t+h(p))) from gw and and gtCA∗ intuitively breaks the computational Diffie-
Hellman problem; forging matchp = (T · H̃(p))h(p)tCA∗ from gtCA∗ intuitively breaks the SXDH assumption,
since there is no isomorphism between G1 and G2.

In addition, notice that upon a failed handshake, the information about the CA who generated the
credential is not leaked; moreover, an adversary cannot trace credentials based on the CA who generated
them; a similar game to TraceUser or TraceProperty can be created to show this: tracing the value tCA in
gzwrs(xu,p+h(p)tCA∗ (t+h(p))) from gr and gtCA intuitively breaks the decisional Diffie-Hellman problem.

7 Conclusion and Future Work

In this paper we have presented a novel protocol called RevocationMatching, and showed how with it, we
can support revocation in each of the different versions of Secret Handshake known in literature, own-
group membership, dynamic matching and dynamic controlled matching. In the study of the security of the
protocol, we have discovered an interesting new complexity assumption; we plan to analyze in more details
its relationship with other complexity assumptions as well as its possible use in signature schemes and OSBE
schemes. Moreover, we intend to study more closely dynamic accumulators: although they appear not to
be perfectly suited for symmetric handshakes, they represent an interesting alternative when revocation
requirements clash with untraceable credentials.

References

1. G. Ateniese, M. Blanton, and J. Kirsch. Secret handshakes with dynamic and fuzzy matching. In Network and
Distributed System Security Symposuim, pages 159–177. The Internet Society, 02 2007. CERIAS TR 2007-24.

2. G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group signatures without random
oracles, 2005.

3. A. Bagherzandi, J.-H. Cheon, and S. Jarecki. Multisignatures secure under the discrete logarithm assumption
and a generalized forking lemma. In CCS ’08: Proceedings of the 15th ACM conference on Computer and
communications security, pages 449–458, New York, NY, USA, 2008. ACM.

4. R. W. Baldwin and W. C. Gramlich. Cryptographic protocol for trustable match making. Security and Privacy,
IEEE Symposium on, 1985.

5. D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.-C. Wong. Secret handshakes from
pairing-based key agreements. In IEEE Symposium on Security and Privacy, pages 180–196, 2003.

6. J. Benaloh and G. Automation. One-way accumulators: A decentralized alternative to digital signatures. pages
274–285. Springer-Verlag, 1993.

7. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In
EUROCRYPT, pages 223–238, 2004.

8. D. Boneh and X. Boyen. Short signatures without random oracles and the sdh assumption in bilinear groups. J.
Cryptology, 21(2):149–177, 2008.

9. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of anonymous
credentials. In Proceedings of Crypto 2002, volume 2442 of LNCS, pages 61–76. Springer-Verlag, 2002.

10. C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious encryption. In ASIACRYPT,
pages 293–307, 2004.

11. J. W. Changshe Ma and D. Zheng. Fast digital signature schemes as secure as diffie-hellman assumptions.
Cryptology ePrint Archive, Report 2007/019, 2007.

12. J.-H. Hoepman. Private handshakes. In F. Stajano, C. Meadows, S. Capkun, and T. Moore, editors, ESAS,
volume 4572 of Lecture Notes in Computer Science. Springer, 2007.

13. G. Jain. Zero knowledge proofs: A survey. 2008.
14. S. Jarecki, J. Kim, and G. Tsudik. Beyond secret handshakes: Affiliation-hiding authenticated key exchange. In

CT-RSA, pages 352–369, 2008.
15. S. Jarecki and X. Liu. Unlinkable secret handshakes and key-private group key management schemes. In ACNS

’07: Proceedings of the 5th international conference on Applied Cryptography and Network Security, pages 270–
287, Berlin, Heidelberg, 2007. Springer-Verlag.

16. N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. Distrib. Comput., 17(4):293–302, 2005.
17. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Selected Areas in Cryptography,

pages 184–199, 1999.
18. C. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of a continuously

available third party. sp, 0:134, 1986.
19. S. Nasserian and G. Tsudik. Revisiting oblivious signaturebased envelopes: New constructs and properties. In

In Financial Cryptography and Data Security (FC06, 2006.
20. B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. pages 480–494. Springer-

Verlag, 1997.
21. J. S. Shin and V. D. Gligor. A new privacy-enhanced matchmaking protocol. In Network and Distributed System

Security Symposuim. The Internet Society, 02 2007.
22. V. Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT, pages 256–266, 1997.
23. A. Sorniotti and R. Molva. A provably secure secret handshake with dynamic controlled matching. In Proceedings

of The 24th International Information IFIP SEC 2009, May 18-20, 2009, Paphos, Cyprus, 2009.
24. R. Tso, C. Gu, T. Okamoto, and E. Okamoto. Efficient id-based digital signatures with message recovery. In

CANS, pages 47–59, 2007.
25. D. Vergnaud. Rsa-based secret handshakes. In WCC, pages 252–274, 2005.
26. B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages 114–127, 2005.
27. S. Xu and M. Yung. k-anonymous secret handshakes with reusable credentials. In CCS ’04: Proceedings of the

11th ACM conference on Computer and communications security.
28. K. Zhang and R. Needham. A private matchmaking protocol, 2001.

A Security of the New Assumption in Generic Groups

In what follows we will provide evidence as to the hardness of the problem introduced in Definitions 3,
by proving a lower bound on the computational complexity under the generic group model. The generic
group model is a theoretical framework for the analysis of the success of algorithms in groups where the
representation of the elements reveals no information to the attacker. The most popular is the one presented
by Victor Shoup [22]. In this model, the attacker is not given direct access to group elements, but rather
to their images of group elements under a random one-to-one mapping. The only operations the attacker
can perform are therefore equality testing by a bit-wise comparison on the images. Group operations can be
computed by the attacker through a series of oracles. It is clear that in this situation, the attacker can gain
no advantage in solving a computational problem from the representation of the group element. The model
has been used to provide evidence as to the hardness of several computational problems [2, 8, 17].

Internally, the simulator represents the elements of G1 as their discrete logarithms relative to a chosen
generator. To represent the images of the elements of G1 for the attacker, we use a random one-to-one mapping
ξ1 : Z∗q → {0, 1}dlog2qe, where q is the group order. For instance, the group element ga is represented internally
as a, whereas the attacker is given the external string representation ξ1(a) ∈ {0, 1}dlog2qe. We similarly define a
second mapping ξ2 : Z∗q → {0, 1}dlog2qe to represent G2, and a third mapping ξT :→ {0, 1}dlog2qe to represent

GT . The adversary communicates with the oracles using the string representation of the group elements
exclusively. Notice that the adversary is given q = |G1| = |G2| = |GT |.

The following theorem establishes the unconditional hardness of the SM problem in the generic bilinear
group model. Our proof uses a technique similar to the one adopted by Ateniese et al. in [2].

Theorem 1. Suppose A is an algorithm that is able to solve the SMproblem in generic bilinear groups of or-
der q, making at most qG oracle queries for the group operations in G1, G2, and GT , the oracle Ow,y(·) and the
bilinear pairing ê, all counted together. Suppose also that the integers w, y,m ∈ Z∗q and the encoding functions
ξ1, ξ2, ξT are chosen at random. Then, the probability ε that A on input (q, ξ1(1), ξ1(w), ξ2(1), ξ2(y), ξ2(m))
produces in output (ξ1(r), ξ1(rs(x∗ + y)), ξ2((sw)−1), ξ2((s)−1), ξT (rx∗m)) with x∗ not previously queried to
Ow,y, is bounded by

ε ≤ (qG + 5)2

q
= O(q2G/q)

Proof. Consider an algorithm B that plays the following game with A.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 1, . . . , τ1}, L2 = {(F2,i, ξ2,i) : i = 1, . . . , τ2} and

LT = {(FT,i, ξT,i) : i = 1, . . . , τT }, such that, at step τ in the game, τ1 + τ2 + τT = τ + 5. The entries F1,i,
F2,i and FT,i are polynomials with coefficients in Z∗q . The entries ξ1,i, ξ2,i, ξT,i will be all the strings given
out to the adversary.

The lists are initialized at step τ = 0 by setting τ1 = 2, τ2 = 3, τT = 0 and assigning F1,1 = 1, F1,2 = W ,
F2,1 = 1, F2,2 = Y and F2,3 = M where W , Y and M are indeterminants. The corresponding ξ1,. and ξ2,.
are set to random distinct strings. In what follows we describe how B answers A’s query:

Group operations : A may request a group operation in G1 as a multiplication or as a division. Before
answering a G1 query, the simulator B starts by incrementing the τ1 counter by one. A gives B two
operands ξ1,i, ξ1,j with 1 ≤ i, j < τ1, and a multiply/divide selection bit. To respond, B creates a
polynomial F1,τ1 ← F1,i ± F1,j . If the result is identical to an earlier polynomial F1,l for some l < τ1,
the simulator B duplicates its string representation ξ1,τ1 ← ξ1,l; otherwise, it lets ξ1,τ1 be a fresh random
string in {0, 1}dlog2qe, distinct from ξ1,1, . . . , ξ1,τ1−1. The simulator appends the pair (F1,τ1 , ξ1,τ1) to the
list L− 1 and gives the string ξ1,τ1 back to A. Group operation queries in G2 and GT are answered in a
similar way, based on the lists L2 and LT respectively.

Pairing : a pairing query consists of two operands ξ1,i and ξ2,j with 1 ≤ i ≤ τ1 and 1 ≤ j ≤ τ2 for the
current values of τ1 and τ2. Upon receipt of such a query from A, the counter τT is incremented. The
simulator then computes the product of polynomials FT,τT

← F1,i · F2,j . If the same polynomial was
already present in LT , i.e., if FT,τT

= FT,l for some l < τT , then B simply clones the associated string
ξT,τT

← ξT,l, otherwise it sets ξT,τT
to a new random string in {0, 1}dlog2qe, distinct from ξT,1, . . . , ξ1,τT−1.

The simulator then adds the pair (FT,τT
, ξT,τT

) to the list LT , and gives the string ξT,τT
to A.

Oracle O : let τO be a counter initialized to 0 and O an empty set. At the beginning of any oracle query,
A inputs x ∈ Z∗q ; to start, B adds x to the set O and increments the counter τ1 and τO by one, and
the counter τ2 by two, choosing a new indeterminant ZτO

; it then sets F1,τ1 ← ZτO
(x+ Y); it also sets

F2,τ2−1 ← Z−1
τO

and F2,τO
← (ZτO

W)−1. If the same polynomials were already present in L1 or L2,
i.e., if F1,τ1 = F1,l for some l < τ1, or, for j ∈ {0, 1}, F2,τ2−j = F2,l′ for some l′ < τ2, then B simply
clones the associated string ξ1,τ1 ← ξT,l, ξ2,τ2−j ← ξ2,l′ ; otherwise it sets the strings ξ1,τ1 and ξ2,τ2−j
to distinct random values in {0, 1}dlog2qe, different from the other strings already contained in the lists.
The simulator then adds the pairs (F1,τ1 , ξ1,τ1) to the list L1 and (F2,τ2−j , ξ2,τ2−j) to the list L2, giving
the strings ξ1,τ1 and ξ2,τ2−j to A.

We assume that the SXDH assumption holds, therefore we do not create any isomorphism between G1

and G2 or vice versa.
When A terminates, it returns the tuple 〈ξ1,α, ξ1,β , ξ2,γ , ξ2,δ, ξT,k〉 where 1 ≤ α, β,≤ τ1, 1 ≤ γ, δ ≤ τ2 and

1 ≤ k ≤ τT . Let F1,α, F1,β , F2,γ , F2,δ and FT,k be the corresponding polynomials in the lists L1, L2 and LT ,
and gα, gβ , g̃γ , g̃δ, ê (g, g̃)k the corresponding elements in G2

1 ×G2
2 ×GT .

In order to exhibit the correctness of A’s answer, B should check that the system of equation
(
ê(gβ , g̃γ)
ê(gα, g̃y)

)m
= ê (g, g̃)k

ê (g, g̃γ)
ê (gw, g̃δ)

= 1

(4)

(5)

is verified. Let us set α = r, k = rx∗m and γ = s−1, for some integers r, x∗, s ∈ Z∗q . If the above system is
verified, we can rewrite gα = gr, gβ = grs(x∗+y), g̃γ = g̃(s)−1

, g̃δ = g̃(ws)−1
, ê (g, g̃)k = ê (g, g̃)rx∗m; if x∗ /∈ O

the attacker has produced a valid answer, according to Definition 3.
In order to verify the system above within the simulation framework, B computes{

FT,∗ = (F1,β · F2,γ − F1,α · Y)M − FT,K
FT,◦ = F2,γ − F2,δ ·W

(6)
(7)

To proceed with our demonstration, first of all we show that it is not possible that FT,∗ = FT,◦ = 0 for
every value of W , Y , M and Zi, 1 ≤ i ≤ τO. This result implies that the success of A in the game must
depend on the particular values assigned to W , Y , M and Zi.

Let us first observe that the polynomials F1,α, F1,β are by construction formed as

F1,α = α0 + α1W +
τO∑
i=1

(α2,iZi(xi + Y))

F1,β = β0 + β1W +
τO∑
i=1

(β2,iZi(xi + Y))

where xi is the element of Z∗q queried upon the i-th query to the oracle O. The polynomials F2,γ and F2,δ

instead are formed as

F2,γ = γ0 + γ1Y + γ2M +
τO∑
i=1

(γ3,iZ
−1
i + γ4,i(ZiW)−1)

F2,δ = δ0 + δ1Y + δ2M +
τO∑
i=1

(δ3,iZ−1
i + δ4,i(ZiW)−1)

Plugging these equations back in Equation 7, gives us

γ0 + γ1Y + γ2M +
τO∑
i=1

(γ3,iZ
−1
i + γ4,i(ZiW)−1) =

δ0W + δ1WY + δ2WM +
τO∑
i=1

(δ3,iZ−1
i W + δ4,iZ

−1
i) (8)

If the attacker wins the game, Equation 8 must be symbolically equal to zero; simplifying all the unique
terms, we are left with

τO∑
i=1

(γ3,iZ
−1
i) = W

τO∑
i=1

(δ4,i(ZiW)−1) (9)

from which we conclude that F2,γ =
τO∑
i=1

(γ3,iZ
−1
i).

Let us now consider Equation 6, which can be rewritten as τO∑
i=1

(β0γ3,iZ
−1
i + β1γ3,iZ

−1
i W +

τO∑
j=1

(β2,jγ3,iZ
−1
i Zj(xj + Y)))

−
(
α0Y + α1WY +

τO∑
i=1

(α2,iZiY (xi + Y))

))
M = FT,K (10)

If the attacker wins the game, Equation 10 must be symbolically equal to zero. First of all, we notice
that each term of the left hand of the equation contains M . Therefore, from FT,K we delete all the terms
that do not contain M . Then, we simplify M on both sides. Further more, we simplify all the unique terms,
ending up with

β2,jγ3,i(xj + Y)− α0Y = K0 (11)

Now, α0 = β2,jγ3,i since they are the only coefficients of Y . Then K0 = β2,jγ3,ixj . However this is not a
valid solution, xj is the j-th value queried to oracle O, and thus belongs to O. We therefore conclude that it
is impossible for the attacker to win the game for every value of W , Y , M and Zi; instead this depends on
a lucky instantiation of such variables.

The simulator B therefore chooses random values w̄, ȳ, m̄, z̄1, . . . , z̄τO
for each of the variables W , Y , M

and Zi. Let us analyze the probability that the attacker has won the game given the chosen assignment of
the variables: this happens if (i) no two non-identical polynomials in the lists L1, L2 and LT assume the same
value and (ii) if the assignment satisfies FT,∗ = FT,◦ = 0. If (i) is true, B’s simulation was flawed because
two group elements – that were equal – have been presented as distinct to the attacker.

Summing up, the probability of success of the attacker is bounded by the probability that any of the
following equations holds:

F1,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO
)− F1,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO

) = 0, i, j s.t. F1,i 6= F1,j (12)
F2,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO

)− F2,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO
) = 0, i, j s.t. F2,i 6= F2,j (13)

FT,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO
)− FT,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO

) = 0, i, j s.t. FT,i 6= FT,j (14)
FT,∗(w̄, ȳ, m̄, z̄1, . . . , z̄τO

)− 1 = 0 (15)
FT,◦(w̄, ȳ, m̄, . . . , z̄τO

)− 1 = 0 (16)

For fixed i, j each non-trivial polynomial 12, 13, 14 has degree at most 1 and it vanishes with probability
≤ 1/q. Polynomials 15 and 16 have too degree at most 1 and vanish with probability ≤ 1/q. We sum over
all the (i, j) to bound the overall success probability ε of the attacker A as ε ≤

(
τ1
2

)
1
q +

(
τ2
2

)
1
q +

(
τT

2

)
1
q + 2

q .
Since τ1 + τ2 + τT ≤ qG + 5, we end up with

ε ≤ (qG + 5)2

q
= O(q2G/q)

ut

B Proofs of security of RevocationMatching

In this section we present proofs of the security claims presented in Section 6.1.

B.1 Proof of Lemma 1

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem in G1 and wishes

to use A to decide if σ = ab. The algorithm B simulates an environment in which A operates, using A’s
advantage in the game TraceProperty to help compute the solution to the DDH problem.

Setup Here is a high-level description of how the algorithm B will work. B uses g as the one received
from the DDH challenge, picks and publishes the public parameters according to the rules of the protocol.

Queries At first, A queries B for an arbitrary number of tuples 〈credui,pi ,matchpi , xui,pi , revui,pi〉
for any given pairs (ui, pi) ∈ U × P. The queries can be adaptive. B answers truthfully abiding by the rules
of the protocol.

Challenge At the end of this phase A initiates two handshake instances by sending em1 and em2 ; B
picks x1, x2, s1, s2, r

R← Z∗q and p
R← P and generates two handshake tuples as follows:〈
gr, grs1(x1+h(p)(bt+h(p))), g̃(s1)

−1
, g̃(s1w)−1

〉
〈
ga, gas2(x2+h

2(p))gσs2h(p)t, g̃(s2)
−1
, g̃(s2w)−1

〉
Analysis of A’s response It is straightforward to verify that, if A wins the game, B can give the

same answer to solve the DDH problem. Indeed, if A wins the game, she is able to decide if ∃α ∈ Z∗q such
that {

(r(x1 + h(p)(bt+ h(p)))− rα)m1 = rm1x1

(a(x2 + h2(p)) + σh(p)t− aα)m2 = am2x2

(17)

If A’s answer is positive, it means that the system of equations is verified. Then we can solve the first
equation as α = h(p)bt+ h2(p), and plugging in the second equation B can verify that σ = ab, which is the
positive answer to the DDH problem. If not, B can give the negative answer to DDH. ut

B.2 Proof of Lemma 2

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem in G1 and wishes

to use A to decide if σ = ab. The algorithm B simulates an environment in which A operates, using A’s
advantage in the game TraceCredential to help compute the solution to the DDH problem.

Setup Here is a high-level description of how the algorithm B will work. B uses g as the one received
from the DDH challenge, picks and publishes the public parameters according to the rules of the protocol.

Queries A can query B for an arbitrary number of tuples 〈credui,pi
,matchpi

, xui,pi
, revui,pi

〉 for
any given pairs (ui, pi) ∈ U × P. The queries can be adaptive. B answers truthfully abiding by the rules of
the protocol.

Challenge At the end of this phase, A chooses a property p∗; B picks r, s1, s2
R← Z∗q and prepares

two handshake tuples as follows: 〈
gr, grs1(b+h(p)(t+h(p))), g̃(s1)

−1
, g̃(s1w)−1

〉
〈
ga, gs2σgas2(h(p)(t+h(p))), g̃(s2)

−1
, g̃(s2w)−1

〉
Analysis of A’s response It is straightforward to verify that, if A wins the game, B can give the same

answer to solve the DDH problem. Indeed, if A wins the game, she is able to tell if both handshake messages
contain the same identification handle x∗. Let us assume this is the case. Then, the same revocation handle
rev∗ = g̃x∗ can be used to revoke both credentials. Then, performing a check as described in Equation 3, the
following system {

r(b+ h(p)(t+ h(p)))− rh(p)(t+ h(p)) = rx∗

σ + a(h(p)(t+ h(p)))− ah(p)(t+ h(p)) = ax∗
(18)

should hold.
Then we can solve the first equation as x∗ = b, and plugging in the second equation B can verify that

σ = ab, which is the positive answer to the DDH problem. If not, B can give the negative answer to DDH. ut

B.3 Proof of Lemma 3

Proof. We define B as follows. B is given an instance 〈g, gw, g̃, g̃y, g̃m, Ow,y〉 of the SM problem and wishes
to use A to produce the tuple 〈gr, grs(x∗+y), g̃s−1

, g̃(ws)−1
, ê (g, g̃)rx∗m〉, such that x∗ has not been queried

to O. The algorithm B simulates an environment in which A operates.
Setup Here is a high-level description of how the algorithm B will work. B sets public parameters

g, g̃ as the ones received from the challenge. It then sets W ← gw, T ← g̃y; the other public parameters are
set according to the rules of the protocol.

Queries A queries B for an arbitrary number of tuples 〈credui,pi ,matchpi , xui,pi , revui,pi〉 for any

given pairs (ui, pi) ∈ U×P. The queries can be adaptive. Upon a query for (ui, pi), B answers picking xui,pi

R←
Z∗q ; B then queries the oracle Ow,y providing xui,pi

+h2(p)

h(p) as input, adding the value xui,pi
+h2(p)

h(p) to the set O

of queries to oracle O. The output of the oracle is (gz(
xui,pi

+h2(p)
h(p) +y), g̃z

−1
, g̃(zw)−1

). B then assigns Cui,pi,1

←
(
gz(

xui,pi
+h2(p)

h(p) +y)

)h(p)
, Cui,pi,2 ← g̃z

−1
, Cui,pi,3 ← g̃(zw)−1

, matchpi
=
(
TH̃(p)

)h(p)
, revui,pi

= g̃xui,pi

and gives the requested parameters to A. The attacker can successfully perform all the checks mandated by
the protocol; his view is therefore undistinguishable from a standard protocol instantiation.

Challenge A then declares that this phase of the game is over. B therefore revokes each of the
credentials A requested in the previous phase. A then chooses a property p∗ ∈ P. A receives from B the

matching reference
(
TH̃(p)

)h(p)
of property p∗. B challenges A by sending ê (g, g̃m) and A answers the

challenge with the tuple 〈gα, gβ , g̃γ , g̃δ, ek〉.
Analysis of A’s response If A wins the game, B can check that(

ê(gβ , g̃γ)
ê(gα,matchp∗)

)m
=

(
ê(gβ , g̃γ)

ê
(
gα, g̃h(p∗)(y+h(p∗))

))m = ek (19)

and that

ê
(
gw, g̃δ

)
= ê (g, g̃γ) (20)

as mandated by the Authenticate step of RevocationMatching described in Section 4.
Let us set α = r, k = rx∗m and γ = s−1, for some integers r, x∗, s ∈ Z∗q unknown to B. Then, from

Equation 20 we derive that δ = (ws)−1 and from Equation 19 that β = rs(x∗+h(p∗)(y+h(p∗))). Notice that
by the definition of the game, the attacker has not received a credential containing x∗ + h(p∗)(y + h(p∗));
factoring h(p∗) we derive that x∗+h

2(p∗)
h(p∗)

cannot belong to the set O. Therefore we conclude that, if A wins
the game, B can provide 〈

(gα)h(p∗) , gβ , g̃γ , g̃δ, ê (g, g̃)k · ê (gα, g̃m)h
2(p∗)

〉
as an answer to the SM problem. ut

B.4 Proof of Lemma 4

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gc, g̃, g̃a, g̃b, g̃σ

〉
of the BDDH problem and

wishes to use A to decide if σ = abc. The algorithm B simulates an environment in which A operates.
Setup Here is a high-level description of how the algorithm B will work. B sets g, g̃ as the ones

received from the BDDH instance; T is set to be equal to g̃at. It then sets all the remaining parameters as
mandated in the rules of the protocol.

Queries A queries B for an arbitrary number of 〈credui,pi
,matchpi

, xui,pi
, revui,pi

〉 for any given

pairs (ui, pi) ∈ U × P. The queries can be adaptive. B answers by picking for each query xui,pi
, z

R← Z∗q ,

and giving Cui,pi,1 ← gz(xui,pi
+h(pi)(at+h(pi))), Cui,pi,2 = g̃z

−1
, Cui,pi,3 = g̃(zw)−1

, matchpi = g̃h(pi)(at+h(pi)),
revui,pi = g̃xui,pi to the attacker. The attacker can successfully perform all the checks mandated by the
protocol; his view is therefore undistinguishable from a standard protocol instantiation. B adds to a list V
the tuple (g̃xui,pi

+h(pi)(at+h(pi)), ui, pi, xui,pi
) for each query of A and keeps it for later use.

Challenge A then declares that this phase of the game is over. B therefore revokes each credential
requested by A in the previous phase. A then declares property p∗ ∈ P. B challenges A by sending ê (g, g̃)bc

and A answers the challenge with the tuple 〈gα, gβ , g̃γ , g̃δ, ê (g, g̃)k〉.
Analysis of A’s response If A wins the game, B can check that(

ê(gβ , g̃γ)
ê(gα,matchp∗)

)bc
= ê (g, g̃)k (21)

and that

ê
(
gw, g̃δ

)
= ê (g, g̃γ) (22)

as mandated by the Authenticate step of RevocationMatching described in Section 4.
Let us set α = r, k = rx∗bc, γ = s−1 and β = rsv∗ for some integers r, x∗, s, v∗ ∈ Z∗q unknown to B.

Then, from Equation 22 we derive that δ = (ws)−1.
We know by definition that the attacker has already received Cu◦,p◦,1 = gzv∗ = gz(xu◦,p◦+h(p◦)(at+h(p◦)))

during the previous query phase. Consequently, the revocation handle revu◦,p◦ = g̃xu◦,p◦ has also been
published. B can easily recover u◦ and p◦, since she can check for which g̃xu◦,p◦+h(p◦)(at+h(p◦)) in the list V ,
ê(gβ , g̃γ) = ê(gα, g̃xu◦,p◦+h(p◦)(at+h(p◦))) holds and look up the respective h(p◦) and xu◦,p◦ .

If p◦ = p∗, then A has lost the game, since a successful answer of the attacker cannot be revoked by any
of the issued revocation handles, whereas if p◦ = p∗, the credential can be revoked with revu◦,p◦ . Then it
must be that p◦ 6= p∗; in this case x∗ = xu◦,p◦ + h(p◦)(at+ h(p◦))− h(p∗)(at+ h(p∗)).

Then k = rbc(xu◦,p◦+h2(p◦)−h2(p∗))+rabct(h(p◦)−h(p∗)). However B is still not able to use A’s answer
to solve the BDDH problem since B cannot compute ê (g, g̃)rbc(xu◦,p◦+h

2(p◦)−h2(p∗)). Using the generalized
forking lemma [3] presented by Bagherzandi et al. and used to a similar end in [24, 11], we know that A can
be executed twice with the same random tape that produced r but with different parameters. In particular,
in the forked instance B can replace T = g̃at by g̃t. Therefore from the forked instance, B recovers

ê (g, g̃)rbc =
(
ê (g, g̃)k

′)(xu◦,p◦+h(p◦)(t+h(p◦))−h(p∗)(t+h(p∗)))
−1

and is finally able to decide if σ = abc by checking if

ê (gα, g̃σ) =

 ê (g, g̃)k(
ê (g, g̃)rbc

)(xu◦,p◦+h
2(p◦)−h2(p∗))


((h(p◦)−h(p∗))t)−1

ut

