EURECOM

S op h i a

Institut Euecom
Department of Mobile Communications
2229, route des @tes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-09-235

Computer Aided Design of a Firmware Flashing Protocol
for Vehicular On-Board Networks

September 28, 2009

Muhammad Sabir Idrees, Yves Roudier

Tel : (+33) 493 00 81 90
Fax : (+33) 493 00 82 00
Email : {Muhammad-sabir.idrees, Yves.roudi@eurecom.fr

institut Eucom’s research is partially supported by its industrial members: BM@dGRe-
search & Technology - BMW Group Company, Bouygué&&tom, Cisco Systems, Franceldcom,

Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.

Computer Aided Design of a Firmware Flashing Protocol
for Vehicular On-Board Networks

Muhammad Sabir Idrees, Yves Roudier

Abstract

Vehicular On-Board Networks consist of up to 70 electromioteol units
(ECUs) interconnected by buses and gateways and organittéd domains
with different trust levels. This paper describes how th&gle of a protocol
for deploying a new firmware onto various vehicular ECUs rhigé auto-
mated. In particular, such a protocol should prevent agtagkhe firmware
update process and make sure that no malicious firmwareualbdistalled
in place of a regular firmware update, despite the fact thatay be sent
through insecure domains. Designing security protocal€E6U commu-
nication in such architectures can become quite complexearad-prone,
especially given the computational and deployment coimssréhat apply in
the domain. This paper discusses how the protocol desigitgtt meceive
some help in exploring fundamental design decisions bargtesystem-
atic review of alternative security architectures and pti&threats.

Index Terms

Vehicular on-Board Network, Protocol Design, Securitygendies

Contents

1

2

Introduction 1
Design Methodology 2

2.1 AttackerModel Lo 3
2.2 ThreatAnalysis 3
2.3 Security Requirements 000 4
Specifying the Design Space 5

3.1 System Representation 5
3.2 Introducing the Security Expertise 6
3.3 Discussion 7
Firmware Flashing Protocol Design 8
Related work 9

5.1 Design of Firmware Update Protocols 9
5.2 Prolog Based Protocol Verifiers 10
Conclusion and Future Work 11
Acknowledgments 11

List of Figures
1 On-Board Reference Architecture [1]

2 Attacks on Firmware Flashing Process 2]
3 Functional View of Firmware Flashing Process

Vi

1 Introduction

Future visions of road transportation include networked vehicles and intelli-
gent transport systems (ITS) that will enhance the safety of drivetother road
users. The on-board network of these vehicles contains more thated@onic
control units (ECUSs), electronic sensandelectronic actuatorinterconnected by
buses and organized in different domains. Depending on the communitagion
and system requirements such as flexibility, modularity, scalability, and feigtd
tion properties, each domain control unit define separate communicationrketw
topology and use different Bus system i.e. LIN, CAN, FlexRay or MOS3$toown
in Figure 3.

Numerous firmwares are installed in the ECUs to enable various functional-
ities, for instant vehicle control or maneuverability. In order to verify ttates
of the vehicle (system functionality, security), regular firmware diagrensisup-
dates are required. As of now, the firmware diagnosis and updatesgriscdone
off-board, by connecting (hardwired) a diagnosis tool with the orrdoatwork
and performing firmware updates. However, in the future, it will be pbesdd
perform remote diagnosis and the remote flashing. This will provide deagra
vantages over hardwired access, such as faster firmware updatesatimg and
it will improve the efficiency of the system by installing firmware updates as soo
as they are released by the car manufactures.

In-vehicle netwaork structure Communication with

i i Communication GP&iGalileo
Diagnosis
I — Service Providers
Unit U DSRC
CAN J FlaxRay . _
— Road Side Units
| | 1 1
P csc BEM -

S Brake Control
|
Hybrid Drive Chassis § Tea] W Tere
R les “Adao
—=
[T e | me TerephenE
Chasse Sersom [Seat ECU
e.g. Seer Angle

CAN F Flex Ray CAM / FlexRay CaN MOST # Bthemet

=
i
C

3
&
a
5

I
Powertrain Chassis & Safety LBDdY Electronic Head Unit Elustacth
TC

Mobile Device

Figure 1: On-Board Reference Architecture [1]

The remote firmware flashing [1] process relies on a diagnosis reqerestely
sent by a service station to the Communication Unit (CU) of an on-board rletwo
A possible consequence of diagnosis would be the update of firmwaedityu

the car manufactures, to improve the functionality of the system. A diagnosis too
requests the information it needs from the ECU (ECU type, firmware version

in order to update the firmware.

=

Most existing solutions for implementing firmware update protocols rely on
the development of the lightweight security protocols over the air (SFCa)grid
developing a framework for self-verification of the firmware updateifdgrder to
provide end-to-end security. Although these solutions provide a séicomgare
update on a wireless link moreover, the verification of the correct firmiaaosing
virtualization techniques. These solution does not consider the impact ofdmenw
updates on the whole system architecture of the vehicle, e.g., in [3], symmetric
encryption technique is used and it does not deal with key managemees.issu
Several assumptions regarding trust relationship between vehicle aiadt poe
made, such as that the portal always sends the correct firmwareefoaite these
approaches do not consider the intrusion and denial of service atbackshi-
cle and portal. However, there are numerous scenarios, where akeatitacks
one or both, the portal (service station in our use case) system andhicteise
on-board network, in order to harm driver, gaining information aboaititiver, fi-
nancial gains, gain information about vehicle manufacturer’s technabotygain
personal advantages. Several attacks are identified in [2] for ardbahicular
network, i.e., gaining access to other domains of the on-board netwodethiee
station injects bogus authority keys into the ECU which compromise the overall
security of vehicular on-board architecture.

The design of security protocols for such an architecture can becoitee qu
complex and error-prone, especially when information flows from diffetrusted
to untrusted domains and vice versa. Our solution to these problem relies on th
development of an expert system for firmware flashing protocols. Itilisua-
der development, but it has been able to guide the system architectureetdsig
consider possible design solutions to implement firmware flashing protoceseTh
design solutions will prevent the development of inconsistent securityicodu
and eventually reduce the computation and deployment constraints.

The remainder of this paper is structured as follows. Section Il disctisses
design methodology. In section lll, discusses the design space sataificSec-
tion IV describes related work. Section V presents the future work aoticgéeV|
concludes the paper.

2 Design Methodology

The design of security system usually requires a fully specified systemi ar
tecture and it should consider all possible critical situations, indeed,ifgneven
single security factor can lead toward inconsistent security solutionstder ¢o
consider critical situations during firmware flashing process, we parfom at-
tacker model and threat analysis. Based on attacks and threat anagy/sigecify
several security requirements to secure firmware flashing and to ensured! sys-
tem security.

1The portal is the central unit surrounded by the vehicles, communisétieshe vehicles over
the wireless connection.

2.1 Attacker Model

There are two possible ways to attack vehicular on-board network, ghrou
firmware flashing process [2].

e Attacker abuse the flashing itself in a service station (workshop).

e Gaining access to the Communication Unit (CU) through different ressurce
i.e., internet access or personalizing the car.

An attack tree [5] approach is used to capture possible attacks agalstilae
on-board network. Some scenarios of attacks could be that an attdnkszsa
the flashing itself in a service station and installs modified firmware into on-board
ECU. On the vehicle side, even if all security checks (authenticity, inte@aiy;
fidentiality, etc) are performed, the attacker can get access to other doofidire
on-board network. The attacker can also get access to the CommunicattdyyU
exploiting vulnerabilities in protocol implementation. If it is not the case, it is still
possible to attack Communication Unit via the Head Unit through internet access
or personalizing the car with external devices such as PDA, Laptoptoettiort

the firmware flashing. Another possible attack could be injecting bogusraytho
keys into ECUs, which allows the attacker to send fake messages to otheéndoma
within the on-board network or broadcasting the fake warning messagaken
vehicles and Roadside Units (RSU). More detailed attacks on vehicle ama-bo
network, during firmware flashing process, are shown in Figure 2.

2.2 Threat Analysis

Threat analysis is performed in order to identify the most significant agsets
der attack and the level of risk posed by potential attacks on the vehiculaward
network. The level of risk is defined by the severity of the attack and thiegtmil-
ity of an attack to be successfully performed. As mentioned in [2], sevefridy o
attack is measured with respect to operational, safety, privacy andishaspects
whereas probability of success of an attack depends on the attack datectias
expertise, knowledge about the vehicle on-board system and the timesbt
perform the attack. For example, in order to attack the firmware flashirgepso
the attacker should be an expert, that has knowledge about the ungealgin
rithms, protocols, hardware structure, security behavior, principleeandepts of
security employed in vehicle on-board network. Depending on the attaekpo
tial (basic, enhanced basic, moderate, high or beyond high) an attaskettack
on-board assets such as Powertrain Controller, Powertrain petipHesd Unit,
In-car Sensors, Chassis&Safety controller and the Communication Unitpdrae
pose of threat analysis is to determine and classify the attack potentialdor ea
attack identified in the Figure 2, and to give threat analysis as an input tgpbe e
system.

Garage installs modifie
firmware to CU/ECUs

) Faulty or no firmware authenticati%n
In-car Communcations
4{ Inject bogus authority keys in ECF* (exploit vulnerability or implementation errof)
Rekeying protocol vulnerability

Exploit vulnerability
in flashing protocol

In-car Communcations
(corrupt or fake messagep)

implementation
- Infected CU Wireless Communcation
Garage gains access o shutting down [————————————————— (exploit vulnerability or implementation errof)
Communication Unit communication C2C/c2l protocol

In-car Communcation
(exploit vulnerability or implementation errof)

Infected CU reports bogus/more recent version of ECU/firm\+za.r.L
HU-CU protocol

In-Car ECU
(disable or Denial of Servicg)
Infected ECU not

responding

OBD Flashing Attack Abort flashing operatio

CU takes too long Communications Unit (denial of service)
to respond (timeout Infected ECU sending too many messages to|

Reverse Engineering

In-car Communications
(listen, intercept, alter, inject, replay)
Attacker injects wrong firmware version on the domain pus

In-car Communications
(listen, intercept, alter, inject, replay)
Intercept Clear text firmware on domain Bus or backbpne

\

Flash your own firmwar

Hijacking the authentic sessi%n
In-car Communications
(listen, intercept, alter, inject, repla)
Man In Middle attack

In-car interfaceq
(access)
Bus Probing

Figure 2: Attacks on Firmware Flashing Process [2]

2.3 Security Requirements

An analysis of attack tree shows that specific attacks may contribute to-differ
ent attack objective and into different attacks. Several security mmeints are
defined to perform secure firmware flashing and to protect overdbsyagainst
attacks. These security requirements are the following:

e Code Origin Authenticity This requirement will ensure that, whenever a
flashing command is sent to ECU, the origin of code is ensured. The eeceiv
can verify that the received firmware is really from car manufacturais T
requirement will prevent attacks from installing faulty firmwares.

e Message Source Authenticityrhis security requirement will ensure that,
whenever a message arrives at vehicle reception, i.e., the Communication
Unit, message source is authentic.

e Code Integrity This security requirement will ensure that the firmware data,
received as an update, has not been modified since it left the manefactur

servers. This requirement will prevent attacks from installing faulty or-nod
ified firmware into the ECU.

e Flashing Command IntegrityWhenever ECU receives flashing command
request, the integrity of flashing command must be ensured in order to pre-
vent attacks against sending fake commands for firmware flashing.

e Firmware Data ConfidentialityThis requirement will ensure that the firmware
data should remain confidential, when updates are distributed by the manu-
facturer.

e Firmware Update ConfidentialityThis requirement will ensure that the at-
tacker should not gain information out of the flashing process abougthe v
sion of firmware being installed or the ECU being updated.

e ECU/CU Availability: This requirement will ensure that the CPU, RAM,
Bus of ECU/CU are available throughout the flashing process.

e Flashing Command Freshnesdhis requirement will ensure that all the
command sent to the ECU for firmware flashing, possess freshnesstyrop

3 Specifying the Design Space

Analyzing the design of an embedded system like a vehicular on-board net-
work requires combining multiple information about its architecture. This inglude
the description of the individual domains and bus systems, the network tgpolo
defined in each domain, the ECUs available, information flow among different
domains and information about external devices (e.g., mobile phones, IRDA,
top, Diagnosis Tool), etc. whose interconnection is forming the on-baetwdonk.

This collection of information will form the basis for the expertise drivencess
of specifying security solutions.

3.1 System Representation

The Prolog language [6] introduces a fairly declarative way of deiscriand
matching logical patterdsand has long been used both as a prototyping tool and
as a way to verify logical properties. We decided to introduce descripébaat
the architecture of vehicular systems and the assumptions made at design time
using this language for both objectives, as well as an expert systeimtioduc-
ing security-related design principles. All such information forms a knogded
base as presented in the listings below. Prolog facts are used to statedeatur
and properties that are unconditionally true for on-board networksinStance,
ext Con(’ DT’ ,’ CU) states that CU communicates with an external entity DT.
Different security properties can also be specified using Prolog fquoession.

2Prolog also can handle numerical constraints, which we don’t use indpisrp

For instance, different key sizes might be specified about encryplgomitams,
depending on their availability or security. The Prolog program and ire&pr
allows the architecture designer to query the expert system in order ia alita-
native design solutions automatically, based on Listing 1 .

% Communication Channels
extCom(DT’ ,”CU).
intCom(CU [PTC).
domCom(PTC ,” CSC).
busCom(PTC ," ENG).
truCom(ECUL’ " ECU2’).

% Network Topology

ptcBusSystem’(CAN ," LINE').
huBusSystem’(MOST’ ,” Star’).
cscbusSystem(CAN " LINE').

% ECU Properties
ecuType (MPC555’ " 32Bit’ ,” 26K ,” 448K).
ecuType (MPC565’ ,” 32Bit’ ,”64K ,”1.5M).

% Encryption Algorithms

symCrypt(3DES ," 48" ,” 168" ," 64").
symCrypt(AES' ,’ 1032’ ,’ 256’ ,’ 128’).
asymCrypt(RSA' ,’ 2048’ " 123K’).
asymCrypt(RSA' ,’ 1024’ " 123K’).

Listing 1: Facts and Rules about On-Board Network Architecture

3.2 Introducing the Security Expertise

The aim of the Prolog program is to allow the architecture designer to query
the expert system in order to obtain alternative design solutions automatically.
Queries can for instance be answered by combining the inferencefrius h(A,
M B, E) and free variables using the unification mechanism of Prolog. A query
is based on one or more goals. Executing the expert system progralts ias
the exploration of the knowledge base using the Prolog engine and its &atkw
chaining inference mechanism. This approach makes it possible to determine if
precise properties are true or false, after all the requirements anttaiotsde-
fined about the architectures have been logically combined together. Toiemme
nism is of specific interest for us in that it derives all the system desigtisatie
valid under all the conditions stated in the knowledge base. For instandeolhe
can search for all situations that match with the assurance that all messages
from A to B are confidential, based on facts, which are assumed to be true or given,
and inference rules, which describe security best practices, tetbnitaancial
constraints, deployment and real-time constraints, etc. In case theA=€ih-

municates in cleartext with ECB, the program execution would fail and return a
negative answer.

Using Prolog as the basis for our expert system also makes it possiblte ev
ate queries with free variables. Prolog introduces a unique pattern-ngedgio:
rithm, termed unification, to explore solutions of such only partially explicit Idgica
statements. For instance the program might walk through goals and seagdh f
possible authorized messages between BGdd ECUE.

In our example, the resolution of tlikashclause starts with the evaluation of
its first statemenéxt Com(A, M B) which proves that a specified messagas
sent by the sender ECA to the receiver ECUB. The unification algorithm work
its way through the statements until it succeeds in unifying its goal with the head
rule or with a fact. If the goal cannot be unified with the facts the tool wilbozsl
negative. The inference rules allow us to establish a multistep messageqgmath fr
AtoE.

% Inference Rules

flash (A, M, B, E)— extCom(A,M,B) ,
intCom (B,M,X), busCom(X,M,E),

authenticity (A,M,B),

integrity (A,M,B),

freshness (A,M,B).

Listing 2: Security Related Inference Rules

The program in this example cares for two different concerns. Thteoirs
deals with communication over the on-board network and aims at establishing the
data flow between A and E and at finding out what are the properties diffae
ent entities involved in the implementation of a distributed function. The Prolog
program can be seen both as a specification of the system and as its simulation
Thanks to this, threat analysis might be introduced at this stage based on-the
folding of a scenario, although our example only describes a valid systeaiid
security practices based on constructive properties. e detailed multistspgaes
path approach allows the expert system to consider threat analysiseantified
security requirements for each entity involved in firmware flashing process

The architecture designer can query the tool based on facts thatbadesr
integrityi ntegrity(Sender, Message, Receiver),toensurethe code
integrity requirement for a distributed function. It can also query the tootder
to find the best possible place for implementing firewalls. For instance, this might
help solve questions like: can a filtering firewall be implemented at the domain
gateway level to enforce access control on the basis of the paclderimashould
this be enforced through end-to-end authentication with the ECU only?

3.3 Discussion

The use of Prolog provides a design exploration mechanism almost édodite
our experience with the demonstrator shows some areas for immediate improve-

ment which we are working on. In particular, we plan to buffer resultsweae
proven in other analyses, which a completely declarative Prolog progoasinot
achieve; while this is not so much of a problem with purely logical rules, we ex
pect to integrate numerical constraints to our analysis. Enumerating aibjgoss
solutions may also be quite time consuming and we are currently working into in-
troducing heuristics to eliminate unsuccessful designs as soon as poBsithiés-
sues mean that the expert system rules cannot be as declarativevasutshope.

In particular, automotive industry engineers should likely contribute to idefin
their organization in order to fine tune the general purpose resolutionamisoi

of Prolog with their strategies derived from their experience.

4 Firmware Flashing Protocol Design

The flashing protocol design specifies how the two entities, service staibn a
the vehicle can, securely communicate with each other and perform firnupare
dates without compromising the overall system security, i.e., it specifies the mes
sages that can be interchanged and the design solutions that shoulushie ced
during a firmware update. A comprehensive functional view for firmviagh-
ing process is shown in figure 3, where different components exehayegsages
among each other. These components are running on different ot-lotts.

Di i i itiati Di i Prog i i Firmwareldentification EirmwareProgrammiry

ConnectionRequest |

C ctionR
e CotnecioiRespanee B
ECUFirmwarelnfoRequest
ECUFirmwareInfoRequest
ECUFirmwarelnfoRequest
ECUFirmwarelnfoResponse :
ECUFi InfoResponse | |eg = mTIWAIETITIORESPONSE |
Lo ECURITWNEEINOR SSpOREE: | o -FEmmumsnioReseenss LI | |
SendFirmwareUpdate !
ForwardFirmwareUpdate ! ! !
> FirmwareUpdate =
I
'
i
S, FirmwareUpdateDone
|c_.__FimwareUpdateDone | ! !
et o iSendUpdateDones ... L | | |
i :
SessionClosed b | SessionClosed 3
s L o

Figure 3: Functional View of Firmware Flashing Process

TheDi agnosi sConnecti onl ni ti ati on component, running on the di-
agnosis interface unit, sends a connection requé&itagnosi sRequest Managenent
component. A connection answer is then sent and session keys ard &hallow
secure communication channel. To know which version is running on the BCU
ECUFi r mnvar ei nf oRequest message is sentfd r mvar el denti ficati on

8

component. If the type is the expected one then the flashing session strted.
flashing tool sends a request to open a programming sesdtoogr ami ngSe-
ssi onManagenent component. Once the programming session is started the
flashing tool sends the encrypted new software tddiherwar ePr ogr anti ng
component. At the end, the flashing tool closes the programming sessi@uat E
level (Pr ogr amm ngSessi onManagenent).

Based on the functional view model, the architecture designer queriesothe to
for possible design solutions as shown in listing 3, which states that, therdghde
sent a request t6U to update ECU firmware in the PTC domain.

% Query

?— flash (DT, "Firmvare Update Message" , CU, ECU-PTCDomain) .

Listing 3: Query for Firmware Flashing Design

Executing the query defined in listing 3, program results in generation of masftic
message pathDT — CU — PTC — ECU, based on the inference rules
defined in listing 2. While establishing the path, the expert system also caches
the characteristics of each entity involved in this firmware update procedss. T
allows the generation of firmware protocol design based on the computaitibn a
deployment constraint of each entity. For instant, the design solution fiawéire
authenticity is based on listing 4.

authenticity (A, M, E)=
ecuTypeCheck (ECU, E), chartEvu(Crypt, ECU).

Listing 4: Inference rule for Authenticity

In this rule the authenticity clause starts with the evaluation of its first statement
ecuTypeCheck(ECU, E), which deduce the properties of received ECU then
the program walk through the next rule and evaluates the suitable crgptugr
algorithm. For example the requested ECU is MPC555, the program cathes a
the property of that ECU and move to the next rule and evaluate the ajgieopr
cryptographic algorithm for MPC555. Based on the ECU characterigitiegurns
the RSA encryption algorithm with 2048-bit key size. The program retback
to the main goal, Listing 2 . In the same way the program applies other inference
rules (integrity, freshness, etc) on the firmware flashing process. elend of
program it returns both analysis of each rule and appropriate dedigiosdo the
architecture designer.

5 Related work

5.1 Design of Firmware Update Protocols

A security architecture for secure software upload in vehicular netwiark
wireless communication link is presented in [7]. The proposed securityteceh
ture is based on the authentication key mechanisms, where keys are ustbto e
lish secure link using SSL, VPN or any secure mode. After establishingsiose

9

symmetric encryption keys are exchanged to send the software in amptattry
form. Another solution proposed in [7] is to send multiple copies of software in
order to improve the security level of the transmitted data. After some random time
interval the supplier again establishes the link with the vehicle and sendsradsec
copy of the software, the vehicle compares the two copies sent by thikesugul,

if the two copies are same, vehicle sends an acknowledgment to supplieutaad
motive company, otherwise it asks to retransmit unmatched packets. Thimahp
imposed several system constraints in order to ensure the securereaipl@ad
such as memory size, bandwidth and length of encryption keys. In [3] >
protocol for secure firmware updates over the air (SFOTA) in intelligehicles

is proposed. In SFOTA protocol, data integrity can be achieved by forenhmsh
chain, each transmitted fragment is hashed and included with the prevamsis fr
ment. Verifying the signature of the first hash, provides the data authtotica

In order to provide the data confidentiality, symmetric encryption (CBC mode) is
used. Furthermore the data freshness property can be also achyexexxklying

the signed packet, since each packet contains a hash of the prevoies. pehe
vehicle can verify the order of received packet to attain data freshriedd] a
framework for self-verification of firmware update over the air in vehid®s is
proposed. In their work a verification code concept is included in theitnésion,
integrity of firmware update can be assured by verifying the verificatiale ctn

the verification protocol, service portal generate the random challeagrilates

a hash chain of the firmware, and forwards verification code, firmwiaarypand

the challenge to the vehicle using [3] SFOTA protocol. In the vehicle, thieake ¢
lenges and verification codes are stored in the control system. Theg@assad

by ECU using Virtulization techniques.

5.2 Prolog Based Protocol Verifiers

A Prolog based automatic cryptographic protocol verifier is propose].im|
simple intermediate representation of protocol is developed using prolsyamnite
facts. In their work, an attacker concept is introduced to prove thecsgqrop-
erties, such as determining whether the attacker can get the secret dhadey
advantage of their verifier is that the algorithm does not limit the number af run
and, if the verifier does not find the flaw, then there is no flaw in the protwagich
provides the real security guarantees.

In [9], a model of computation for the Naval Research Laboratory (NRbtocol
Analyzer is presented. The main intent of this protocol analyzer is to guedestr

in proving the cryptographic protocol. A set of prolog rules and facsused to
define the protocol. The protocol analyzer analyzes the insecure atatgéve the
detail description of all possible states. Furthermore the NRL protocdyzara
allows the user to check the reachability property. In [10], a prologd&sa:

The Interrogatoris explained. The interrogator search the security vulnerabilities
in cryptographic key distribution protocol. The protocol and all othenaggions

are specified in prolog program. During program execution, the pno§jrads the

10

traces of message madification in the protocol and alerts user about attiwks
ever, these approaches provides the post analysis and verificafioplefmnented
cryptographic protocols, using Prolog profile. In contrast, our agugrds based on
pre-analysis of the system architecture and aims at suggesting fundadesiga
solutions for implementing security protocol.

6 Conclusion and Future Work

In this paper we discussed the interest of using Prolog as an exptetsys
for developing a firmware flashing protocol and presented the orgamzaf our
current prototype. The objective of this approach is to assist the miadesign-
ers in reviewing fundamental design decisions. In particular, automatiorsrigk
possible to evaluate the most complex combinations of the system architecture, its
potential threats, security requirements, and deployment constraintstatiap,
cost, performance), thereby offloading the designer from his most exsmine
tasks. We are currently working on enhancing the performance ofxparesys-
tem implementation.

7 Acknowledgments

This work has been carried out in the EVITA (E-safety vehicle intrusian p
tected applications) project, funded by the European Commission within the Sev
enth Framework Programme (FP7), for research and technologiclbgeavent.

References

[1] E. Kelling, M. Friedewald, M. Menzel, H. Seudie, and B. Weyl, “EWT
D: 2.1 specification and evaluation of e-security relevant use casesli. T
Rep., Feb, 2009. [Online]. Available: http://evita-project.org/Deliverdbles
EVITAD2.1v1.1.pdf

[2] A. Ruddle, Y. Roudier, S. Idrees, B. Weyl, M. Friedewald, T. Leaunb,
A. Fuchs, S. Grgens, O. Henniger, R. Rieke, M. Ritscher, H. Bmber
L. Apvrille, R. Pacale, and G. Pedroza, “EVITA - D: 2.3 security
requirements for automotive on-board networks based on dark-side
scenarios,” Tech. Rep., March, 2009. [Online]. Available: http://
evita-project.org/Deliverables/EVITAD2.3.pdf

[3] D. Nilsson and U. Larson, “Secure firmware updates over the airtetliin
gent vehicles,” irProc. IEEE International Conference on Communications
Workshops ICC Workshops '08008, pp. 380—384.

11

[4]

[5]

D. Nilsson, L. Sun, and T. Nakajima, “A framework for self-verifiican of
firmware updates over the air in vehicle ECUs,Hroc. IEEE GLOBECOM
Workshops2008, pp. 1-5.

B. Schneier, “Attack trees,Dr. Dobb’s Journal 1999. [Online]. Available:
http://www.schneier.com/paper-attacktrees-ddj-ft.html

[6] A.Colmerauer and P. Roussel, “The birth of proldgistory of Programming

[7]

[8]

[9]

[10]

Languages, ACM Press / Addison-WeslE3096.

S. Mahmud, S. Shanker, and I. Hossain, “Secure software dpioan in-
telligent vehicle via wireless communication links,”fmnoc. IEEE Intelligent
Vehicles Symposiurg005, pp. 588-593.

B. Blanchet, I. Rocquencourt, and L. C. Cedex, “An efficientptographic
protocol verifier based on prolog rules,” in 14th IEEE Computer Security
Foundations Workshop (CSFW-14EEE Computer Society Press, 2001, pp.
82-96.

C. Meadows, “A model of computation for the NRL Protocol Analyzaér,
Proc. Computer Security Foundations Workshop VII CSE\WOB4, pp. 84—
89.

J. Millen, S. Clark, and S. Freedman, “The interrogator: Protceality
analysis,” vol. SE-13, no. 2, pp. 274-288, 1987.

12

