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Abstract—Recently, a new blind spectrum sensing technique
based on signal space dimension estimation was developed for
sensing the spectrum holes in the primary user’s bands. The
mean idea of this technique is that the number of significant
eigenvalues of the covariance matrix of the received signal is
directly related to the presence/absence of data in the signal.
In this paper1, we study the collaborative sensing as a means
to improve the performance of the proposed spectrum sensing
technique and show their effect on cooperative cognitive radio
network. Specifically, we will present the performance evaluation
and advantages of this method and propose an optimization
method that compute only the first dominates eigenvalues in
order to reduce the complexity of the proposed cooperative spec-
trum sensing algorithm. Simulations results and performances
evaluation presented in this paper are based on experimental
measurements captured by Eurecom RF Agile Platform.
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space analysis, eigenvalues.

I. INTRODUCTION

Cognitive radio arises to be a tempting solution to spectral
crowding problem by introducing the opportunistic usage of
frequency bands that are not heavily occupied by licensed
users [1]. One of the most important components of cognitive
radio concept is the ability to measure, sense, learn, and be
aware of the parameters related to the radio channel character-
istics, availability of spectrum and power, user requirements
and applications, and other operating restrictions [2]. In cog-
nitive radio terminology, primary users can be defined as the
users who have higher priority on the usage of a specific part of
the spectrum. On the other hand, secondary users, which have
lower priority, exploit this spectrum in such a way that they do
not cause interference to primary users. Therefore, secondary
users need to have cognitive radio capabilities, such as sensing
the spectrum reliably to check whether it is being used by
primary users, and to change radio parameters to exploit the
unused part of the spectrum [3].

There are several spectrum sensing techniques that were
proposed for cognitive radio. These techniques are mainly
categorized in two family: Blind sensing techniques and signal
specific sensing techniques. While the first don’t need any
prior knowledge about the transmitted signal, the second need
some infirmations about the features of the signal such as
carrier frequency, symbol period, modulation type, etc. This

1The work reported herein was partially supported by the European project
SENDORA and the national project GRACE.

classification leads to decide whether one of these choices
best fit the CR. The elaboration of sensing techniques that
use some prior information about the transmitted signal is
interesting in terms of performances. The most known signal
specific sensing technique is the cyclostationary detector [4].
This detector offer high performances but needs a long time for
computation since it have a high complexity. Others methods
that exploit a recorded form of the covariance matrix are also
derived in the literature [5]. In fact, by this way primary
users are detected even in very low SNR. However this kind
of detection is not interesting because only few transmitted
signals are considered, that leads to consider a specific band to
scan. On the other hand, completely blind sensing techniques
that not consider any prior knowledge about the transmitted
signal are more convenient to cognitive radio. Few methods
that belong to this category were proposed, but all of them
suffer from the noise uncertainty and fading channels. One
of the most popular is the energy detector [6]. Despite its
easy implementation and few complexities, the energy detector
does not perform in low SNR and cannot differentiate between
noise and signals. Moreover, this kind of detector will be
inconvenient when the level of noise is completely unknown.
Another blind technique was proposed in [7]. This technique
exploits the dimension or the entropy of the received signal.
Specifically, this method investigates the relationship between
the behavior of the slope of signal dimension curve and the
transition from an occupied band to an adjacent free band.

The estimation of traffic in a specific geographic area can
be done locally, by one cognitive radio only, or information
from different cognitive radios can be combined. In fact,
cooperation is discussed as a solution to problems that arise in
spectrum sensing due to noise uncertainty, fading, and shad-
owing. Cooperative sensing decreases the probability of miss-
detections and the probability of false alarms considerably.
In addition, cooperation can solve the hidden primary user
problem and can decrease sensing time [8].

In this paper, we adopt the same framework to detect
vacant sub-bands given in [7]. Specifically, we study the
collaborative sensing as a means to improve the performance
of the proposed spectrum sensing technique and show their
effect on cooperative cognitive radio network. We will show
that there is significant improvement in the performance for
spectrum sensing in detecting a primary user by performing
cooperative spectrum sensing, especially when the number of



the cooperating cognitive users is increased in the network.
In addition, we will present the the performance evaluation of
this method by studying the complexity required for sensing.
We will show that the major complexity of this method comes
from the computation of the covariance matrix and the eigen-
values decomposition. Consequently, we propose a simplify
method that compute only the first dominates eigenvalues in
order to detect the presence of primary user.

This paper is organized as follows. After the presentation
of spectrum sensing techniques based on signal space dimen-
sion estimation in Section II, the detection performances of
this method are discussed in Section III. In Section IV, we
present an optimization method to estimate eigenvalues of the
covariance matrix and a comparison of the modified detector
with the dimension analysis based detector is given. Finally,
Section V concludes the paper.

II. COOPERATIVE SPECTRUM SENSING TECHNIQUE
BASED ON DIMENSION ANALYSIS

In this section, we give the main idea of the blind co-
operative spectrum sensing technique based on dimension
analysis. We consider a wireless cognitive radio network with a
collection of users randomly distributed over the geographical
area considered. By virtue of a scheduling protocol, K primary
users and M pairs of secondary users are simultaneously
selected from these users to communicate at a given time
instant, while others remain silent. Spectrum sensing has been
identified as key enabling secondary users to communicate and
not interfere with primary user, by detecting in reliable way
primary users signals. In fact, the individual secondary users
make independent decisions about the presence of the primary
signal in the frequency band that they are monitoring. Then,
they communicate their decisions to a fusion center that makes
the final decision about the occupancy of the band by fusing
the decisions made by all cooperating radios. Cooperative
sensing by using the spectrum sensing results from several
cognitive users can be used to obtain more reliable spectrum
sensing information. The channel model that will be used
throughout this paper is given by (1):

x = As + n (1)

where s of size K × 1 being the transmit signal sent from
primary users (i.e. k-th element is the transmitted signal by the
k-th primary user), and x of size M × 1 whose m-th element
is the received signal by the m-th secondary user. A of size
M ×K being the transmission gain from a primary user k to
a desired secondary user m, and n is the additive Gaussian
noise. The goal of spectrum sensing is to decide between the
following two hypotheses:

x =
{

n H0

As + n H1
(2)

We decide a spectrum band to be unoccupied if there is only
noise in it, as defined in H0; on the other hand, once there
exists primary user signal besides noise in a specific band, as

defined in H1, we say the band is occupied. Let PF be the
probability of false alarm given by:

PF = P (H1 | H0) = P (x is present | H0) (3)

that is the probability of the spectrum detector having detected
a signal under hypothesis H0, and PD the probability of
detection expressed as:

PD = 1− PM = 1− P (H0 | H1)
= 1− P (x is absent | H1) (4)

the probability of the detector having detected a signal under
hypothesis H1, where PM indicates the probability of missed
detection.

The mean idea of the blind spectrum sensing technique
based on dimension analysis is that the number of significant
eigenvalues of the covariance matrix of the received signal
x is directly related to the presence/absence of data in the
signal. The studied approach of this technique is based on the
distribution of eigenvalues of the covariance matrix R given
by:

R = Ψ + σ2I (5)

where
Ψ = ASAH (6)

with S denoting the covariance matrix of the transmitted
signals, i.e., S = E{ssH}, and σ2 denotes an unknown scalar.
From our covariance matrix model given by equation (9), we
define the following family of covariance matrix:

R(m) = Ψ(m) + σ2I (7)

where Ψ(m) denotes a semi-positive matrix of rank m. Note
that m ranges over the set of all possible number of DoF, i.e.
m = 1, ..., M . Using linear algebra, we can express R(m) as:

R(m) =
m∑

i=1

(λi − σ2)ViVH
i σ2 (8)

where λ1, ..., λm and V1, ..., Vm are the eigenvalues and
eigenvectors, respectively, of R(m). Our goal here is to detect
vacant sub-band over the spectrum band exploiting the signif-
icant eigenvalues. The significant eigenvalues are determined
from the estimated covariance matrix R̂ defined by:

R̂ =
1
N

N∑

i=1

x(ti)x(ti)H (9)

where N is the length of the received signal by each secondary
user and λ̂1, λ̂2, ..., λ̂m are the eigenvalues of R̂. Therefore,
if we have a noise (i.e. H0 hypothesis), the covariance
matrix of emitted signal S is equal to zero and we have
λ̂1 = λ̂2 = · · · = λ̂m = σ2. On the other band, if we have
data, the number of significant eigenvalues called p is less
than the rank of the covariance matrix m and lower than 1.
To determine the number of significant eigenvalues in [7], we
use the Akaike information criterion (AIC) presented in [9].
In fact, the number of DoF, possibly the number of significant
eigenvalues, is determined as the value of m ∈ {1, ...,M}
which minimizes AIC value.
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Fig. 1. The required SNR vs. the number of collaborating users m with
PF = 0.05 using blind spectrum detectors based on signal space dimension
estimation for PD = 0.99 and PD = 0.50.

III. DETECTION PERFORMANCES OF THE COOPERATIVE
SENSING METHOD

In order to evaluate the performances of the spectrum
sensing method, measurement by the RF Agile Platform at
Eurecom are considered [10]. RF Agile Platform covers an RF
band from 200MHz to 7.5GHz, with a maximum bandwidth
of 20MHz. Concerning the transmitted power, the target is
comparable to existing GSM terminals (+21dBm). On the
receiver side, the noise figure is from 8 to 12dB, depending
on the frequency band.

Fig. 1 provides plots of SNR versus the number of col-
laborating users m for different probability of detection. We
assume here that the cooperating cognitive users use identical
blind spectrum detector based on signal space dimension
estimation. For each curve, the decision threshold is chosen
such that PF = 0.05. The results show that there is significant
improvement in the performance for spectrum sensing in terms
of SNR in detecting a primary user by performing cooperative
spectrum sensing, especially when the number of the cooper-
ating cognitive users is increased in the network. This is the
main advantage gained by performing cooperative spectrum
sensing by using the spectral sensing information obtained
at the individual users. In fact, results indicate a significant
improvement in terms of the SNR required for detection. In
particular, to achieve PD = 0.99, local spectrum sensing re-
quires SNR = −3dB while collaborative sensing with m = 10
only needs SNR of −24dB for the individual users. In addition,
we remark that the number of collaborating users increases
with the value of probability of detection especially at low
SNR region. As an example, having SNR = −25dB, more
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Fig. 2. Probability of detection vs. SNR for the blind cooperative spectrum
detector based on signal space dimension estimation in comparison with
energy detector for variable number of secondary users and PF = 0.05.

than 99% of the occupied sub-bands can be correctly detected
with 17 users. On the other hand, for the same SNR, 50%
of occupied sub-bands is detected with m = 4 collaborating
users.

In Fig. 2 we present the detection performances of the
cooperative spectrum sensing method for multiple users. This
figure shows the probability of detection versus SNR ranging
between -18dB and 0dB. The proposed detector is performed
in comparison with a simple cooperative energy detector. In
this case, the statistical test is the same as above and the
PF = 0.05. Each secondary user receives the same signal
with different noise and SNR is the same for each users.
Fig. 2 shows that the proposed detector outperforms the energy
detector. For example, the probability of detection with 4 users
is seen to rapidly approach 90% when SNR= −6 dB while
the probability of detection with 2 users is seen to approach
78% for the same SNR. Performance gain of roughly 2dB is
obtained from the cooperative sensing.

We study now the complexity required for this detector
to derive their sensing algorithm. The complexity of this
technique is computed according to the different steps of the
algorithm, namely computation of the covariance matrix and
its correspondent’s eigenvalues. For the first part, noticing that
the covariance matrix is block Toeplitz matrix and hermitian,
then Nm2 multiplications are sufficient. For the computation
of eigenvalues, O(m3) multiplications are needed. AIC values
are computed according to [7] with Nm2 multiplications. The
total complexity is therefore as follows:

Cm,N = 2Nm2 + O(m3) (10)



The major complexity of this method comes from two parts:
computation of the covariance matrix and the eigenvalues
decomposition (i.e. Nm2+O(m3)). Usually, the dimension of
covariance matrix is small. However, when cooperative sensing
is established in order to detect the presence of primary users
in very low SNR, the number of secondary user m must be
high. That corresponds to a large covariance matrix. As conse-
quence, the complexity Cm,N is well increased. To avoid this
problem, we propose a new eigenvalues detector. This sensing
technique needs to compute only the first dominant vector
from the covariance matrix using a low complex algorithm.
This technique will present in the next section.

IV. OPTIMIZATION METHOD

To avoid the complexity problem discussed in the last
section, we propose here an optimization method that compute
only the first dominates eigenvalues in order to reduce the
complexity of the discussed cooperative spectrum sensing al-
gorithm. The modified detector needs to compute only the first
dominant vector of the covariance matrix using a low complex
algorithm referred as Power method and given in [11]. If we
consider the covariance matrix given by (9) with eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λm > 0 corresponding to the orthonormal
system of eigenvectors V1, ..., Vm, we can estimate the first
dominant eigenvalues λ1 without going to the expense of
computing the complete eigensystem of the covariance matrix
R.

Algorithm 1 Estimating the Largest Eigenvalues of the Co-
variance Matrix R: Power Method

1: k ← 0
2: Initialize U (||U||2 = 1)
3: for k = 0, 1, 2, ... do
4: k ← k + 1
5: U ← RV1

6: λ1 ← VT
1 U

7: V1 ← U/||U||2
8: end for

The power method for estimating the dominant eigenvalue
of the covariance matrix is described in Algorithm 1. We
first initialize the vector U of Euclidean norm unity. If VT

1 U
is pathologically small compared to some of the numbers
VT

i U (i > 1), then it will take many iteration k to have a
good approximation of λ1. In the other hand, if λ2 is very
near to λ1, the final rate of convergence will be slow.

Algorithm 2 describe the modified blind cooperative spec-
trum sensing algorithm. In the first step, we initialize the
position of the data signal to zero. Then, we scan the spec-
trum band of the received signal with the mean of sliding
window [12], [7]. The number of the sliding windows is
denoted by nw = N

T where N is the size of the spectrum
band and T is the size of windows. For the first analysis
window, we compute the largest eigenvalue and the dominant
eigenvector of the corresponding covariance matrix Rn using

Algorithm 2 Modified Signal Space Dimension Estimation
Algorithm

1: l ← 0 . Position of data signal
2: for n = 1 : nw do
3: Estimating λ1 and V1 of Rn

4: for k = 2 : m do
5: Rn ← Rn − λk−1Vk−1VH

k−1

6: Estimating λk and Vk of Rn

7: end for
8: d ← λ1 − λm

9: if d > dmax then
10: l ← n . Detection of data signal
11: else break
12: end if
13: end for

Algorithm 1. We compute after that eigenvalues and eigenvec-
tors of Rn − λk−1Vk−1VH

k−1 for k = {1, 2, ..., m}. Once we
get all significant eigenvalues, we compare λ1 − λm and the
threshold dmax: If it is negative, the analysis window contain
a noise, else we have an occupied window at l = n. Then, the
analysis window will be shifted by T samples and we make
the same approach for all analysis windows (i.e., nw = N

T )
till the end of the band.
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Fig. 3. The required SNR vs. the number of collaborating users m with
PF = 0.05 for the two blind spectrum detectors for PD = 0.99 and PD =
0.50.

We notice that, for this detector the presence of signal is
depicted according to the criterion λ1−λm. In fact, we scan the
sub-band of interest and compare its corresponding criterion
to the threshold dmax in order to decide when the sub-band
is free or not. The thresholds can be set based on some latest



random matrix theories. The threshold is chosen based on the
PF and does not depend on noise power or some information
about the transmitted signal. That’s why eigenvalues based
detector belong to the blind sensing technique in cognitive
radio. For comparison, the required SNR versus the number
of collaborating users m for the two blind spectrum detectors
for PD = 0.99 and PD = 0.50 are plotted in Fig. 3. It
is observed that the performances of the spectrum sensing
method based on eigenvalues and the one based on dimension
analysis are almost the same. Now, how about the complexity
of the proposed algorithm?

The proposed sensing technique compute only the first
dominant vector from the covariance matrix using the power
method given by Algorithm 1. The contribution of the first
eigenvalue and its correspondent eigenvector is then subtracted
and the second dominant eigenvalue is derived. This process is
repeated m times in order to evaluate the behavior of the first
m dominant eigenvalues. Since the complexity of the power
method is O(m), and the total complexity of Algorithm 2 is:

Cm,N = Nm2 + O(m) (11)

From (10) and (11) we conclude that the proposed cooper-
ative spectrum sensing method is less complex compared to
the one based on dimension analysis. Generally, we found out
that the proposed method outperforms the second one with 2
time complexity. The main advantage of the proposed detector
is its simplicity; It computes the first dominant eigenvalues of
the covariance matrix in an iterative manner. The complexity is
then well decreased for large covariance matrix. In conclusion,
this algorithm offers better complexity and does not affect
significantly the sensing performances.

V. CONCLUSION

Spectrum is a very valuable resource in wireless com-
munication systems. Cognitive radio, which is one of the
efforts in utilization of the available spectrum more efficiently
through opportunistic spectrum usage, become an exciting
and promising concept. One of the important elements of
the cognitive radio is sensing the available spectrum oppor-
tunities. In this paper, several blind cooperative spectrum
sensing method based on dimension analysis is explained in
detail. Specifically, collaborative sensing is considered as a
solution to some problems in the presented sensing method.
We showed that the complexity of this method comes from
the computation of the covariance matrix and the eigenvalue
decomposition. Furthermore, the spectrum sensing concept is
re-evaluated by proposing a simplify signal space dimension
estimation based detector that compute only the first dominates
eigenvalues in order to detect the presence of primary user. The
sensing detector of spectrum space create new opportunities
and challenges for this type of cooperative spectrum sensing
while it solves some of the traditional problems requiring the
complexity to known.
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