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Abstract. In the context of a face—cloning system, we present a head
tracking algorithm based on an enhanced analysis/synthesis feedback
loop which is able to handle very large rotations out of the image plane.
The key i1dea is to make the feedback loop synthesize search patterns
for the head facial features by taking into account the current face posi-
tion, rotation and lighting. As pointed out by the work of A. Gagalowicz,
analysis/synthesis cooperations are very promissing, but require a high
level of realism from the synthesis module. Consequently, we present
geometric and photometric head modeling techniques that are realistic
and computationally efficient. Finally, we reformulate a classic differen-
tial block—-matching algorithm to integrate real and synthesized facial
features. In addition, the feature tracking will be shown to be robust to
the speaker’s background, and the system performance are reported and
discussed.

1 Introduction

After a brief presentation of face—cloning, this introduction points out the con-
straints that are inherent to a teleconferencing system, and how an enhanced
feedback loop based on synthesized facial features can inprove a face tracking
algorithm.

1.1 Related Work

Face—cloning aims at animating a synthetic face model by analysing a video se-
quence of a real speaker. Basically, any cloning algorithm must address two dif-
ferent issues, namely the model global animation (corresponding to the speaker’s
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position and orientation in the 3D space), and the model local animation (show-
ing the speaker’s current facial expressions). In the literature, many references
concerning video—cloning report promising results, such as [18,21,16,8,13,10].
Most of them assume that the speaker is looking at the camera with small
head motions, and they generally use an entirely synthetic head models that
represent the user in a stylish manner (avatar). Such “hand-made” models are
popular because they are easily manipulable in real-time. A realistic physics—
based model can be found in [21], where Terzopoulos and Waters consider a
person—dependent Cyberware scan, and adapt it so that it can be handled by
an automatic animation system. Although highly realistic and fully functional,
their model is however too complex to be animated in real-time on a standard
computer, and their analysis framework requires black contours to be drawn on
the speaker’s face.

1.2 Virtual Teleconference Constraints

The material presented in this paper has been derived in the context of a vir-
tual teleconferencing system [22]. Its telecommunication aspects impose specific
and challenging constraints on facial cloning, like the face analysis and synthe-
sis frame-rates, the image processing delays, the very low bandwidth networks
available to transmit the animation parameters and the possibility to visualize
the clone under a point of view different from the analysis camera. Moreover, if
such a system has to be used outside of a laboratory, it should operate without
colored marks taped on the speaker’s face, deal with unknown lighting conditions
and background, allow the users to move freely in front of the camera, and yield
visual results that are highly realistic. [15] provides an overview about what a
virtual teleconferencing system can be useful for.

1.3 Principle of the Analysis/Synthesis Feedback Loop

To provide a high level of realism, we propose to use 3D texture-mapped mod-
els to represent each speaker within the virtual area. Taking advantage of this
realism, we wrote a global motion tracking software implementing a modified dif-
ferential block—matching algorithm tracking 2D feature points from synthesized
patterns. The head tracking loop proceedes as follows (see figure 1):

— a Kalman filter predicts the head 3D position and orientation estimates at
time ¢ given the previous 2D feature points observations in all images until
time ¢t — 1;

— using the estimated 3D parameters and the speaker’s head model, search
patterns for the facial features are synthesized, hence taking into account
the scale and geometric deformations that can be expected given the user’s
position, and the background interference with the patterns. In addition,
due to the 3D photometric compensation module described in section 2, the
search patterns also reflect the expected face lighting;
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— a reformulated block-matching algorithm finds the synthesized patterns in
the image taken at time ¢;
— the Kalman filter is then fed with the 2 observations of the facial features

in the image plane to produce new estimates for the head 3D position and
orientation at time ¢ + 1.
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Fig.1. Feedback loop strategy based on a Kalman Filter and Synthetic Images —

¥ and ¥ are the speaker’s 3D position and orientation predicted and filtered esti-
mates.The shown examples were extracted from a 30 seconds video sequence captured
in a 320 x 242 resolution at 10 frames per second.

Kalman filters are generally used in head tracking systems for two different
purposes: the first one 1s to temporally smooth out the estimated head global
parameters, as in [18], the second one is to convert the 2D facial features posi-
tions observations into 31 estimates and predictions of the head position and
orientation [1]. In our application, the Kalman filter has one more goal: it makes
the synthesized model have the same scale, position and orientation than the
speaker’s face in the real view despite the acquisition by an uncalibrated cam-
era. This is achieved by deriving the measurement equations of the filter, not
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from default camera parameters, but from the perspective projection of the syn-
thetic facial features performed by the synthesis module. When the Kalman filter
is fed with the speaker’s observed facial features, it does not recover the 3D po-
sition and orientation of the user in the real world, but the 3D position and
orientation of the clone in the synthetic world that will match the observations
made in the real image'.

Our enhanced analysis/synthesis cooperation makes the face tracking more
robust without requiring artificial marks, and supports very large rotations out
of the image plane, as it can be seen on figure 1, while meeting the requirements
detailed above. This paper focuses on the key points of the analysis/synthesis
chain that contribute to its efficiency. In sections 2 and 3, we present geometric
and photometric modeling techniques that create a face model realistic enough
to be integrated in an analysis/synthesis feedback loop. Section 4 describes the
influence of synthetic patterns on the block-matching formulation, including the
robustness to the speaker’s background. Finally the performance of the tracking
system 1s discussed in section 5.

2 Face Model Construction

In the literature, it seems that the easiest way to build a new 3D face model
for a person is to start from an existing model, and to adapt it to conform the
user’s face, with more or less automated algorithms, and starting from various
kinds of input data. For example, one may choose to work with 210 images of a
new person: Chaut et al. adapt by hand a spline-based generic mask using a face
and profile view of the person, and texture it with pixels extracted from both
views [4]. This process can be automated by image processing techniques, as in
the chain described by Tang and Huang, based on the extraction of characteristic
facial points [20]. In this category, we also find the work of Reinders et al., who
use only one view for “head and shoulders” video—coding applications in [17]. It
is clear that 2D images lack information about the user’s face geometry, and as
a result, such adapted models may have a poor geometric resolution.

Another approach consists in using texture and range data, obtained from
cylindrical geometry Cyberware range finders [5]. Such a dataset is a highly
realistic representation of the speaker’s face, but it cannot be used directly as
a face model for several reasons. First, this dataset is too dense (in average 1.4
million vertices) for real-time computation. Furthermore, due to the limitation
of the acquisition technology, the dataset is often incomplete and sometimes
includes some outliers (as in figure 2(a)). Building a higher level face model
from this kind of dataset traditionally required considerable user input, until Lee,
Terzopoulos and Waters developed a framework to adapt their generic “skin and
muscle” facial model to the range and texture data [12]. Although very authentic
and fully functional, their model is computationally complex, and cannot be
animated at interactive rates on standard workstations.

! The dynamic evolution of the filter state is trivially based on Newtonian physics
with a constant acceleration assumption.
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We propose an alternative face modeling technique from texture and range
data, yielding models that are simpler to manipulate and animate.

2.1 Mesh Recovery from Range Data

To achieve both visual realism and real-time computation, we need a geometric
model with a limited number of vertices but with enough details in order to
distinguish facial features such as the lips or eyebrows. We have developed a re-
construction system based on deformable simplex meshes [6] to build such models
from a Cyberware dataset. Unlike classic approaches, those deformable models
are handled as discrete meshes, not relying on any parameterization. Because
they are topological dual of triangulations, they can be easily converted as a set
of triangles for display purposes or standard 3D file formats like VRML [24].
Finally, they can represent geometric models independently of their topology
and they lead to fast computations.

In figure 2, we show the different stages of reconstruction from a Cyber-
ware dataset where the hair information is missing and with some outliers. The
deformable model is initialized as a sphere (figure 2(b)) and then deformed to
roughly approximate the face geometry (figure 2(c)). The last stage consists in
refining the mesh model based on the distance between the data and surface
curvature (figure 2(d)).

Fig. 2. Reconstruction of a geometric model from a Cyberware dataset: (a) range data
(b) initialization; (c) main deformation; (d) mesh refinement — We have interactively
selected the area of interest (chin, ears, nose, lips) where the refinement is performed.
The resulting mesh has 2084 vertices and was built in less than 5mns on a DEC
Alphastation 233Mhz.

The face model is then texture-mapped by associating to each vertex of the
simlex mesh the (u,v) texture coordinates of its closest point in the range data.
Where no range data is available (at the hair level for instance), we project
the vertex on the image plane through the cylindrical transformation of the
Cyberware acquisition. This algorithm therefore produces an accurate geometric
and texture face model.
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As a conclusion, let us point out that our construction system can also ini-
tialize the deformable model to an existing face model instead of a sphere, in
order to speed up the process and create different models for the same speaker
in several facial expressions, while keeping the same number of primitives and
the correspondances between the vertices of all models: this technique is called
mesh registration [23].

3 Photometric Modeling

The goal of photometric modeling is to reduce the photometric discrepancies be-
tween the speaker’s face in the real world environment and his synthetic model
directly at the 3D level, and can be seen as an alternative and elegant technique
to other 2D view—based techniques, such as histogram fitting [11]. In [7], Eisert et
al. propose an algorithm to recover the 3D position and intensity of a single infi-
nite light source from a static view assuming an initial guess of the position prior
to the motion estimation. Bozdagi and al. [3] have a more complex approach that
determines the mean illumination direction and surface albedo to be included in
their Optical Flow equation for motion estimation. Both approaches are based
on a Lambertian illumination model (i.e. composed of ambient and diffuse light-
ing) without specular reflections and cast shadows. However, in the real world,
cast shadows, and specular highlights (if the user does not have make—-up), are
likely to occur on a face, and will be difficult to compensate using only a single
light as in the previous algorithms.

In [2], Belhumeur derives that the set of images of a convex Lambertian
object under all possible lighting conditions is a cone, which can be constructed
from three properly chosen images, and empirically shows that cast shadows and
specular reflections generally do not damage the conic aspect of the set.

Motivated by the reconstruction possibility of an arbitrary illuminated view
from several object images, we propose to recover the face illumination from a
single speaker’s view by using a set of light sources at different infinite positions.
The main advantage of our algorithm is that it can rely on the OpenGL industry—
standard library to use hardware acceleration and compensate unknown light
sources with ambient, diffuse and specular components at the 3D level in real-
time. A similar idea, applied to interior design, is found in [19], where the scene
global lighting is computed from the illumination of some objects painted by
hand by the scene designer. In our algorithm, the synthetic scene lighting is
adjusted by observing the illumination of the facial features in the real environ-
ment.

3.1 Proposed Algorithm

Using OpenGL, we implemented the following general lighting equation, includ-
ing ambient, diffuse and specular reflections induced by N independent infinite
light sources for a 3D textured primitive, with an additional degree of freedom (a
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luminance offset I ¢...)

Lobject = Logreer + Liexture X (Aambient+
i=N-1 (1)
[(max{l;.n,0}) x D; 4+ (max{s;.n,0})irre=x S;])

1=0

where L,;... denotes the final pixel luminance, L. ¢u:. the corresponding texture
luminance; A, ;.. the global ambient light intensity, D; and S; the diffuse and
specular intensity for the ;th light, » and I; the object normal and the ;th
light source direction, s; the normalized bisector between the ith light source
direction and the viewing direction, and finally “shininess” the specular exponent
controlling the size and brightness of specular highlights.

One can readily verify that the rendered image pixels values in equation 1
are linear with respect to the components of the light sources. Therefore, all the
unknowns (the light source intensities, and the luminance offset if needed) can
be estimated by a simple least mean square inversion for all the face pixels. The
estimation process does not need to be constrained to output positive intensities,
since OpenGL can deal with negative light intensities. Therefore, our algorithm
consists in the following steps:

— align the synthetic model with the speaker’s image;

— extract, from the real speaker’s image, pixel luminance values around the
facial features of interest. Pixels being too bright are discarded to avoid
areas where the camera sensor might have saturated (the luminance of such
pixels would not depend linearly on the light sources contributions);

— extract, from the synthetic image, the corresponding texture luminance val-
ues and object lighting normals;

— the light sources intensities (and the global luminance offset, if allowed) are
finally estimated by solving equation 1 in the least mean square sense.

3.2 Results

The results of the compensation algorithm can be seen in figure 3, with and
without an illumination offset. It 1s clear that such a compensation does not ex-
actly match the real scene illumination, but it helps gaining consistency between
the synthetic and real facial features, and allows the feature—tracking algorithm
to match them correctly. Interested readers are invited to download [23] for an
experimental study about the compensation performance.

4 Block—Matching Synthetic Facial Features

We have seen in the former sections that resorting to synthetic facial features
predicted by a Kalman filter solves the problems of local geometric distortions,
variations of scale and changes of lighting due to the speaker’s 3D motions.
And considering that the synthetic face is rendered on a black background, it is



8 Valente et al.

(©) (d)

Fig. 3. Illumination compensation on a real face — from left to right: the speaker’s
head model with no directional light source, the speaker in a real environment, and the
same model with illumination compensation (with and without an illumination offset).
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also possible to extract cues on the way facial features might overlap with other
background objects during large head rotations.

However, a classic block-matching algorithm may have problems to find the
correct match for two reasons: the first one is that some photometric differences
might still occur between the synthesized and real facial features, and the second
one 1s that the synthetic background might be matched against the real one. To
overcome these limitations, we reformulated the block-matching algorithm.

4.1 Block—Matching Reformulation

Extending the theory presented in [9], we propose to adapt the classic differ-
ential block-matching formulation (sometimes called pattern correlation in the
literature) to handle photometric model failures using a luminance scaling and
offset on synthesized features.

The differential block—-matching algorithm is derived by considering that a
reference pattern at time 0 denoted I(0,0) (all pixels are placed in a column
vector) can undergo some perturbations gt = (g, -, pn)? (most often displace-
ments over the image). Writing a Taylor series expansion for small perturbations
between two consecutives frames, we have

I(p,7) = I(0,0)+ Mp + I.7 + higher—order terms (2)

with M = [%(0, 0)]--- |%(0, 0)] and I, = 21(0,0). Solving for ¢ in the least

a
ot
mean square fashion yields
p=—(M"M)"*MTI, (3)

In equation 2, the p perturbations are general enough to represent a local pat-
tern rotation or scaling, and we add a luminance scaling and offset perturbation
in case of a photometric model failure for a synthesized feature (ﬁ(o, 0)=
I(O’ 0) and ﬁ(o’ 0) = (1’ B I)T)'

This formulation is computationally efficient, because only the translation
parameters® of p have to be computed from (3), although other degrees of free-

dom can be introduced in M (like luminance variations, local rotations...).

4.2 Background Awareness

In figure 4, the synthesized model is rendered on a black background, which
appears in the extracted rectangular nose pattern. With no special care, a classic
differential block—matching algorithm 1is likely to match these black pixels with
the image darkest areas. With a small computational overhead, our algorithm
takes them into account to match only the potential feature areas in the real
speaker’s image.

2 The Kalman Filter is fed with the 2D facial features displacements in the image
plane, and does not rely on any other local parameter of g to estimate the head 3D
global position and orientation.
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Fig. 4. Synthesized patterns are robust to the background presence.

To make the synthesized patterns be more selective (or matched against non—
rectangular areas), the pattern pixels are classified into 2 subsets, I|, and I,
whether they belong to the face or to the background area. If equation 3 is
interpreted as the simple correlation of the pixel-wise difference I between the
current image and the full feature pattern with matrix —(MTM)_lMT, then
I;|; (the pixel-wise difference restricted to the I|, subset) is the contribution
of the face pixels to the general displacement g.

In practice, when a background pixel is detected in a synthetic pattern, the
pixel-wise difference for this pixel in I is set to zero. Hence, the background
objects (corresponding to black parts in the synthesized patterns) have no impact
on the correlation score, and the algorithm finds the correct match despite other
objects in the feature neighborhood.

5 Discussion on the Tracking Robustness

The result of our face tracking algorithm can be seen in an Mpeg sequence avail-
able on the WWW [14]. Tts speed mainly depends on the workstation graphics
hardware acceleration and its video acquisition speed. On a 0? SGI workstation,
the analysis frame rate using 12 facial feature areas is:

— 1 image per second, when synthesizing patterns, computing the product
—(MTM)_lMT, and updating the Kalman filter for every frame;

— 10 frames per second, when disabling synthetic pattern calculation for every
frame, but still enabling the Kalman filter — in this case, large face rotations
might cause the system loose the user’s head;

— full frame rate, when disabling both pattern synthesis and the Kalman filter
— the system just tracks the facial features in 2D, without recovering the
head 3D position and rotation, and becomes very sensitive to rotations.

In fact, the individual facial features trackers work quite well, even during
large face rotations when it becomes difficult to distinguish the facial features
from the scene background (look for example at the speaker’s right eye on fig-
ure 4). From our experiments, the main difficulty to obtain a robust face tracking
system 1is the tuning of the Kalman filter, which requires to set noises for the
observations and the system dynamics, as a trade—off between the filter stability
and 1its reactivity to incoming observations. The problem in our application is
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that we do not have any a priori knowledge about its dynamic range, unlike in
a more physics—based sytem (a radar tracking a plane for instance).

Another question that might be raised is what happens when the user closes
his eyes, smiles, or does anything that differs from the static facial expression of
his model: in general, the system copes with it, because it melts enough facial
features observations to allow a few of them to be wrong.

6 Concluding Remarks

In the previous sections, we proposed a face tracking framework which has the
possibility to feed the feature—tracking procedure with synthetized facial pat-
terns. We presented geometric and photometric modeling techniques to make
the synthesized patterns be closer to their real counterparts. We also reformu-
lated a block—matching algorithm to make it work with synthetic input data,
and showed how to handle the presence of the speaker’s background in extreme
positions. It is important to note that such an analysis/synthesis cooperation is
successful because of the realism of our modeling techniques, and the design of
the Kalman filter to make 1t control the model synthesis.

We have already obtained early results in the modeling of facial expressions,
and we are presently working on how to relate them to some analysis techniques
within the feedback loop. When the cloning system is complete (i.e. capable to
update the model with the user’s current facial expressions, and consequently
the details of the synthetic patterns feeding the trackers), we expect it to be less
sensitive to the Kalman filter tuning due to the gain of tracking accuracy.
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