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Abstract

Wavelength division multiplexing (WDM) allows the huge bandwidth of optical �ber to

be divided into several high-speed channels in optical passive star based networks. For such

processor networks, most of the proposed architectures for interconnecting nodes are based on

graph topologies. Recently, topologies based on the hypergraph theory have emerged, motivated

by the observation that each multiplexed channel can actually be seen as a logical resource shared

among many processors, and not only between two of them. In this paper, we show that these

hypergraph passive star WDM lightwave networks present many advantages with respect to

graph-based ones, in terms of simulated packet delivery time, average number of hops, link

utilization, and throughput. Furthermore, they use only a constant number of transceivers per

node, and a sub-linear number of multiplexed channels.

Keywords: Computer Network Topologies, Optical Passive Star, Lightwave Networks, Per-

formance Models, Hypergraphs, Routing Simulations.

1 Introduction

Optical technologies such as tunable optical transmitters and receivers, and wavelength division

multiplexing (WDM) allow the construction of very e�cient local and metropolitan area networks

(LAN and MAN, respectively). Using Optical Passive Star (OPS) Couplers, one can build single-

hop systems, where every processor is able to directly communicate with one another with no

intermediary nodes (see Figure 1). In order to implement such a system, the processors' transceivers

have to dynamically tune to the channels through which the communication takes place; this tuning

time varies from a few milliseconds to a few microseconds over a quite broad wavelength ([6]), which
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Human Capital and Mobility project MAP, and by the Brazilian CAPES.
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is considered to be very slow in comparison to a typical packet transmission time. Therefore, this

could represent a severe drawback when building very large networks ([10]).
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Figure 1: A single-hop passive star lightwave network. The ci0s represent the channels which can

be accessed by each processor's transceivers.

On the other hand, the same kind of OPS couplers can be used in the construction of multi-hop

networks, where a node is assigned to a small and static set of prede�ned channels, that rarely

change, usually to improve network performance (see Figure 2). Pairwise communication may then

need to hop through intermediate nodes ([2, 11]). Thus, in multi-hop systems, communications take

longer, but nodes are simpler, cheaper, and more reliable than in single-hop systems.
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Figure 2: A multi-hop passive star lightwave network. The ci0s represent the channels which can be

accessed by each processor's transceivers.
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Several topologies were proposed as point-to-point logical architectures for WDM passive star

networks. In [12, 14], di�erent aspects of the de Bruijn, torus, and supercube graphs are studied

and simulated with respect to their possible use in network design. Even the well known Manhattan

street network is based on a point-to-point torus architecture ([9]). Unfortunately, these topologies

either use too many channels, have too many transceivers, or su�er of a large diameter.

Notice, further, that an intrinsic feature of optical communications is that the channels induced

by WDM can span a large number of nodes in the network. Hence, point-to-point logical topologies

do not e�ciently use optical technology and new avenues have to be explored.

One-to-many topologies As discussed above, point-to-point topologies are based on graphs.

On the other hand, one-to-many topologies are best represented by hypergraphs ([3]), that can be

seen as a generalization of graphs in which edges are replaced by hyperedges1 joining sets of nodes,

instead of only two nodes. As for graphs, a hyperedge represents a communication means; a message

sent on a hyperedge can be read by all nodes in that hyperedge. In the case of WDM passive star

networks, a speci�c wavelength (or channel) can be seen as a logical bus and, as pointed out in [15],

a logical bus can be modeled by a hyperedge (see Figure 3 for the hypergraph representation of the

multi-hop network depicted in Figure 2). To make this idea clear, let stations A, B, and C form

a hyperedge (i.e., share a channel) and the channel speed be v Mbit/s. Then, if A has v Mbits of

data, they can be transferred to both B and C in one second.

Our work is focused on new such architectures for multi-hop systems, whose main performance

characteristics are their regularity and modularity ([5, 8]). Instead of being based on models arising

from graph theory, these networks are designed with ideas stemming from hypergraph theory, as

described above. These topologies can be incrementally expanded, that is one can add a new node

to the existing network without a major recon�guration. Another positive point is that the number

of links between two processors is �xed, thus allowing that each node has a set of transmitters and

receivers tuned to some pre-determined frequencies. The fault tolerance is proved to be very high,

assuring a reliable communication and network performance. Finally, only a small number of hops

is required in any pairwise communication, and the network allows easy schemes for global routing

operations ([5, 8]).

In this paper we present a comparative study of three hypergraph�based networks � namely

the stack-ring, the stack-torus, and the hypertorus ([5]) �, and two very well known graph�based

1Although intuitive, it seems that the term hyperedge has been �rst used in an early version of [15].
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topologies � namely the hypercube and the two�dimensional torus ([7]). It is clear that one-to-

many topologies would be much more e�cient than point-to-point topologies when implementing

multicast (i.e., one-to-many) communications. However, since many applications require one-to-one

communications, in the subsequent sections we study their routing�related stochastic behavior for

one-to-one communications that were obtained through simulation. It will be shown that even in

this case, hypergraph�based topologies can be more e�cient than graph�based topologies.

In the next section we describe the hypergraph�based networks whose performance was simu-

lated. The simulator itself is presented in section 3, where its model, assumptions, and experiments

are discussed. The results are given and analysed in section 4. We close the paper with some

concluding remarks and directions for further research.

2 Emerging networks

Many interconnection topologies have been proposed for the design of LANs and MANs using

multihop lightwave techniques in passive star WDM networks. Among others, we can cite the Shu�e

Exchange network ([1]), the Manhattan Street network ([9]), de Bruijn graphs based network ([14])

and the Supercube ([13]). These networks are based on graph models, and the possibility of a node

to communicate with another one is represented by an edge joining the two nodes. Thus, in any

communication step, only pairs of nodes are involved. In [5, 8], it was proposed to grow the number

of nodes involved in each step, pro�ting mostly from the fact that multiplexed channels can actually

be seen as logical resources shared among many processors and hence modeled by hyperedges. The

network topologies are based on hypergraph models, and called hypertopologies.

2.1 Hypertopologies

In the hypergraph representation, a channel is a hyperedge joining many nodes, and the processors

are the nodes of the hypergraph. In the remainder of the paper we shall use hypergraph or lightwave

network interchangeably. In the following we formally de�ne the hypertopologies to be simulated in

sections 3 and 4. They use mainly the concept of stack-graphs ([4, 5]) and their Cartesian product.

In a nutshell, a stack-graph of order m and size n is obtained by piling up m copies of the original

graph of n nodes and subsequently replacing the edges by hyperedges (see Figure 3 for an illustration

of a case where 3 copies of a ring of size 6 are piled up). Consequently, the stack-graph will have

nm nodes.
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2.1.1 Stack-ring

Let R be a ring with n vertices labeled from 0 to n� 1, and edges of the form (i; (i+1)mod n), for

0 � i < n.

De�nition 1 (Stack-ring Rn;m(V; E)) A stack-ring (see Figure 3) of size n and order m is a

hypergraph Rn;m(V; E), with the set V of vertices and the set E of hyperedges de�ned as follows.

. V = f(0; 0); (0; 1); : : : ; (0;m � 1); (1; 0); : : : ; (1;m); : : : ; (m� 1; 0); : : : ; (m� 1; n� 1)g and

. e 2 E () e = f(0; i); : : : ; (m� 1; i); (0; (i + 1) mod n); : : : ; (m� 1; (i + 1) mod n)g,

for 0 � i < n.

2

c

c

20

c c c c1 2 3 4 5

6

0100 02 03 04 05

22 23 24 25

12 13 14 15

21

1110

Figure 3: Stack-ring of size 6 and order 3 (R6;3). The ci0s represent the channels which can be

accessed by each processor's transceivers.

We recall that Figure 2 shows a passive star implementation of the stack-ring depicted above.

2.1.2 Stack-torus

Stack-rings can be seen as a generalization of rings from graphs to hypergraphs using the concept

of stack-graphs. We can thus do the same thing to generalize tori into stack-tori (see Figure 4), by

piling up m copies of a torus of n nodes in order to get a stack-torus with nm nodes.

2.1.3 Hypertorus

Stack-rings and stack-tori have been de�ned by a generalization of classical graphs to hypergraphs

being in addition regular and uniform. In order to obtain another kind of hypertopology, the
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Figure 4: A stack-torus of size 4 � 6 and order 3 (&(T; 3)). For the sake of clarity, wrap-around

channels are not represented.

hypertori, a Cartesian product of stack-rings is used, rather than the generalization of tori.

Among all the various existing de�nitions for the Cartesian product of hypergraphs, the one

adopted in this paper is as follows.

De�nition 2 (Cartesian product for hypergraphs) The Cartesian product of two hypergraphs

G
1(V 1

; E
1) and G2(V 2

; E
2) is a hypergraph G(V; E) = G

1(V 1
; E

1)� G
2(V 2

; E
2) such that:

. V = fvig, 0 � i < n1n2, vi = (v1j ; v
2

k) with j 2 f0; : : : ; n1 � 1g and k 2 f0; : : : ; n2 � 1g, where

n1 = jV
1
j and n2 = jV

2
j.

. E = ffa; bg; for all b 2 e2g;8a 2 V
1
;8e2 2 E

2
g

S

ffc; dg; for all c 2 e1g;8d 2 V
2
;8e1 2 E

1
g.

2

Below we show how this operation can be used to construct more complex hypergraphs from

simple pieces as building blocks. Just for a start, notice that the stack-ring can be rede�ned as the

Cartesian product of the original ring of size n by a single hyperedge of cardinality m. Roughly

speaking, the idea is that each hypertopology is replicated as many times as there are nodes in the

other, while maintaining the adjacency relations.

De�nition 3 (Hypertorus T ) Using the given de�nition of the Cartesian product, a 2-dimensional

hypertorus (see Figure 5) is a product of 2 stack-rings (T = R
1
n1;m1

�R
2
n2;m2

).
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2

Notice that the hypertorus is di�erent from the stack-torus proposed above (compare Figures 4

and 5), the former requiring more channels than the latter and consequently showing either a

smaller diameter or fewer processors per channel. The hypertorus is not globally uniform and

regular. However, both regularity and uniformity can be retrieved in each dimension separately.
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14 44 74

21 51 81

24 54 84

10 40 70

13 43 73

20 50 80

23 53 83

Figure 5: A hypertorusR3;3�R3;2. For the sake of clarity, wrap-around channels are not represented.

3 Simulation

Sen and Maitra presented in [12] a simulator used to evaluate the dynamic quality of point-to-

point lightwave networks. Using the same framework, we implemented a similar simulator for the

hypergraph�based lightwave networks studied in this paper.

3.1 The simulator

The simulated networks communicate under the store-and-forward mode. Hence, when an interme-

diate node receives a message which is not at its �nal destination, the node forwards the message

to the �rst node in its shortest path to the destination. To implement this, the hypertopology is

described by an adjacency matrix and a routing table. For a node n and a hyperedge h, the value

in the adjacency matrix of adjacency[n][h] is 0 if the node n is not adjacent to the hyperedge h, i

if the i� th port of n is connected to h. For two nodes n1 and n2, the value in the routing table of

routing[n1][n2] is the second node of a shortest path going from the node n1 to the node n2 (we
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consider that n1 is the �rst node of this path). There are four main functions that are used to build

the networks:

createBus(size) creates a logical channel interconnecting size processors.

createRing(size) creates a point-to-point ring with size processors.

CartesianProduct(ht1, ht2) creates the Cartesian product of two hypertopologies ht1 and ht2.

stackGraph(m, G) creates the stack-graph &(G;m).

By combining these functions, we can easily create functions for building tori, hypercubes, stack-

rings, hypertori, and stack-tori. All these functions give an adjacency matrix and a routing table

(CartesianProduct() and stackGraph() build the respective optimal routing tables with the help

of the given hypertopologies).

3.2 Simulation parameters

There are three control parameters, namely load, speed and number of nodes. The o�ered load

is the number of packets generated at each node per second. The inter-packet generation time

is exponentially distributed. This load has been varied from 10 packets/s to 500 packets/s. The

channel speed is the number of bits that can be transmitted per second. This speed has been varied

from 40Mbit/s to 160Mbit/s. Finally, we also controlled the number of nodes in the considered

network. Table 1 shows the corresponding con�gurations for the studied hypertopologies. We

simulated con�gurations having between 36 and 320 nodes.

Three other parameters remained �xed during our simulations. They were the packet size, the

fault frequency, and the fault duration. The packet size has been �xed to 8000 bits. The fault

frequency is the number of transmission errors per second caused by a link failure. During the time

a link is faulty, the packets �owing on this link will be lost and must be resent. Furthermore, when

a link is faulty, it remains in that state for a duration of time given by an exponential distribution

with mean equal to fault duration.

The �ve statistics of interest collected per simulation are:
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Packet delivery time The mean time taken by packets from their creation up to their suc-

cessful arrival at destination.

Waiting time The mean time taken by packets in the waiting for a communication link.

Link utilization The average link utilization is the mean taken over all links of the ratio of

the link utilization time to the simulation time.

Throughput The number of successfully delivered packets per unit of time.

Number of hops The mean number of hops in the packet transmission path.

3.3 Simulation experiments

We performed three sets of tests. The �rst was done with a varying load, the second with a varying

speed and the last with a varying number of nodes. When �xed, these parameters were set as

follows: 100 packets per second as o�ered load, 100 Mbit/s as channel speed and 120 nodes.

The simulated hypertopologies are described in Table 1, and the characteristics of the simulated

hypercubes and tori are given in Table 2.

diameter number of nodes stack-ring hypertorus stack torus

36 R4;9 R3;2 �R3;2 &(T (3; 3); 4)

2 54 R4;13 R3;2 �R3;3 &(T (3; 3); 6)

72 R4;18 R3;2 �R3;4 &(T (3; 3); 8)

90 R6;15 R5;2 �R3;3 &(T (5; 3); 6)

3 120 R6;20 R5;2 �R3;4 &(T (5; 3); 8)

150 R6;25 R5;2 �R3;5 &(T (5; 3); 10)

192 R8;24 R4;4 �R4;3 &(T (4; 4); 12)

4 256 R8;32 R4;4 �R4;4 &(T (4; 4); 16)

320 R8;40 R4;4 �R4;5 &(T (4; 4); 20)

Table 1: Number of nodes for the studied hypertopologies.

Remark: Notice that, because of topological constraints, the stack-ring R4;13 is composed of 52

nodes instead of 54 nodes. 2

Finally, when testing varying load and varying channel speed, we used �xed (hyper) networks.

Thus, we decided to simulate, whenever possible, (hyper) networks with 120 nodes. (As a matter of
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topology con�guration diameter number of nodes

T (6; 6) 6 36

T (6; 9) 7 54

T (8; 9) 8 72

T (10; 9) 9 90

torus T (10; 12) 11 120

T (10; 15) 12 150

T (16; 12) 14 192

T (16; 16) 16 256

T (16; 20) 18 320

H(5) 5 32

hypercube H(6) 6 64

H(7) 7 128

H(8) 8 256

Table 2: Number of nodes for the hypercube and the 2-dimensional torus.

fact, the throughput of the hypercube is better than all other networks simply because its number

of nodes (128) is more important than in the other networks (120).) Furthermore, all hypernetworks

have diameter 3. Table 3 shows the simulated (hyper) networks, giving the chosen con�guration

with number of channels (hyperedges), number of �xed transceivers per node (degree), and number

of processors per channel (rank).

topology con�guration nodes hyperedges degree rank

Stack-ring R6;20 6 2 40

Hypertorus R5;2 �R3;4 90 4 8

Stack-torus &(T (5; 3); 8) 120 30 4 16

Torus T (10; 12) 240 4 2

Hypercube H(7) 128 448 7 2

Table 3: Hypertopologies with 120 nodes and a diameter of 3.
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4 Results of the comparison

As expected, because of their good hypergraph-theoretic properties discussed in [8], the hyper-

networks outperform graph�based networks in almost all aspects. If we further recall that these

hypernetworks use only a constant number of transceivers per node, and a sub-linear number of

multiplexed channels, then it seems that they represent a reasonable alternative to graph�based

LANs and MANs. In the following we give �gures plotting the collected data.

4.1 Varying number of nodes
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Figure 6: Packet delivery time and average number of hop versus number of nodes.
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Figure 7: Link utilization and waiting ratio versus number of nodes.

In Figure 6, we see that the performance of the torus with respect to the packet delivery time

and average number of hops is much worse than the other topologies. This is easily explained by
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the fact that the diameter of the torus augments more than the others when increasing the number

of nodes. The hypergrid and the stack-torus have a similar performance, and the hypercube has a

rather constant performance, but worse than the hypernetworks, also because of its greater diameter.

Figure 7 shows two parameters that strongly depend on the number of channels (edges or

hyperedges). The greater this number, the smaller the overall channel (or link) utilization and the

average ratio of waiting time to delivery time. This is con�rmed by the rather bad performance of

the stack-ring, the good one of the hypercube, and the almost similar behavior of the other three

networks.

4.2 Varying channel speed

Recall that while varying channel and load, all the simulated networks have 120 nodes, except for

the hypercube, which has 128 nodes because of topological constraints.
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Figure 8: Packet delivery time and waiting ratio versus channel speed.

Figure 8 shows that, with respect to the packet delivery time, the hypertopologies have a better

performance than the graph�based ones, although the asymptotic behavior is quite the same for all

networks. Concerning the average waiting time / delivery time, and the overall link utilization shown

in Figures 8 and 9, we recall that both parameters depend on the number of channels. Therefore,

the stack-ring behaves poorly in comparison to the others, that have all a similar behavior.

Figure 9 depicts also the results on the throughput. The hypercube outperforms the others

because it has 128 nodes instead of 120.
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Figure 9: Link utilization and throughput versus channel speed.

4.3 Varying load

In Figure 10 one can see that the small number of channels of the stack-ring is a drawback for a

good performance. With respect to the packet delivery time, the hypertopologies have the same

behavior, better than both the torus and the hypercube. Concerning the average ratio waiting

time to delivery time (�gure 10) and the link utilization (�gure 11), they present similar behaviors,

showing that the number of channels in the network plays an important role, as it can be con�rmed

by Table 3. Hence, graph�based networks had better performance because of their larger number

of edges.
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Figure 10: Packet delivery time and waiting / delivery time versus load.

Figure 11 (throughput) shows a homogeneous behavior of all networks, with a slight advantage

for the hypercube, that has more nodes than the others. We remark that we do not collect results

over 400 packets for the stack-ring due to an excessively long simulation running time.
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Figure 11: Link utilization and throughput versus load.

4.4 Remarks

Clearly, hypertopologies are best suited for one-to-many communications. Nevertheless, the results

above show that, in general, the hypertopologies have a better performance even in the case of

one-to-one communications. However, it is absolutely necessary to �nd a good tradeo� between

their number of channels and diameter. For instance, the stack-torus used in the simulations had

30 channels and diameter 3, showing a good average performance, while the stack-ring that has

diameter 3, but only 6 channels, behaves quite poorly with respect to experiments where the number

of channels is involved. Therefore, an adequate balance among channels, degree, and diameter should

be obtained for hypernetworks.

5 Conclusions and perspectives

We presented a comparative study of three hypergraph�based networks and two well known graph�

based networks. Our goal was to test these emerging proposals for the logical interconnection

of high performance LANs and MANs against usual ones. It had previously been shown that

hypernetworks outperform graph�based ones in their graph�theoretic properties. In this paper, our

simulations showed that the hypernetworks can be more e�cient than graph�based ones also with

respect to their routing�related stochastic behavior, even for one-to-one communications.

An important issue in this subject is to decide which of the several possible hypertopologies is

best suited for implementation of high performance local and metropolitan area networks. Also, the

study of routing-related stochastic characteristics and access protocols for multicast (one-to-many)
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communications in hypertopologies is a very interesting direction for further research.
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