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Abstract—Accurate location estimation of the Mobile Terminal
in a strictly Non-Line-of-Sight propagation environment is still a
challenging problem. Existing techniques that attempt to tackle
this problem, either perform poorly or are not very practical
due to their high computational complexity. In this work we
present a low-complexity 2-step approach for the joint estimation
of the location and the speed in the presence of nuisance
parameters. This hybrid method effectively extracts the location-
related information contained in the Doppler Shift, without
explicit knowledge of the AOA. It then combines this information
with the AOD and the TOA and outputs a Least-Square estimate.
Despite its simplicity, it can achieve an accuracy of 10cm in 75%

of the cases for sufficiently high SNR1.

I. INTRODUCTION

Traditional network-based geometrical localization tech-

niques date back to the late sixties [1], [2]. They are based

on the assumption of an existing Line-of-Sight (LOS) signal

component in the wireless link between the transmitter and

a few receivers - base stations (BS). However, in dense

urban and indoor propagation environments, a LOS signal

component rarely exists. The received signal usually con-

sists of multipath components (MPC) created by reflection,

diffraction and scattering of the transmitted signal on various

objects, often and herein called scatterers. If the absence of a

LOS signal component is ignored and traditional geometrical

techniques are directly applied using one or more of the MPC,

the performance is very poor. This is not surprising, since

geometrical techniques are based on measured location and

motion dependent parameters (LMDP), such as the angle of

arrival (AOA), the angle of departure (AOD), the time of

arrival (TOA) and the Doppler shift and in Non-Line-of-Sight

(NLOS) environments, the LMDP of the MPC exhibit an error

bias with respect to the true values that would correspond to a

LOS path. This error bias results in large location estimation

errors, except for very few scenarios, like e.g. when the

scatterers are very closely co-located with the mobile terminal

(MT).

The problem of localizing in NLOS environments has been

addressed in more recent publications. Various techniques that

1Eurecom’s research is partially supported by its industrial members:
BMW Group Research & Technology, Bouygues Telecom, Cisco, Hitachi,
ORANGE, SFR, Sharp, STMicroelectronics, Swisscom, Thales. The work
presented in this paper has also been partially supported by the European FP7
projects Where and Newcom++ and by the French ANR project Semafor.

assume the existence of a LOS path between the MT and

at least a few BS are based on identifying and removing

the NLOS measurements [3], [4], weighting these measure-

ments appropriately in order to minimize their impact [5]

or enhancing performance assuming knowledge of the NLOS

errors statistics [6]. On the other hand, techniques designed for

localizing in strictly NLOS environments, include but are not

limited to solving a constrained optimization problem where

the error bias leads to inequalities instead of equalities [7],

[8] or introducing a propagation model, creating a mapping

between the LMDP of the MPC and the the MT coordinates

and estimating the latter in the presence of nuisance parameters

[9], [10].

In this contribution we adopt this last approach. We utilize

the single-bounce model (SBM) and integrate it with a linear

mobility model to describe accurately NLOS environments

that change with time due to the movement of the MT. This

model enables us to express four different subsets of LMDP,

namely the AOA, AOD, TOA and Doppler Shifts as a function

of the MT coordinates, the MT speed and the coordinates of

the scatterers. However, in contrast to our previous work where

we have proposed a maximum likelihood (ML) estimate based

on knowledge of all of the above subsets of LMDP, herein we

ignore the existence of the AOA (angle of the impinging wave

at the MT, considering downlink transmission). The scenario

is more realistic, considering that an AOA estimate might

not be available or might be totally unreliable due to e.g.

lack of calibration of the antenna array at the receiver or

completely modified antenna pattern because of the way the

user is holding his device. Moreover, although the Doppler

shift for each MPC explicitly depends on its AOA, we show

how to effectively extract useful - for localization purposes -

information from this LMDP and combine it with the rest of

the available information to form a least-square (LS) solution

for the estimation of the coordinates of the scatterers in a first

instance and then also the coordinates and the speed of the

MT.

In a static SBM model, like the one the authors consider

in [9], estimates of AOA, AOD and TOA are required for

the MT location to be identifiable. Otherwise, the number

of unknowns is always more than the number of available

equations, no matter how rich the scattering environment might

be. In a recent study for identifiability in NLOS SBM-based
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Fig. 1. Single Bounce model

localization [11], it was shown that for the dynamic channel

model which is also used in this contribution, identifiability

is feasible even in the absence of knowledge of the AOA.

The reduced set of data however, results in a degradation in

performance. Nevertheless the method performs accurately in

approximately 75% of the cases for sufficiently high SNR, as

will be shown in the simulation results section.

The rest of the paper is organized as follows: In the

following section we present the channel model along with

the scenario considered. In section III we find a closed-form

solution for the coordinates of the scatterers. A closed-form

solution for the coordinates and the speed of the MT is then

given in section IV. Simulation results are presented in section

V followed by conclusions and general remarks in section VI.

Notation: Throughout the paper, upper case and lower

case boldface symbols will represent matrices and column

vectors respectively. (·)t will denote the transpose of any

vector or matrix and || · ||2 will denote its L2 norm. For time

dependent scalars, vectors and matrices, the first subscript will

denote time instant and the second subscript will denote the

corresponding MPC while for constant scalars, vectors and

matrices the subscript will denote the corresponding MPC.

The difference between two values of a variable a in time

instances i and i′ will be denoted as δaii′,j = ai,j − ai′,j
while the difference between the values of variable a for two

different MPC (at time instant i if time dependent) will be

denoted as āi,jj′ = ai,j − ai,j′ .

II. CHANNEL MODEL

In the scenario considered in this paper, a single BS is

communicating with the MT through a multipath propagation

channel with Ns scatterers that give rise to Ns distinct MPC

at each time instant. In other words each MPC of the received

signal is assumed to have bounced only once in one of

the scatterers and thus there is a one-to-one correspondence

between a scatterer and an MPC. Despite its simplicity, this

SBM can be widely applied, since in a physical propagation

environment, the more bounces, the larger the attenuation will

be, not only because the scatterer absorbs some of the signal’s

energy but also because more bounces usually implies a longer

path length. The method and the results presented apply also

to the case where the MT is communicating with multiple BS

through channels that have 1 or more MPC.

The BS and the scatterers’ location is fixed. The MT moves

on a line with constant speed for the small period of time

during which the estimation process takes place, so that it’s

position vector pi at time i is given by:

[

xi
yi

]

=

[

x0

y0

]

+

[

υx
υy

]

δti0 , 0 ≤ i < Nt (1)

where δti0 = ti − t0. The scatterers are uniformly distributed

inside an ellipse with the BS and the (initial position of) MT

placed at the foci.

A propagation channel with 2 MPC described by the SBM

is depicted in figure 1. Let c denote the speed of light and fc
the carrier frequency. Also, with respect to figure 1, denote by

φi,j , ψj and dBSS,j and dMTS,i,j , the AOA, AOD, distance

between the BS and scatterer and distance between scatterer

and the MT respectively, at time i and for MPC j. As

mentioned in the introduction, only the AOD, ψj , the TOA

τi,j or equivalently the total distance

di,j =
1

c
τi,j = dBSS,j + dMTS,i,j (2)

and the Doppler shift

fd,i,j =
fc
c
υ cos (φij − αυ) (3)

of each MPC is available. While the first two subsets of LMDP

are shown in figure 1, Doppler shifts are not. Therefore, in

order to be able to use trigonometric and geometric laws

and derive a closed-form solution for the location estimation

problem that uses all available data, a geometric interpretation

of Doppler shift is required. Figure 2 depicts only the paths

at time instances i and i′ due to one of the two scatterers

of figure 1, zoomed at the MT side. In this figure we have

introduced two new kinds of line segments, zi and ui. Simply

by observing the figure, it becomes obvious that

zi,j =
c

fc
fd,i,jdtii′ , ∀j (4)

i.e. zi,j is equal to the Doppler shift scaled by some known

constant. Therefore estimates of line segments zi,j are avail-

able.

III. LS SOLUTION FOR THE NUISANCE PARAMETERS

Based on the previous observation we can formulate

a LS solution for the nuisance parameters pnuis =
[dBSS,1, . . . , dBSS,Ns

]t, i.e. since the AOD are known, we can

solve for the location of the scatterers in polar coordinates.

From figure 2, we have for all scatterers

z2
i,j + u2

i,j = d2
MTS,i′j − (dMTS,i,j − zi,j)

2 = l2i,i′ (5)

z2
i′,j + u2

i′,j = d2
MTS,ij − (dMTS,i′,j + zi′,j)

2 = l2i,i′ . (6)
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Fig. 2. Geometric Interpretation of Doppler Shift

Eliminating the common term l2i,i′ on the right hand side of the

above equations, we get one constraint that must be satisfied

by the distances dMTS,i,j and dMTS,i,j′ of two scatterers with

the MT:

d2
MTS,i′,j − d2

MTS,i,j + 2zi,jdMTS,i,j

=d2
MTS,i′,j′ − d2

MTS,i,j′ + 2zi,j′d
′

MTS,i,j′ (7)

and another one by replacing zi,j with zi′,j and zi,j′ with zi′,j′ .
Combining this two identical constraints and introducing the

following differences of quantities between two time instances

δdi′i,j = di′,j − di,j = dMTS,i′,j − dMTS,i,j , δzi′i,j = zi′,j −
zi,j for ease of notation, we get the following linear constraint

after some algebraic computations:

δzi′i,jdMTS,i,j−δzi′i,j′dMTS,i,j′ = δdi′i,j′zi′,j′ −δdi′i,jzi′,j .
(8)

Alternatively, to solve for the nuisance parameters, we can

substitute dMTS,i,j using (2) and introduce wi,j = di,jzi,j to

get the following linear constraint:

δzi′i,jdBSS,j − δzi′i,j′dBSS,j′ = w̄i,j′j − w̄i′,j′j = δw̄ii′,j′j .
(9)

From 9 we have Ns − 1 independent equations for every pair

of measurements. In total we can have (Ns − 1) × (Nt − 1)
linear independent equations and thus we can formulate a LS

problem. Define the matrix

Zi =













zi,1 −zi,2 0 · · · 0

0 zi,2 −zi,3
...

...
...

...
. . .

. . .
...

0 0 · · · zi,Ns−1 −zi,Ns−1













(10)

and the matrix containing differences ∆Zii′ = Zi − Z′

i.

Furthermore define the vector

w̄i = [w̄i,12, . . . , w̄i,(Ns−1)Ns
]t (11)

and the corresponding vector containing differences δw̄ii′ =
w̄i − w̄i′ . Considering Nt − 1 time differences and stacking

vertically all ∆Zii′ and δw̄ii′ to create

∆Z = [∆Zt12, . . . ,∆Zt(Nt−1)Nt
]t (12)

δw̄ = [δw̄t
12, . . . , δw̄

t
(Nt−1)Nt

]t (13)

we get in matrix form the following set of linear equations:

∆Zpnuis = δw̄ (14)

The LS estimate of pnuis is simply given by:

p̂nuis = (∆Zt∆Z)−1∆Ztδw̄ (15)

IV. LS SOLUTION FOR THE PARAMETERS OF INTEREST

Since the scatterers’ locations and the distances between

the scatterers and the MT have been estimated, the problem of

estimating the location of the MT at time i is essentially equiv-

alent to solving a TOA localization problem with Ns BS, all of

which are in a LOS environment. One very appealing LS solu-

tion for this problem, is the so-called lines-of-position (LOP)

approach that was presented in [12] for static channels. We

can modify this method to estimate pint = [x0, y0, υx, υy]
t,

i.e. to jointly estimate the initial position vector p0 and the

speed vector υ of the MT. The scatterers’ cartesian coordinates

are

xsj = dBSS,j sin(ψj) (16)

ysj = dBSS,j cos(ψj) (17)

where the estimate dBSS,j is the jth entry of p̂nuis and

we have omitted the (̂·) in notation for clarity. Define the

following differences

¯̄dMTS,i,jj′ = d2
MTS,i,j − d2

MTS,i,j′ (18)

x̄sjj′ = xsj − xsj′ (19)

ȳsjj′ = ysj − ysj′ (20)

¯̄xsjj′ = x2
sj − x2

sj′ (21)

¯̄ysjj′ = y2
sj − y2

sj′ (22)

qi,jj′ = ¯̄dMTS,i,jj′ − ¯̄xsjj′ − ¯̄ysjj′ . (23)

Then according to the LOP method, the coordinates of the

MT at time i satisfy:

x̄sjj′xi + ȳsjj′yi =
1

2
qi,jj′ . (24)

Substituting (1) in (24) we get:

x̄sjj′x0 + ȳsjj′y0 + x̄sjj′δti0υx + ȳsjj′δti0υy =
1

2
qi,jj′ (25)

By collecting Ns−1 independent equations for time i we can

compose the vectors

qi = [qi,12, . . . , qi,(Ns−1)Ns
]t (26)

x̄s = [x̄s12, . . . , x̄s(Ns−1)Ns
]t (27)

ȳs = [ȳs12, . . . , ȳs(Ns−1)Ns
]t (28)
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and from the last two vectors we can create the matrix

Si =
[

x̄s ȳs δti0x̄s δti0ȳs
]

. (29)

Then by vertical concatenation of the above vectors and

matrices for all time instances we can obtain

q = [qt0, . . . ,q
t
Nt−1]

t (30)

S = [St0, . . . ,S
t
Nt−1]

t . (31)

Therefore we can again formulate a LS problem by stacking

(Ns − 1) ×Nt linear equations in the following matrix form

Spint = q (32)

that we solve directly to obtain an estimate for pint

p̂int = (StS)−1Stq (33)

V. SIMULATION RESULTS

As mentioned in the introduction, the results in [11] indicate

that there is a noticeable degradation in the performance of

ML location estimation in NLOS environments, when fewer

than the four different subsets of LMDP are available in a

NLOS SBM-based localization technique. This degradation

is also expected for the method presented herein, which

is a suboptimal 2-step LS solution. However due its low

computational cost and its accuracy at high Signal-to-Noise

Ratio (SNR), this method remains a very attractive solution. To

demonstrate its performance we run M = 10.000 independent

trials and derived the cumulative distribution function (CDF)

of the location and speed estimation errors for propagation

environments with various numbers of MPC. The propagation

environment is equivalent to a pico-cell, with the BS located

at the origin and the MT located at p0 = [x0, y0] = [20, 30].
To completely define the ellipse, in which the scatterers are

located, for the simulations, we assume that the ratio of the

maximum MPC length dmax over the length of the LOS path

dLOS = dBSMT is drawn from a uniform distribution with
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Fig. 4. |d̃BSS,max| versus condition number of ∆Z

support region [1.5, 2]. The method will yield similar results

for any arbitrarily shaped and sized area. The magnitude of

the MT speed υ is drawn from a uniform distribution with

support region [1, 2] in m/sec, which corresponds to average

walking speed and its direction αυ is drawn from a uniform

distribution with support region [0, 2π]. The carrier frequency

considered is fc = 1.9GHz and the total observation time

was t = 1sec. Therefore we require the movement to be

linear during only this small period of time, which is a very

reasonable assumption. During the observation time Nt = 20
uniformly spaced (δt(i+1)i = 50msec∀i) measurements of the

3Ns LMDP were considered, and the 3NsNt noisy LMDP es-

timates are considered independent Gaussian random variables

with mean their true value and standard deviation

σd = σfd
= σψ = 10−6 (34)

for all time instances and all scatterers. These values cor-

respond to roughly 20dB, according to the results in [13]

where an ESPRIT-Based algorithm was implemented for the

estimation of the LMDP. In figure 3 the CDF of the estimation

error in the distances between the scatterers and the MT, which

is equal to

||p̃nuis||2 = ||p̂nuis−pnuis||2 =

√

√

√

√

1

Ns

Ns
∑

j=1

(d̂BSS,j − dBSS,j)2

(35)

is plotted for the case of 3,4 and 5 MPC. Although the

accuracy of the nuisance parameters estimation is of no

importance, this figure not only serves as an indication of the

performance of the first LS estimation but also gives a rough

estimate of the percentage of the times when the method fails

completely. Indeed, although the plot is truncated for clarity,

there is a small percentage of approximately 2−3% for which

the error’s RMSE can be hundreds of meters. However, this

only occurs when the matrix ∆Z in (14) is extremely ill-

conditioned. Thus, this situation can be predicted a priori by
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examining the condition number c∆Z of ∆Z.

This becomes obvious from figure 4, where we have plotted

the maximum absolute error among the estimated distances,

|d̃BSS,max|, versus c∆Z, after some averaging to remove

small-scale fluctuations so that the dependency becomes ap-

parent. According to this figure, estimates that correspond to

c∆Z with order of magnitude 6 or higher, should be considered

unreliable and thus should be discarded. In figure 5 the CDF

of the estimation error in the location of the MT is plotted.

This is given by

||p̃0||2 = ||p̂0 − p0||2 =
√

(x̂0 − x0)2 + (ŷ0 − y0)2 (36)

From this figure we can observe that the error is less than

10cm for 75% of the cases and less than 1m for 85% of the

cases. As expected, an increase in the number of MPCs, i.e. a

richest scattering environment results in better accuracy. The

results, although at high SNR, are very impressive considering

the sub-optimality of the method and the realistic but difficult-

to-localize conditions under which the estimation is performed.

Similarly in figure 6 the CDF of the speed estimation error

||υ̃||2 = ||υ̂ − υ||2 =
√

(υ̂x − υx)2 + (υ̂y − υy)2 (37)

of the MT is plotted. The error is less than 0.1m/sec for

85% of the cases and thus the accurate speed estimate could

be employed along with the postition estimate in a filtering

procedure (e.g. Kalman filtering) to further improve the latter.

VI. CONCLUSIONS

We have presented a high-accuracy low-complexity lo-

calization algorithm suitable for strictly NLOS propagation

environments. It is based on the integration of a mobility

model and the single-bounce model and utilizes effectively the

available information in LMDP such as the TOA, the AOD and

the Doppler Shift to output a simple Least-Square solution for

both the parameters of interest and the nuisance parameters. It
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performs accurately at high SNR for the majority of the cases

and at the same time can predict the scenarios when it will

fail. If higher localization accuracy is desired, this method’s

estimates can serve as an initial points in a higher-complexity

Maximum Likelihood iterative algorithm.
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