
Energy Efficiency of SISO Algorithms for

Turbo-Decoding Message-Passing LDPC Decoders

Erick Amador

EURECOM

06904 Sophia Antipolis, France

erick.amador@eurecom.fr

Vincent Rezard

Infineon Technologies France

06560 Sophia Antipolis, France

vincent.rezard@infineon.com

Renaud Pacalet

TELECOM ParisTech

06904 Sophia Antipolis, France

renaud.pacalet@telecom-paristech.fr

Abstract—The decoding of LDPC codes using the turbo-
decoding message-passing strategy is considered. This strategy
can be used with different SISO message computation kernels.
We analyze the suitability for VLSI implementation of various
message computation algorithms in terms of implementation
area, energy consumption and error-correcting performance. As
one of the computation kernels, we introduce the recent Self-
Corrected Min-Sum algorithm and show the advantages it brings
from an energy efficiency perspective. We present comparisons
among the studied kernels implemented in a 65nm CMOS
process and use a test case from the codes defined in IEEE
802.11n to show differences in energy efficiency.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] currently stand

as one of the best known error-correcting codes due to their

capacity-approaching performance and the inherent parallelism

of their iterative decoding algorithm. Several communication

standards have already adopted these codes for forward-error

correction. The implementation of these decoders present sev-

eral challenges, especially when targeting wireless communi-

cations on mobile terminals, where ultra-low power operation

is required.

In this paper we investigate the energy efficiency of

VLSI decoders based on the turbo-decoding message-passing

(TDMP) [2] strategy using several message computation ker-

nels. We perform a design-time exploration in order to assess

the trade-offs between energy consumption, error-correcting

performance and implementation area. We introduce the recent

Self-Corrected Min-Sum algorithm [3] as a message com-

putation kernel and demonstrate its native energy efficient

capabilities. The concept of erasing unreliable messages in

this algorithm reduces the net switching activity of the pro-

cessing units, it allows a reduction of the number of active

processing nodes per iteration and enables a simple stopping

criterion for the iterative processing. We show results for a

TDMP LDPC decoder for the codes defined in IEEE 802.11n

[4] using a 65nm CMOS process. The paper is organized

as follows: Section II introduces LDPC codes and TDMP

decoding, Section III shows the message computation kernels

explored and Section IV presents the decoder architecture

proposed. Section V elaborates on the main points concerning

the energy efficiency of these iterative decoders along with a

comparison among the explored computation kernels. Section

VI concludes the paper.

II. LDPC CODES

LDPC codes are linear block codes defined by a sparse

parity-check matrix H . The number of nonzero elements in a

row and in a column of H define the degree of the row and

column respectively. The code can be represented also by a

bipartite graph, where columns of H are mapped to variable

nodes and rows are mapped to check nodes. Nonzero elements

in H represent edges in the graph between the corresponding

nodes. In order to simplify implementation issues a specific

structure can be enforced within the code. Figure 1 shows the

parity-check matrix and graph for a structured LDPC code.
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Fig. 1. Structured LDPC code

Structured codes consist of several layers of non-

overlapping rows, where these layers are composed of Z ×Z
submatrices. Z describes the level of parallelism within the

code since Z non-overlapping rows can be processed at the

same time. These submatrices can be either a permutation

matrix derived from an identity matrix or an all-zeros matrix.

For the matrix shown in figure 1(a) there are M = mb × Z
parity-check constraints (mb block-rows) and N = nb × Z
codeword symbols (nb block-columns). The graph represen-

tation in figure 1(b) contains edges of width Z, grouping Z
nodes into clusters. This allows the possibility to instantiate a

subset of the processing nodes, generating a clear advantage

in terms of flexibility and silicon area as well as reducing the

complexity of the interconnection network.



A. TDMP Decoding

Gallager introduced an iterative two-phase message-passing

decoding algorithm [1] where check nodes and variable

nodes exchange extrinsic reliability values associated with

each codeword symbol. Each decoding iteration consists of

two phases: variable nodes update and send messages to

the neighboring check nodes, and check nodes update and

send back their corresponding messages. The operation of

each node is independent and in general can be executed in

parallel with other nodes. This characteristic enables the use

of different scheduling techniques that impact the convergence

speed of the decoding task. The TDMP schedule [2] shows

important improvements over the two-phase schedule: a faster

convergence and reduced memory requirements.

In TDMP the check nodes of the graph are evaluated

sequentially, updating and propagating more reliable messages

along the graph. Furthermore, this method merges check and

variable updates in one step, reducing the memory require-

ments when compared to the traditional two-phase method.

Another important advantage is the reduction in the number

of iterations by up to 50%, indeed saving energy by the same

proportion.

From the detailed description in [5] we summarize the

TDMP decoding as follows. Let the vector δ = [δ1, . . . , δN ]
denote the initial channel observations (intrinsic information)

per codeword symbol as log likelihood ratios and a vector

γ = [γ1, . . . , γN ] denote the sum of all messages generated in

the rows of H for each codeword symbol (posterior messages).

Let us define as well a vector λi = [λi
1, . . . , λ

i
ci

] for each row

i in H that contains the ci extrinsic messages generated after

each decoding round, where ci is the degree of the row. Let

Ii define the set of ci nonzero values in row i, such that the

ci elements of γ and δ that participate in row i are denoted

by γ(Ii) and δ(Ii) respectively. Furthermore, let the vector ρ

define the prior messages. Algorithm 1 describes the decoding

of the ith row of H .

Algorithm 1 TDMP Decoding

Initialization

λi ← 0

γ(Ii)← δ(Ii)
For each iteration:

1) Read vectors γ(Ii) and λi

2) Generate prior messages: ρ = γ(Ii)− λi

3) Process ρ with a soft-input soft-output (SISO) algo-

rithm: Λ = SISO(ρ)
4) Writeback vectors:

λi ← Λ

γ(Ii)← ρ + Λ

The process iterates until a stopping criterion is satisfied,

refer to section V-C. Hard decisions are taken by slicing the

vector γ to obtain the decoded message.

III. SISO KERNELS

The processing complexity of the decoding task resides in

the operations performed in the variable and check nodes of

the code graph. Essentially the operation at the variable node is

an addition of the incoming messages, whereas the operation

at the check node involves more operations and it is where

the tradeoff of performance and complexity takes place. In

the context of TDMP the check node operation takes place

on step 3 of algorithm 1. We refer to this step as message

computation for generating the vector Λ = SISO(ρ) from

the prior messages ρ. The optimal message computation is

performed by the Sum-Product (SP) algorithm [1] by:

Λj = ψ−1
(

∑

n∈Ii\j

ψ(ρn)
)

(1)

where

ψ(x) = −
1

2
log(tanh(

x

2
)) = ψ−1(x) (2)

Implementing (2) is highly complex mainly due to the

effects of quantization and the nonlinearity of the function.

Along with the TDMP schedule, [2] proposed the computation

of messages by using a simplified form of the BCJR algorithm

[6] to process the 2-state trellis of each single parity-check

constraint of the code. Indeed this approach views an LDPC

code as the parallel concatenation of single parity-check codes.

The reader is refered to [2] and [5] for a detailed analysis. The

computation of messages is performed by:

Λj = Q[j](. . . (Q(Q(ρ1, ρ2), ρ3), . . .), ρci
) (3)

where

Q(x, y) = max(x, y) + max
(

5
8 −

|x−y|
4 , 0

)

−

max
(

5
8 −

|x+y|
4 , 0

)

−max(x+ y, 0) (4)

is the so-called max-quartet function and the subscript

[j] denotes the index of the variable to exclude from the

computation.

The Min-Sum (MS) algorithm [7] approximates the oper-

ation in (1) with less complexity but at the cost of error-

correcting performance. The MS operation computes messages

by:

Λj =
(

∏

n∈Ii\j

(sign(ρn))
)

· min
n∈Ii\j

|ρn| (5)

Several correction methods have been proposed to recover

the performance loss of the MS operation, such as the

Normalized-MS (NMS) and Offset-MS (OMS) algorithms [7].

These correction methods essentially downscale the check

node messages, which are overestimated in the first place in

MS. NMS computes messages by scaling equation (5) by a

factor α, whereas OMS computes messages by:



Λj =
(

∏

n∈Ii\j

(sign(ρn))
)

·max

(

min
n∈Ii\j

|ρn| − β, 0

)

(6)

where β is an offset value. It has been shown recently

in [3] that the sub-optimality of MS decoding is not due to

the overestimation of the check node messages, but instead

to the loss of the symmetric Gaussian distribution of these

messages. This symmetry can be recovered by eliminating

unreliable variable node messages or cleaning the inputs of

the check node operation. By doing so [3] introduces the Self-

Corrected MS (SCMS) decoding which exhibits quasi-optimal

performance. An input to the check node operation is identified

as unreliable if it has changed its sign with respect to the

previous iteration. In algorithm 2 we show how to use SCMS

to compute messages within TDMP for decoding row i.

Algorithm 2 TDMP-SCMS

Initialization

λi ← 0

γ(Ii)← δ(Ii)
At iteration k 6= 0:

1) Read vectors γ(Ii), λi and ρi
old

2) Generate new prior messages: ρi
new = γ(Ii)− λi

3) Generate MS input κ such that:

for all j ∈ ci do

if sign(ρi
newj

) 6= sign(ρi
oldj

) then

κj = 0
else

κj = ρi
newj

end if

end for

4) Generate MS output Λ = MS(κ):

Λj =
(

∏

n∈Ii\j

(sign(κn))
)

· min
n∈Ii\j

|κn| (7)

5) Writeback vectors:

λi ← Λ

ρi
old ← ρi

new

γ(Ii)← ρi
new + Λ

The vector κ = [κ1, . . . , κci
] corresponds to the corrected

inputs for the MS operation. Steps 3 and 4 correspond to

the main features of the SCMS algorithm, where unreliable

variable messages are identified and erased. In this way

unreliable values are no longer propagated along the code

graph.

Figure 2 shows the simulated error-correcting performance

for these computation kernels applied to the TDMP decoding

of the quasi-cyclic LDPC code (length N = 1944, rate

R = 1/2) defined in IEEE 802.11n [4] over the AWGN

channel with QPSK modulation. The normalization and offset

values for NMS and OMS used were α = 0.8 and β = 0.35
respectively, with a maximum number of 60 iterations. The
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performance for BCJR is the closest to the optimal SP. MS

performs the simplest approximation to SP and indeed shows

the largest performance loss. Both NMS and OMS close

significantly the performance gap between SP and MS but

approach a relatively high error floor. SCMS is the MS-based

kernel that shows the smallest performance gap to SP, in fact

it shows a lower error floor, as reported in [3].

IV. DECODER ARCHITECTURE

Figure 3 shows a top level view of the proposed architecture

for TDMP decoding. The required storage elements are the

posterior messages memory (γ) and the extrinsic messages

memory (λ). The γ-memory stores as many values as the

codeword length, whereas the λ-memory size corresponds to

the number of edges in the code graph. The λ-memory is

partitioned and bound to a processing unit following a static

allocation of rows to processing units. Shuffling units π and

π−1 are used to distribute posterior messages to and from

the processing units. P processing units handle the required

operations for messages computation, figure 4 shows the data

flow for this unit.

The SISO unit performs the message computation kernel of

choice. As can be seen from section III the MS-based kernels

fundamentally perform a running comparison of magnitudes

and sign calculation. The processing unit for SCMS requires
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a precomputation block for performing step 3 from algorithm

2. Figure 5 shows the processing unit for SCMS message

computation.

In table I we show the cell area from the synthesis of serial

processing units using the different SISO kernels on a CMOS

technology of 65nm and message quantization of 6-bits. We

show as well the average energy per iteration consumed1 when

decoding the code N = 1944, R = 1/2 from [4]. It is

interesting to notice the energy consumption of the SCMS

unit compared to the other MS-based ones. It was observed

that due to the erased messages used in SCMS this unit shows

a net decrease in switching activity compared to the other MS-

based units. As expected the BCJR unit shows the largest area

and energy consumption, mainly due to the higher complexity

of the datapath to implement equation (4).

TABLE I
COMPARISON OF PROCESSING UNITS

Type Cell area [µm2] Energy [nJ ]
N=1944,R=1/2

MS 3504.48 4.31

NMS 3827.04 6.71

OMS 3806.88 6.30

SCMS 3744.48 3.25

BCJR 5674.08 12.07

The architecture in figure 3 is independent of the SISO

kernel used. Besides the processing units, only the λ-memory

is affected by this choice. This memory stores as many values

as edges in the code graph, but the MS-based algorithms allow

a simple but valuable reduction in the memory size. These

algorithms have the characteristic that for n inputs there will

be two output magnitudes and n output signs. This allows to

store only two magnitudes, ci signs and an index (log2 ci bits)

for each row i. For our test case this corresponds to a reduction

of 52% for this memory, this is indeed a main difference in

implementation area between the BCJR and the MS-based

kernels. This is not precisely the case with the SCMS kernel,

as it requires to store the signs of the ci prior messages for

each row i. This corresponds to an increase of 35% of this

memory with respect to the other MS-based kernels.

1Pertinent activity files in VCD format along with the synthesized netlists
were used with a power estimation tool.
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V. ENERGY EFFICIENCY

A. Convergence Speed

The iterative nature of the decoding algorithm shows a dy-

namic behavior that depends upon external factors such as the

received signal-to-noise ratio. In figure 6 we show the average

number of iterations required for decoding using different

computation kernels with the same simulation scenario from

figure 2. The SP kernel is the fastest to converge, with BCJR

following very closely the same behavior. OMS appears as the

fastest MS-based kernel, followed by NMS and SCMS as the

slowest one.

From an energy efficiency perspective it is compelling to

compare the net consumption from each kernel, as for example

the fastest one may consume more energy per iteration than the

slowest one. In figure 7 we show the average energy consumed

in the processing units accounting for the average number of

iterations to complete the decoding task. It is observed how

SCMS is the processing kernel with the best energy efficiency

from the processing units perspective. BCJR is the kernel that

requires the less number of iterations but each iteration incurs

in a higher energy cost.
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B. Active nodes

The number of nodes in the code graph that are active during

each decoding iteration impacts the energy consumption. In [8]

the authors proposed to deactivate the variable nodes that have

converged to a strong belief after a few iterations, where this

condition is detected when the summation of all incoming

messages surpasses a given threshold. The error-correcting

performance is affected by the value of this threshold, fur-

thermore this criterion adds a compare operation per variable

node.

The SCMS kernel offers a simple criterion to disable a

check node on a given iteration. The concept of erasing

messages avoids the propagation of unreliable messages along

the code graph. If there are two or more erased messages

per row (step 3 in algorithm 2) that particular check node is

effectively rendered useless for the decoding task as all its

output values would have magnitude zero. Although there is a

similar argument for any Min-Sum based kernel (two or more

zero magnitude input messages) the SCMS kernel benefits

from the fact that the minimum finders are not used.

Detecting this condition allows to save the processing re-

quired along with the writeback of messages to the memories.

This criterion adds a compare operation per check node and

does not affect the error-correcting performance. In figure 8

we show the average percentage of disabled check nodes per

iteration for 105 codewords at Eb/N0 = 1dB on our test case

scenario. In our implementation this translates to an average

reduction of 8% in energy per iteration for a SCMS-based

decoder. Algorithm 3 outlines this simple criterion for energy

reduction.

Algorithm 3 Check node deactivation - SCMS

ǫi: number of erased messages in row i
M : set of check nodes

for all rows i ∈M do

Compute ǫi
if ǫi ≥ 2 then

Move to next row

else

Decode row

end if

end for
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C. Stopping criterion

Iteration control oversees that only the necessary number of

iterations are executed for both successful and unsuccessful

decoding. Typically, successful decoding is verified by the

condition H · xT = 0 (syndrome check), where x is a valid

codeword. If this condition is not satisfied decoding continues

until a maximum number of iterations has been reached.

Therefore early detection of an undecodable codeword is

essential to save energy on unnecessary decoder operation.

We consider the case for early detection of an undecodable

codeword and how SCMS provides this capability with the

concept of erased messages at very low complexity. In SCMS

the total number of erased messages per iteration approaches

zero relatively fast for a decodable codeword. In the case

of an undecodable codeword the number of erased messages

fluctuates around a mean value. In figure 9 we show how the

percentage of erased messages evolves with each iteration for

a decodable and an undecodable codeword.

By detecting the characteristic decreasing monotonic behav-

ior of the number of erased messages when the decoder enters

a convergence state, it is possible to save energy on potential

undecodable codewords. This simple criterion is equivalent

in principle to the work in [9] but using a different decision

metric: [9] follows the evolution of the mean checksum of

check nodes, but requires knowledge of the SNR. The stopping

criterion we propose for the SCMS kernel simply follows the

evolution of the total number of erased messages by counting

the increments of this metric and halting the decoding task

once the number of increments exceeds a given threshold T .

This threshold is a static parameter tuned by simulations and

essentially trades error-correcting performance and the average

number of iterations.

The implementation cost of this criterion corresponds to a

counter along with an accumulator and a compare operation

to make the halting decision.

In figure 10 we show the average number of total iterations

for a few values of T and the performance loss L for a bit error



rate of 10−6. It can be observed that for T = 8 the average

number of iterations can be reduced up to 60%, reducing

energy consumption for the average decoding task by the same

proportion.
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D. Decoders Comparison

We performed an estimation on the decoders implementa-

tion area and energy consumption of the individual compo-

nents shown in the architecture of figure 3, using three compu-

tation kernels for the test case of the code N = 1944, R = 1/2
in [4]. Benes networks were used as shuffling units [10],

and low-power dual-port RAMs for the required memories

providing a bandwidth of 12 samples/cycle to three processing

units in all decoders.

In figure 11 we show the implementation area and en-

ergy breakdown. The energy breakdown corresponds to the

completion of a decoding task using the average number of

iterations from 105 codewords at Eb/N0 = 1dB. To have a

fair comparison all decoders used syndrome check as stopping

criterion and all nodes activated at run-time. On all decoders

at least 70% of the energy is consumed on the memory

subsystem, this shows the relevance of the optimization that

can be exploited by SCMS shown in section V-B.

Since the number of required iterations is highly dynamic,

in table II we show the energy efficiency per iteration for these

decoders in order to have a proper figure of merit.

TABLE II
ENERGY EFFICIENCY OF SISO KERNELS

Energy efficiency BCJR OMS NMS SCMS
[pJ/bit/iteration] 64.87 46.98 47.61 43.61

VI. CONCLUSIONS

We performed a comparison among several message com-

putation kernels within TDMP decoding of LDPC codes to
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observe the tradeoffs on energy efficiency, implementation

area and error-correcting performance. We proposed the use of

the SCMS kernel and identified its built-in characteristics for

better energy efficiency: reduced net switching activity in the

processing units, reduced number of active nodes per iteration

and a stopping criterion for early detection of undecodable

codewords. Even though the differences on implementation

area are small, OMS presented the smallest footprint and best

energy efficiency for the average complete decoding task for

the studied test case. Nevertheless SCMS shows a better error-

correcting performance and energy efficiency per iteration, in

addition to its built-in energy optimizations derived from the

concept of erasing unreliable messages.
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