
978-1-4244-5605-5/09/$26.00 c©2009 IEEE

Distributed Avatar Management for Second Life
Matteo Varvello†⋆, Stefano Ferrari†⋆, Ernst Biersack⋆, Christophe Diot†

† Thomson, Paris, France
⋆ Eurecom, Sophia-Antipolis, France

{matteo.varvello,stefano.ferrari,ernst.biersack}@eurecom.fr,{christophe.diot}@thomson.net

Abstract—Second Life (SL) is currently the most popular
social virtual world, i.e., a digitalization of the real world where
avatars can meet, socialize and trade. SL is managed through
a Client/Server (C/S) architecture with a very high cost and
limited scalability. A scalable and cheap alternative to C/S is
to use a Peer-to-Peer (P2P) approach, where SL users rely only
on their own resources (storage, CPU and bandwidth) to run the
virtual world. We develop a SL client that allows its users totake
advantage of a P2P network structured as aDelaunay overlay.
We compare the performance of a P2P and C/S architecture
for Second Life, executing several instances of our client over
Planetlab and populating a SL region with our controlled avatars.
Avatar mobility traces collected in SL are used to drive avatar
behaviors. The results show that P2P improves user experience by
about 20% compared to C/S (measured in term of consistency).
Avatar interactivity is also 5 times faster in P2P than in C/S.

I. INTRODUCTION

Social virtual worlds are interactive environments accessible
from the Internet. Multiple participants interact in social virtual
worlds through anavatar, i.e., the digital representation of a
user. The virtual world consists of several lands calledregions
where avatars can createobjectssuch as a car, a tree or a
building. Second Life (SL), launched in 2003 by Linden Lab,
is the most famous social virtual world counting more than 16
Millions registered users in September 2009.1

SL leverages a Client/Server (C/S) architecture where each
of the 18,000 region is managed by a dedicated server [10].
Users run “thin” clients that simply perform the three-
dimensional rendering of the virtual world and cache the vir-
tual objects located in recently visited regions. The main tasks
of SL servers are:avatar managementandobject management.
The avatar management consists in updating each avatar about
the status of its neighbor avatars in real time. The object
management consists in maintaining the user-created objects
over time, and informing each avatar about the objects in their
visibility area.

Researchers have recently shown that SL suffers from scal-
ability problems. Servers get easily overloaded with as little
as 20 concurrent avatars [20], and are forced to significantly
slow down their region’s virtual time to artificially reduce
avatar activity. Nevertheless, SL makes also an intensive use
of network resources [17][7].

A scalable and cheap alternative to C/S is to use a Peer-to-
Peer (P2P) approach, where the virtual world is managed in
a distributed way leveraging end-user resources. Several P2P
architectures for virtual worlds have been proposed [6][3][8].

1http://www.secondlife.com/

These P2P architectures mainly address the problem of a
distributed avatar management, i.e., neighbor avatars discovery
and avatar state updates dissemination. For the object man-
agement, these solutions simply assume that the virtual world
object composition is mostly stored at the clients.

In this work, we design and evaluate adistributed avatar
managementfor Second Life. Object management is out of
the scope of this work2. Specifically, we develop a P2P-SL
client that includes the current C/S avatar management and
a distributed one. To do so, we add to the SL client a P2P
module that leverages theDelaunay Network[6][14] in order
to disseminate and receive avatar state updates. We choose
the Delaunay Network as it is a well-known P2P strategy for
avatar management and it holds desirable properties for SL-
like environments [18].

We compare P2P versus C/S Second Life by focusing on
the Quality of Experience (QoE) perceived by multiple SL
users. To do so, we execute several instances of the P2P-
SL client over Planetlab3 and we populate a SL region with
our controlled avatars. Avatar mobility traces extracted from
SL [20] are used to reproduce real avatar behaviors.

We show that a distributed avatar management for SL
always outperforms the current C/S design. P2P Second Life
produces a gain of correctness in the user experience of
about 20% compared to C/S. Nevertheless, 90% of the times
inconsistency in P2P is solved in less than one second, i.e.,5
times faster than in C/S. This result is very promising sinceac-
ceptable values of interactivity in on-line games vary between
300 ms and 1 sec [5]. However, as already observed in [1][18],
we confirm experimentally that the Delaunay Network suffers
from avatar groups, fast movements and churn.

II. RELATED WORK

The success of Second Life (SL) has recently attracted the
attention of the research community. Fernandes et al. [17]
propose the first study related to SL. They collect the traffic
exchanged in a C/S session, measuring bandwidth consump-
tion, packet size and packet inter-arrival times. They showthat
SL makes an intensive use of network resources, much more
than other existing applications for virtual worlds such ason-
line games. Moreover, they show that the down-link traffic
is strongly impacted by avatar actions: an avatar that stands
in SL consumes about 20 Kbps in the down-link, whereas as

2The reader can found an experimental evaluation of a distributed object
management for SL in [19].

3https://www.planet-lab.org/

soon as the avatar moves the down-link traffic grows up to
110 Kbps.

Kumar et al. [10] analyze the CPU performance of a high-
end desktop machine running the SL client. They find that
sorting translucent objects and decompressing textures stored
as JPEG are the most CPU expensive operations. Similarly
to [17] they also analyze the network traffic exchanged be-
tween client and server. Their results confirm the high band-
width cost of SL, and also underline the benefits of objects
caching to reduce network traffic. Finally, they analyze server
performance: they show that the management of a region with
only 5,000 rigid-body objects requires about 72% of the server
computational power. As SL-like virtual worlds are expected
to become more complex and realistic several CPU cores will
be required.

Varvello et al. [20] perform a large scale data collection
in SL. They design and deploy acrawler application that
collects traces of avatar behaviors, object characteristics and
server performances in the public SL regions. The analysis
of their traces show that about 30% of the regions do not
attract any visitor, and that in the few popular regions servers
are overloaded most of the time. Interestingly, they show that
avatars behave similarly to humans, visiting a few popular
places where they meet friends.

Liang et al. [11] use a similar approach to [20] and collect
mobility traces of 84,208 avatars spanning 22 SL regions over
two months. Based on their analysis of avatar mobility, the
authors suggest an hybrid avatar mobility model that incorpo-
rates both random way-point mobility model (for regions poor
of objects) and pathway mobility model (for regions rich of
objects).

Our work is different from the previous work conducted on
SL as we propose an enhancement to its architecture, rather
than study its characteristics. Specifically, we use the Delaunay
Network to build a distributed avatar management for SL. A
similar solution was originally introduced by Hu et al. [6] in
VON. VON is a P2P architecture for virtual worlds based on a
Voronoi diagram, i.e., the dual of the Delaunay triangulation.
In VON, each user locally contributes to the construction ofa
Voronoi graph based on a spatial metric in the virtual world.
The authors show by simulation that VON is a scalable design
for virtual worlds.

Backus and Krause [1] discuss benefits and problems of
using Voronoi diagrams in P2P virtual worlds. They look at
bandwidth usage, scalability and consistency of Voronoi-based
virtual worlds. They show that while Voronoi-based virtual
worlds perform quite good when avatars move according to
a Random Waypoint model4, consistency is greatly reduced
when groups of avatars get close and avatar speed exceeds the
mean distance among avatars.

Our work is complementary to [6] and [1] as we extend the
evaluation of the Delaunay Network through real experiments
performed in SL. We also analyze strengths and weaknesses
of the Delaunay Network when dealing with user QoE. Fur-

4http://ica1www.epfl.ch/RandomTrip

Fig. 1. Distributed avatar management leveraging the Delaunay Network.

thermore, we develop a concrete enhancement to the current
SL architecture.

III. BACKGROUND

A. Second Life

The virtual world of SL is divided into lands called regions
that have a fixed size of 256x256 meters. Each region can
have up to four neighbor regions that are independents among
them. The region appearance is defined by the land features
and the user-generated objects.

Users join the SL community by registering an avatar
at the SL website1. This registration requires filling out an
on-line form with private information and a valid e-mail
address. Afterwards, a user explores SL by controlling its
avatar movements, e.g., it canwalk, run, fly and teleport.5

Avatars have a limited visibility area called Area of Interest
(AoI). The AoI consists of a sphere centered on the avatar
coordinates with 35 meters radius.

The C/S architecture of SL leverages a cluster of servers
each dedicated to a different task, e.g., login and region
simulation. Since we perform experiments directly on aregion
serverwe now shortly describe it. A complete description of
the SL Client/Server architecture can be found in [10][17].

A region server is responsible for a SL region. The main
roles of a region server are: (i) maintain the state of its region
(e.g., user-created objects and land features) over time, (ii)
perform thevisibility computation[10], i.e., identify for each
avatar located in the region the information about objects,land
features and avatars that need to be transmitted, (iii) manage
chat among avatars located within the region. A region server
handles a maximum of 100 concurrent avatars. However, larger
population are possible by mirroring the region server [10].

5The teleport operation allows avatars to rapidly cover large distances.

2

B. Delaunay Network

The Delaunay Network[4] is an overlay network whose
topology is defined by a Delaunay triangulation. In the follow-
ing, we give a formal definition of the Delaunay triangulation:

Definition 1: The Delaunay triangulation of a set ofN
points inℜ2 is a triangulation of pointsDT (N) such that no
point p lies inside the circumcircle of any triangle inDT (N).

The coordinates of avatars in the virtual world are used to
generate the Delaunay triangulation, and consequently build a
Delaunay Network among the respective end-users [14][6]. In
this way, the interactions among avatars on a proximity metric
basis are reflected into Internet connections among their end-
users. Figure 1 shows an example of a Delaunay triangulation
constructed among avatars in a virtual world.

An avatar that participates to the Delaunay Network con-
tinually monitors the position of its one hop neighbors in
order to maintain the triangulation over time. As avatars move,
Delaunay links are added and removed to maintain a valid
and consistent triangulation. A more detailed descriptionof
the Delaunay Network can be found in [14].

Researchers have shown that the performance of the De-
launay Network may deteriorate in presence of large avatar
groups, or when avatars move very fast [1][18]. Avatars in
SL are mostly static, and tend to organize in small groups of
2-10 avatars [20][11]. Thus, the Delaunay Network seems a
promising approach for the distributed avatar management in
SL and SL-like virtual worlds.

IV. P2P-SL CLIENT

SL servers currently perform theavatar managementby
constantly updating each avatar about its nearby avatar states.
In this Section, we design a P2P-SL client that performs a
distributed avatar management.

A. Design

We use the libsecondlife6 libraries to deploy a P2P-SL
client. The P2P-SL client includes the fundamental features of
the official SL client, e.g., login/logout operations and avatar
movements, while removing the CPU intensive operations,
e.g., the three dimensional rendering of the virtual world.

The P2P-SL client does not require to be human-controlled.
Avatar traces, e.g., movement and churn, can be used to
automate the client operations. The innovative feature of the
P2P-SL client is the possibility to directly communicate with
other P2P-SL clients without the need of a server.

In order to permit direct communications among SL users,
the P2P-SL client implements the Delaunay Network protocol
using HyperCast.7 HyperCast is a set of Java libraries that
allows to build several overlays such as the Delaunay Net-
work [4] and Pastry [16]. HyperCast provides to the P2P-
SL client a Neighborhood tablethat contains the routing

6http://www.libsecondlife.org
7http://www.hypercast.org.

Fig. 2. The P2P-SL client design.

information towards the one-hop Delaunay neighbors of a peer.
A complete description of HyperCast can be found in [12].

We build a distributed avatar management for SL on top of
the Delaunay Network constructed among P2P-SL clients. To
do so, we intercept the avatar state updates generated by the
client and transmitted to the SL server and we duplicate them
into the Delaunay Network. Note that the avatar state updates
sent to the server are now redundant as each avatar already
manages its state updates via the Delaunay Network. However,
we experienced that suppressing or reducing this traffic causes
two main problems: (i) the server continually queries the P2P-
SL client about its avatar state, (ii) the server can label our
avatars as “misbehaving” and temporarily exclude them from
its region. Nevertheless, this strategy is extremely useful to
perform a fair comparison between P2P and C/S Second Life
(Section VI).

We use UDP as transport layer protocol for the dissemina-
tion of the avatar state updates over the Delaunay Network.
The official SL client also uses UDP communication to
transport the avatar traffic. Similarly to the SL design choice,
we opted for UDP since the avatar state updates are transmitted
at a constant rate, and do not need delivery guarantees.

We now propose a detailed description of the P2P-SL client
(Figure 2). In the following, we callnode the representation
of an avatar in the Delaunay triangulation.

• The C/S moduleis the core of the P2P-SL client. It
manages the communication between the P2P-SL client
and a SL server, i.e., avatar, object and land discovery. It
receives as input the avatar mobility pattern that it uses
to emulate a realistic avatar behavior on a SL region.
Most importantly, it duplicates the traffic dedicated to the
avatar state management and forward it to the Delaunay
Network module.

• TheC/S-AoI tableis the data structure that contains up-to-
date avatar state information for the avatars located within
an avatar AoI. This data structure is constantly updated
using the avatar traffic received from the SL server. A
snapshot of the C/S-AoI table is copied to the disk every
200 ms or when a modification of its content occurs.

• The Neighborhood tableis the data structure maintained
by the HyperCast libraries. It contains routing informa-
tion towards the Delaunay one-hop neighbors of a peer.

3

A snapshot of the Neighborhood table is copied to the
disk every 200 ms or when a modification of its content
occurs.

• The Delaunay Network modulemanages the Delaunay
Network, and the transmission/reception of avatar state
updates. It receives as input the avatar mobility pattern
that it uses to update the coordinates of the respective
node in the Delaunay triangulation. This information is
propagated to the nodes contained in the node’s Neigh-
borhood table via heartbeat messages at a fast or slow
rate. The fast rate (1 message every 200 ms) is used
during the join of a new node and in case of unstable
neighborhood, e.g., when a node changes position or a
newcomer joins the network. The slow rate (1 message
every sec) is used when the neighborhood is stable.
Rate values are chosen according to [12]. The Delaunay
Network module receives as input the traffic generated
by the C/S module for the avatar state updates. This
traffic is flooded into the Delaunay Network withAoI
filtering, i.e., packets are not forwarded farther than an
avatar AoI (35 meters as default in SL). Local forwarding
decisions at nodes are made usingcompass routing, e.g.,
among three nodesA, B and C that are all one-hop
Delaunay neighbors of a nodeD, the node that forwards
the avatar state update received by a nodeR is the node
that minimizes the angle it forms withR andD [9].

• The P2P-AoI tableis the data structure that contains up-
to-date avatar states information for the avatars located
within an avatar AoI. This data structure is constantly
updated using the avatar traffic received from the Delau-
nay Network module. A snapshot of the P2P-AoI table is
copied to the disk every 200 ms or when a modification
of its content occurs.

V. EXPERIMENTAL METHODOLOGY

We compare a P2P versus a C/S architecture for Second
Life by focusing on the user Quality of Experience (QoE).
Measuring user QoE in a virtual world is a challenging task.
Currently, game providers characterize user QoE by looking
at the cancellation rate, i.e., the number of user accounts
canceled during a given period of time, and/or Mean Opinion
Score8 that is based on user feedback. Given that we cannot
rely on these two techniques, we choose to study the user
QoE as perceived by multiple SL users. More precisely, we
compute two metrics that we define next: theinconsistency
and theinconsistency duration.

A. Metric Definition

• Inconsistency- In order to have meaningful interactions
among avatars, each avatar needs to have correct in-
formation about the avatars contained in its AoI. Tem-
porarily missing information as well as incorrect infor-
mation make an avatar AoI inconsistent. Inconsistency
is measured as the fraction of wrong avatar information

8http://en.wikipedia.org/wiki/Meanopinion score

Fig. 3. Evolution over time of the no. of connected avatars during the
experiment.

contained within an avatar AoI, i.e., additional/missing
avatars and avatar located at wrong coordinates. The
inconsistency takes values between 0 and 1, where 0
means that all the information contained in an avatar AoI
is correct, and 1 means that all the information contained
in an avatar AoI is wrong.

• Inconsistency Duration- User experience in virtual
worlds is positive when avatars perceive quickly enough
changes in the nearby avatar states [5]. This guarantees
interactivity among avatars. The inconsistency duration
is the time an avatar needs to achieve a consistent view
of the avatars in its AoI. We compute the inconsistency
duration by starting a timer whenever an inconsistency is
detected in an avatar AoI and stopping it as soon as the
avatar’s AoI becomes consistent again.

B. Experimental Settings

We use the P2P-SL player in order to automate the behavior
of an avatar within a SL region while collecting information
about avatars intersecting its AoI as indicated from the SL
server and the P2P network. We launch the player from
multiple points on the Internet and we teleport our controlled
avatars into a target SL region. In this way, we have direct
access to the local view of each avatar through the traces
collected by each player. Moreover, we can easily build the
“ground truth” of avatar locations at any point in time since
we control all avatars that interact in the region. Note that
we require that no external users, i.e., real SL users, interfere
during our experiments in order to correctly evaluate user QoE.

We execute the P2P-SL player on several Planetlab3 ma-
chines located worldwide in order to emulate realistic network
conditions. We select stable Planetlab machines in terms of
CPU load, free memory and network activity.

Our automated avatars reproduce real avatar behaviors using
a mobility trace, i.e., a trace that contains avatar coordinates
at any given time as well as the avatar session durations. We
extract the mobility traces from the avatar traces collected by
Varvello et al. [20] in the Japan Resort region, i.e., one of the
most popular SL region. We take from the avatar traces the
one hour period where we observe the maximum number of

4

(a) CDF of the inconsistency. (b) CDF of the fraction of time an avatar
AoI is inconsistent.

(c) CDF of the inconsistency duration.

Fig. 4. Quality of Experience analysis ; Client/Server (C/S) vs Peer-to-Peer (P2P) Second Life

avatars, i.e., 84 concurrent avatars for a total of 207 different
avatars during one hour, and for each avatar we generate its
mobility trace. Figure 3 shows the evolution over time of the
avatar population extracted from the Japan Resort region and
that we reproduce in SL. Due to a crawling frequency of
about 30 seconds [20], we only have few samples of avatar
movements. In order to reproduce fluid avatar movements in
the region, whenever an avatar changes coordinates between
two successive crawling snapshots we compute the avatar
speed and we interpolate its trajectory.

We run our experiments in a region that contains only six
small objects in order not to interfere with the avatar mobil-
ity patterns, e.g., avatars could be blocked behind a virtual
building. In the rare cases where an avatar meets an object
on its path, the avatar simply deviates its mobility pattern
and gets around the object. Finally, the region we choose
for the experiments is an un-popular SL region generally
empty of avatars. In this way, we reduce the chance that
external users interfere. Nevertheless, during the experiments
we continuously verify that no real SL user connects to the
region we use as a test-bed.

VI. EVALUATION: P2P VS C/S

A. Correctness

We start by looking at the probability to have inconsistencies
in the avatar AoIs. We evaluate the inconsistency for each
avatar AoI every200 ms or anytime a modification of the
AoI occurs. Figure 4(a) shows the Cumulative Distribution
Function (CDF) of the inconsistency values computed on both
C/S and P2P Second Life. Since we plot the inconsistency
values in logarithmic scale (x-axis in Figure 4(a)), the two
curves are truncated respectively for inconsistency values
equal to 0.02 for P2P and 0.05 for C/S, i.e., the smallest non-
zero values measured during the experiments.

Figure 4(a) shows that P2P achieves higher consistency
than C/S. Avatars have a perfect view of their AoIs, i.e.,
inconsistency equals 0, in about 55% of the cases compared to
40% of the cases in C/S. The distance between the two curves
is roughly constant for inconsistency values smaller than 0.2,

indicating that P2P produces a gain of correctness in the user
experience of about 20%. For inconsistency values larger than
0.3-0.4 the two curves nearly overlap. These high inconsis-
tency values happen in presence of churn (i.e., login/logout
operations) and fast avatar movements (e.g., teleport). While
the SL server suffers these events due to an increase on its
load [20], the P2P overlay suffers due to the difficulty in
maintaining a consistent Delaunay triangulation [1][18].This
result indicates still an open issue with the Delaunay Network.

We now want to understand how frequently inconsistency
events affect an avatar during its SL journey. Figure 4(b) plots
the CDF of the ratio between the sum of the durations of an
avatar inconsistency periods and the total time the avatar stays
in a region. We observe again that C/S suffers more from avatar
inconsistency than P2P. In C/S, about 35% of the avatars do
not see any inconsistency event, whereas this number nearly
doubles in P2P. Interestingly, inconsistency in P2P never lasts
more than 60% of the time an avatar spends in a region,
whereas in C/S 10% of the avatars have an inconsistent view
of their neighbor avatars during about 80-90% of their SL
journeys. The reason behind this phenomenon is that the SL
server spends a lot of time to correctly accomplish avatar
login/logout as we investigate in Section VI-B. Subsequently,
avatars with very short session times have an inconsistent AoI
most of the time.

B. Interactivity

We now analyze the inconsistency duration in P2P and C/S
in order to understand which architecture faster solves avatar
inconsistencies (Figure 4(c)). As for the inconsistency results,
P2P clearly outperforms the current C/S design. About 90%
of the time, inconsistency in P2P lasts less than 1 second,
i.e., P2P is about 5 times faster than C/S. This result is very
promising if we consider that acceptable values of interac-
tivity in on-line games vary between 300 ms and 1 sec [5].
Conversely, Figure 4(c) unveils unacceptable inconsistency
duration values under the current C/S architecture, e.g., 40%
of the inconsistencies last for more than 2 seconds.

Figure 4(c) shows another interesting result. SL avatars can

5

experience a very long inconsistency duration both under a
P2P and a C/S architecture, e.g., about 8 seconds in P2P and 15
seconds in C/S. Similarly to what we observed in Figure 4(b),
churn (i.e., login/logout operations) and fast avatar movements
are the causes of these high values of inconsistency duration.

Finally, despite the fact that the Delaunay Network allows a
direct communication among SL users Figure 4(c) shows that
only 20% of the inconsistencies in P2P last less than 150 ms,
i.e., a value comparable to common network latencies over the
Internet [21]. Since avatars tend to form groups in SL [20] the
dissemination of avatar state updates require multiple hops in
the Delaunay Network before to reach all the interested ava-
tars. This operation generates additional latencies that increase
the inconsistency duration. However, according to the results
presented in [15][2] and the budget of attention theory [13]
these long inconsistency durations may be tolerated. In fact,
these inconsistencies affect avatars located far away fromthe
avatar that generates the state update, and so most likely not
interested in the reception of the update. However, as a future
work we envisage to optimize the Delaunay Network to further
improve its performance in presence of avatar groups.

VII. CONCLUSIONS AND FUTURE WORK

Second Life (SL) is currently the most famous social virtual
world counting more than 16 Millions registered users in
September 2009. Despite that, the Quality of Experience
(QoE) perceived by its users is poor. In this work, we
investigate experimentally the benefits of Peer-to-Peer (P2P)
to improve user QoE in SL.

We deploy a SL client that leverages the Delaunay Network,
a very well-know design for P2P virtual worlds, to manage
interactions among avatars. We use our client to evaluate P2P
versus C/S Second Life. To do so, we execute several instances
of our client over multiple Planetlab machines and we populate
a SL region with controlled avatars. Avatar mobility traces
extracted from SL are used to emulate real avatar behaviors.
We show that a distributed avatar management for SL greatly
improves its users QoE, making avatar experience morecor-
rect andinteractive. However, we also unveil some weaknesses
of the Delaunay Network in presence of churn, fast avatar
movements and groups.

As a future work, we envisage to optimize the Delaunay
Network to further improve its performance. Such an optimiza-
tion is necessary as next generation virtual worlds will most
likely require an higher level of interactivity among avatars [2].
Another avenue for future work consists in further improving
the P2P-SL client. We aim at integrating in our client a
distributed management for virtual objects [19]. Avatars first
attempt to retrieve virtual objects from the P2P network, and
only resort to contacting the server when no replica of a virtual
object is available.

ACKNOWLEDGEMENTS

The authors would like to thank Fabio Picconi for his
insightful comments and suggestions. This research was sup-
ported by the EU FP7 “Nano Data Centers” project.

REFERENCES

[1] H. Backhaus and S. Krause. Voronoi-Based Adaptive Scalable Transfer
Revisited: Gain and Loss of a Voronoi-Based Peer-to-Peer Approach for
MMOG. In Proc. of NETGAMES’07, Mellbourne, Australia, September
2007.

[2] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J.Pang,
S. Seshan, and X. Zhuang. Donnybrook: enabling large-scale, high-
speed, peer-to-peer games. InProc. of SIGCOMM’08, Seattle, WA,
USA, August 2008.

[3] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A Distributed Archi-
tecture for Online Multiplayer Games. InProc. of NSDI’06, San Jose,
CA, May 2006.

[4] A. Bowyer. Computing Dirichlet Tessellations.Computer Journal,
24(2):162–166, 1981.

[5] M. Claypool and K. Claypool. Latency and Player Actions in Online
Games.Commun. ACM, 49(11):40–45, 2006.

[6] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. VON: A Scalable Peer-to-Peer
Network for Virtual Environments.Network, IEEE, 20(4):22–31, 2006.

[7] K. James and C. Mark. Traffic Analysis of Avatars in SecondLife. In
Proc. of NOSSDAV’08, Braunschweig, Germany, May 2008.

[8] J. Keller and G. Simon. SOLIPSIS: A Massively Multi-Participant
Virtual World. In Proc. of PDPT’03, Las Vegas, NV, USA, 2003.

[9] E. Kranakis, H. Singh, and J. Urrutia. Compass routing ongeometric
networks. InCCCG, pages 51–54, Vancouver, August 1999.

[10] S. Kumar, J. Chhugani, C. Kim, D. Kim, A. Nguyen, P. Dubey, C. Bienia,
and Y. Kim. Second life and the new generation of virtual worlds. IEEE
Computer, 41(9):46–53, 2008.

[11] H. Liang, R. N. D. Silva, W. T. Ooi, and M. Motani. Avatar mobility
in user-created networked virtual worlds: Measurements, analysis, and
implications. To Appear in Multimedia Tools and Applications, Special
Issue on Massively Multiplayer Online Gaming Systems and Applica-
tions, 2009.

[12] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with
delaunay triangulation overlays.Selected Areas in Communications,
IEEE Journal, 20(8):1472–1488, 2002.

[13] G. A. Miller. The Magical Number Seven, Plus or Minus two: Some
Limits on Our Capacity for Processing Information.Psychological
Review, 63:81–97, 1956.

[14] M. Ohnishi, R. Nishide, and S. Ueshima. Incremental Construction of
Delaunay Overlay Network for Virtual Collaborative Space.In Proc. of
C5’05, Cambridge, MA, USA, January 2005.

[15] J. Pang, F. Uyeda, and J. R. Lorch. Scaling Peer-to-PeerGames in Low-
Bandwidth Environments. InProc. of IPTPS’07, Bellevue, WA, USA,
February 2007.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems. In Lecture
Notes in Computer Science, pages 329–350, 2001.

[17] F. Stenio, K. Carlos, S. Djamel, M. Josilene, and A. Rafael. Traffic
Analysis Beyond This World: the Case of Second Life. InProc. of
NOSSDAV’07, Urbana-Champaign, IL, USA, June 2007.

[18] M. Varvello, E. Biersack, and C. Diot. Dynamic Clustering in
Delaunay-Based P2P Networked Virtual Environments. InProc. of
NETGAMES’07, Mellbourne, Australia, September 2007.

[19] M. Varvello, C. Diot, and E. Biersack. P2P Second Life: experimental
validation using Kad. InProc. of INFOCOM’09, Rio De Janeiro, Brazil,
April 2009.

[20] M. Varvello, F. Picconi, C. Diot, and E. Biersack. Is There Life in
Second Life? InProc. of CONEXT’08, Madrid, Spain, Dec. 2008.

[21] J. Winick and S. Jamin. Inet-3.0: Internet Topology Generator. Technical
Report CSE-TR-456-02, University of Michigan, 2002.

6

