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Abstract—Distributed hash tables (DHTs) have been actively
studied in literature and many different proposals have been

« Frequency of the crawls, i.e. the time elapsed between
two consecutive crawls should be short (no more than a

made on how to organize peers in a DHT. However, very few
DHTs have been implemented in real systems and deployed on
a large scale. One exception i€AD, a DHT based on Kademlia,
which is part of eDonkey, a peer-to-peer file sharing system with
several million simultaneous users. We have been crawling a
representative subset ofkAD every five minutes for six months

few minutes) in order to achieve a high resolution for
metrics such as session length.

o Duration of the crawl, which should be in the order of

many months, to be able to correctly capture the tail of
the session and inter-session length distributions.

and obtained information about geographical distribution of i . . . .
peers, session times, daily usage, and peer lifetime. We have Ve have built our own crawler, which will be described in

found that session times are Weibull distributed and we show Section IV, that meets all three goals.
how this information can be exploited to make the publishing While peer-to-peer systems have been explored previously
mechanism much more efficient. using a crawler, the duration of these crawls was limited to a

Peers are identified by the so-calledkaD ID, which up to .
now was assumed to be persistent. However, we observed that afeW days at best. We were able to crawl a subsetaf for six

fraction of peers changes theirkap ID as frequently as once a Mmonths at a frequency of one crawl every five minutes, which
session. This change ofAD IDs makes it difficult to characterize  makes a total of 51,552 snapshots. We obtained a nhumber of
end-user behavior. For this reason we have been crawling the original results such as:

entire KAD network once a day for more than a year to track
end-users with static IP addresses, which allows us to estimate
end-user lifetime and the fraction of end-users changing their
KAD ID.

« Session lengths are heavy-tailed, with sessions lasting as
long as 78 days and are best characterized by a Weibull
distribution, with shape parametér< 1. One property
of Weibull distributed session lengths is that a peer that
has so far been up farunits of time will — we expect —
remain up for a duration that is in the order @ft!—*).

EER-TO-PEER systems have seen a tremendous growth We can exploit this fact to use the past uptime in order
in the last few years and peer-to-peer traffic makes a to predict the remaining uptime.

major fraction of the total traffic seen in the Internet. The « For many peers, the amount of time a peer is connected

dominating application for peer-to-peer is file sharingmgo per day, called daily availability, varies a lot from one

of the most popular peer-to-peer systems for file sharinghav  day to the next. This makes it difficult to predict daily
been Napster, FastTrack, BitTorrent, and eDonkey, each one availability.

counting a million or more users. Since these systems are Contrary to what was known up to nowaAD IDs are

mainly used by home-users and since the content shared is not persistent and can change as frequently as once

typically copyright-protected, the users of these systeften per session. By using a subset of peers with static IP
stay connected only as long as it takes them to download the addresses we can also show that the end-user lifetime is

content they are interested in. As a result, the user papaolat significantly longer than th&ap ID lifetime with 50%

of these peer-to-peer systems is highly dynamic with peers of the peers participating iRAD for six months or more.

joining and leaving all the time. « When classifying peers according to their geographic
In this paper, we focus on a single peer-to-peer system, origin, the peers from China make about 25% of all peers

namely KAD, which is the publishing and search network of  seen at any point of time, while Europe is the continent

eDonkey. Our aim is to characterizaD in terms of metrics whereKAD is most popular. We also see a big difference

such as arrival/departure process of peers, session agd int  between peers in China and Europe with respect to some

session lengths, availability, and lifetime. of the key metrics such as session length or duration of
To obtain the relevant raw data we decided to “craviD. daily usage.

Each crawl gives a snapshot of the peers active at that mstanThe remainder of the paper is organized as follows. Section
The three major challenges in crawling are Il presents related work followed by a section describing.
« Time necessary to carry out a single crawl, which shoulBection IV presents the measurement methodology followed
be as short as possible to get a consistent view of thg two sections that contain the results. We then discuss in
system. Section VII how some of our findings can be used to improve

I. INTRODUCTION
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the performance okAD and summarizes the major findingsfor 2 days. The short duration of the crawls implies that the
in Section VIII. maximum values for some metrics such as session times or
inter-session times that can be observed are naturallyelimi
to 2 days. The paper by Stutzbach and Rejaie [35] is the most
relevant to our work and we will refer to the results reported
TUDIES measuring peer-to-peer networks may have dién several occasions. As we will see, our work significantly
erent goals, such as analyzing the traffic patterns [2@xtends the findings of Stutzbach and Rejaie.
[37]; learning about the content shared in the network [11], Le Fessant at al. [11] crawled eDonkey for one week and
[26], [7]; or learning about the peers, their geographicgbnnected 55,000 out of 230,000 peers. The geographical
distribution [11], their latency to the measurement site @fistribution of these peers is very similar to the one we have
their bandwidth [14], [26], and the user behavior expressedserved (cf. Section V-B), except for the large number of
e.g. in session times or peer availability [2], [14], [352,6], Chinese peers that we see.
[36], [7]. There are also different ways to measure peer-to-|n 2002, Saroiu et al. [26] presented one of the first
peer networks, which can be either passive or active. Rassiyeasurement studies for Gnutella and Napster. They deaglop
techniques consist of (i) instrumenting a client that ceg®U their own crawler that connects, in the case of Napster, to
all the traffic [37] sent and received, (i) analyzing thettah each of the 160 servers and asks for the connected clients.
log file such as the track log of BitTorrent [13], or capturinghe Gnutella crawler explores the graph of neighbor retatio
the traffic of a whole network, e.g. at the POP or an ISP [27the Gnutella crawl spans 8 days and the Napster crawl spans
[21]. 4 days. For both Gnutella and Napster, Saroiu et al. report
Active techniques consist in crawling the peer-to-peer sygmedian session times of about 1 hour, which is half the time
tem. In some systems, such as Napster or eDonkey, itctmpared to the peers iknD (cf. Section VI-A).
sufficient to contact the server(s), instead of every singleChu et al. [7] repeated the measurements of Saroiu et al. and
peer [7], [26], [23]. If one wants to know all peers in axtended them to a duration of six weeks measuring session
DHT, such as Overnet ofAD, it is necessary to contact everylengths and content popularity.
Single peer and to query it for contacts in its rOUting tables Qiao and Bustamante [23] Compared the performance of
Here crawling is equivalent to a graph exploration. Findflg structured and unstructured Overlay networks for the cése o
peers amounts to building the transitive closure of the lyragovernet and Gnutella. For their study they performed sassio
Examples of DHTSs studies that employ crawling are [11], [23leasurements for 7 days and reported median session times
(2], [14], [35]. of 71 minutes for Gnutella and of 135 minutes for Overnet,
Overnet was the first widely deployed peer-to-peer applicghich is very close to our results ferap (cf. Section VI-A).
tion that used a DHT, namely Kademlia. The implementatiqn [5] the same authors present a new peer-to-peer system
of Overnet is proprietary and its operation was discontinughat makes use of the expected session times of the peers that
in September 2006 after legal action from the media industfg|lows a heavy-tailed Pareto distribution in order to i
Overnet has been the subject of several studies [2], [14] argilience to churn.
up to 265,000 concurrent users have been seen online. In oufian and Dai [36] analyzed the logs of Maze, a Chinese
study we use the active measurement approach and wanpé@r-to-peer network with about 20,000 concurrent uselts. A
learn about peer behavior. One study relevant to our work\iSers are connected via the high speed Chinese research
by Bhagwan et al. [2] where a set of 2,400 peers in Overngétwork. Although it is a peer-to-peer network, all peers
was contacted every 20 minutes over two weeks. This stugynnect every 5 minutes to a central server that writes aagjlob
discusses thdP aliasing problemwhich results from the |og file. This enables an analysis to be made.
fact that many peers periodically change their IP address.
Therefore, in order to properly compute session times and
other peer-specific metrics, one needs to use a globallyaniq
identifier for each peer. AD is a Kademlia-based [16] peer-to-peer DHT routing
KAD is the first widely deployed open-source peer-to-pedr \. protocol that is implemented by several peer-to-peer
system relying on a DHT. Two other studies WAD that are applications such as Overnet [20], eMule [10], and aMule [1]
very relevant to our work have been published by Stutzbadhe two open-source projects eMule and aMule have the
and Rejaie. The first one explains in detail the implememati largest number of simultaneously connected users sinse the
of Kademlia in eMule [34] and the second one [35] compar&lients connect to the eDonkey network, which is a very
the behavior of peers in three different peer-to-peer syste popular peer-to-peer system for file sharing. Recent vessio
namely BitTorrent, Gnutella anédAD. The results obtained of these clients implement theab protocol.
for KAD are based on crawling a subset of #¥D ID space. Similar to other DHTs like Chord [32], CAN [24], or
We call a continuous subset of the totadD ID space that Pastry [25], eactkaD node has a global identifier, referred
contains alkkAD peers whos&AD IDs agree in the high orderto as akab ID, which is a 128-bit long random number
k bits ak-bit zone. Stutzbach and Rejaie have implemented generated using a cryptographic hash function. Khe 1D
custom crawler that allowes them to crawl a 10-bit zone in 3i4 generated when the client application is started for the
minutes and a 12-bit zone in approximately 1 minute [35]. Arst time and is then permanently stored. TikwD ID stays
total of 4 different zones were crawled, each one being @@wlunchanged on subsequent joining and daparture of the peer,

II. RELATED WORK

I11. KAD B ACKGROUND
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until the user deletes the application or its preferences. fil « A source keythat identifies the content of a file and is
Therefore, using theAD 1D, a particular peer can be tracked computed by hashing theontentof a file.

even after a change of its IP address. This is important since A keyword key that classifies the content of a file and
many ISPs reassign IP addresses to their customers as often is computed by hashing the tokens of ti@meof a file.

as once a day. In KAD, keys are not published just on a single peer that is
numerically closest to that key, but on 10 different peerssen
A. Routing KAD ID agrees at least in the first 8 bits with the key. This

Routing in KAD is based on prefix matching: Node 8-bit zone around a key is called the tolerance zone. Allpeer
forwards a query destined to a nodieto the node in his inside a tolerance zone around a given keyword are qualified
routing table that has the smallest XOR-distancebtarhe 0 accept a publication for this keyword.

XOR-distancel(a, b) between nodes andb is d(a, b) = a®b. Keys are periodically republishedource keysevery 5

It is calculated bitwise on th&aD IDs of the two nodes, Nours andkeyword keys every 24 hours by default. Anal-
e.g. the distance betweem = 1011 and b = 0111 is ogously, a peer on which a source key or keyword key was
d(a,b) = 1011 @ 0111 = 1100, and the distance betweenPublished will delete the information after 5 and 24 hours,
a — 1011 and e = 1100 is 0111. Thusa is closer toc than respectively. This way re-publishing is done in exactly the
to b, sinced(a,b) = 1100 > d(a,c) = 0111. The fact that Same way as publishing. _

this distance metric is symmetric is an advantage compared t Th€ peer that accepts the publish message for a keyword
other systems, e.g. Chord, sinceiap if a is close tob, then returns the load factor to the publishing peer. The loadofact

b is also close tas. Therefore, a node that announces its takes values between 0 and 100 and is computed as a function

existence to a node might be added by nodeto its routing of the number of publications for the specific keyword and the

table. total number of publications the peer received and storfed. |
The entries in the routing tables are caltemhtactsand are the load factor is below 20, the default republishing delbg<

organized as an unbalancealiting tree A peer P stores only NOUrS is kept; otherwise it is adjusted as followepublishing

a few contacts to peers that are far away in#ia® 1D space delay = e S« 7 % 24. The maximum republishing

and increasingly more contacts to peers closer inkhe ID ~ deélay can thus be as long as 7 days.

space. For details of the implementation see [34]. For angive The four most important message types for the route,

distance,P knows not only one peer but lucketof peers. Publish, and search process are:

Each bucket can contain up to ten contacts, in order to cope hel | o: to check if the other peer is still alive and to

with peer churn without the need to periodically check if the  inform the other peer about one’s existence and the IP

contacts are still online. Each contact consists of the sode  address an@&AD ID.

KAD ID, IP address, TCP and UDP port. Theft side of the  « route request/response(kid): to find peers

routing tree contains contacts that have no common preftx wit  that are closer to theAp ID ki d.

the nodea that owns the routing tree (XOR on the first bit « publish request/response: to publish informa-

returns1). Theright side of the routing tree contains contacts  tion.

that have at least one prefix bit in common. This tree is highly « search request/response(key): to search for

unbalanced and the right side of each tree node is (reclygsive  information whose hash isey.

further divided into two parts, containing on the left sidhe t

contacts having no further prefix bit in common, and on the IV. MEASUREMENTMETHODOLOGY

right side the contacts having at least one more prefix bit jn Crawling KAD

common. Abucketof contacts is attached to each leaf of the . .
routing tree. We have developeBlizzard our own crawler fokAD, with

To route a message toward its destination the next h ¢ aim to crawkKap very frequently and over a du_ration of
is chosen from the bucket with the longest common pret veral T?Ethﬁﬁ Ocl;(; craw(lgrtlfc])gs forIeDac? ]EBemg“ t|r;1ethof
to the target. Routing to a specificaAb ID is done in an € crawl, the IF address @, IneKAD D ot 17, and whether

iterative way, which means that each peer, on the way % hot P has responded to the crawler.
In a large peer-to-peer system such iasD, peers are

the destination, returns the next hop to the sending node. S . . R
onstantly joining and leaving, which makes it difficult to

While |terat-|ve rout-mg experiences a slightly hlgher deIa&et a consistent view of the system. Therefore, the overall
than recursive routing, it offers increased robustnesmagaduration of a single crawl should be és short as’possible To

message loss and it greatly simplifies the crawling ofkhe speed up a single crawl, previous crawlers (such as [35 wer
network. S . . .
often distributed and ran simultaneously on multiple maehi
. However, we noticed that in a distributed crawl a lot of CPU
B. Publishing time is used up for the synchronization between the differen
A key in a peer-to-peer system is an identifier used t@achines. To make our crawler run very fast, we decided to
retrieve informationkAD distinguishes between two differentrun Blizzard on asingle machine and to keep all relevant
keys: information in main memory. The implementation of Blizzard
is straightforward: It starts by contacting a seed peer un b
1As we will see later, not all peers ikAD behave this way. us. Then it asks the seed peer for a set of peers to start with
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and uses a simple breadth first search and iterative querieslgorithm 1: send thread (is executed once per crawl)
It queries the peers it already knows to discover new peerSpata: peer: strucf{IP address, port numbekj d}
For every peer returned, the crawler checks if this peer haspata: sharediist Peers = list ofpeer elements
already been discovered during this crawl. We use a hask tabl; . the |ist of peers filled by the
of already discovered peers that fits in main memory, which recei ve thread and worked on by the
makes this test very efficient. After one crawl is completed, send t hread x/
the results are written to disk. Data: int position = 0

At the beginning of each crawl, the number of new peers;/« the position in the list up to which
discovered grows exponentially before it approaches asymp the peers have al ready been queried
totically the total number of peers iRAD. At some point */
the crawl needs to be stopped, otherwise the crawl accuracata: list ids = list of 16 properly chosehid elements
decreases, since new peers are joining the system all tee tinpeers.add(seed)* initialize the list with

[33]. We choose to stop querying new peers when 99% of the  t he seed peer */
peers discovered have been queried. We then wait for 30 mergyhile position < size(Peerspo
seconds for late replies before terminating the crawl. 3 for i=1 to 16 do

Not all the peers discovered can be contacted directly hy dest ki d = Peers[positionki d & ids][i];
the crawler. Approximately half of the peers queried do not /* normalize the bucket to the
respond to the crawler. There are two main reasons why a peer peers position * |
does not respond to our queries: either the peer has left the sendrout e requests(destkid) to
system, or the peer is behind a NAT that blocks our query. Peers[position];
For the crawler it is not possible to distinguish betweers¢he position++;
two cases. -

The crawler is implemented as two asynchronous threads:
One thread to send theout e request s(kid) (Alg. 1)
and the other one to receive and parse theute
responses (Alg. 2). A list that contains all the peers
discovered so far is used and maintained by both threads. Th%
receiving thread adds the peers extracted from rtbet e
responses( ki d) to the list, whereas the sending thread
iterates over the list and sends 1éut e request s(ki d)
to every peer in the list. The value of theaD ID ki d is
different in each of the 16out e request s. Care is taken
to assure that each value kf d falls in a different bucket 2
of the peer’s routing tree, which allows us to minimize the
overlap between the sets of peers returned in the responseg.

There are various pitfalls when crawling a peer-to-peer
system, such as incomplete data due to crawler crashes, loss
of network connectivity, or random failures due to tempwprar
network instability. To address these problems, we run kimu
taneously two independent instances of our crawler, oneeatt A full crawl was done once a day from March 20, 2007 to
Universitat Mannheim, Germany, connected to the Germaway 25, 2008.
research network, and a second one atéEom, France,
connected to the French academic network. Running tv<:o Zone Craw
crawls in parallel turned out to be very useful: at some point”
due to network problems, one instance of the crawler wasA full crawl generates an extremely high amount of trace
seeing fewer peers than the other one. Also, occasionadly diata and network traffic (with peak data rates close to 100
of the two crawlers crashed. Mbit/sec). Also carrying out just one crawl per day is notlsea

sufficient to capture the dynamics @D peers over short
timescales, which is needed to measure e.g. session times.
B. Full Crawl For this reason, we decided to carry out@e crawl on an

The speed of Blizzard allows us to crawl the entived ID  8-bit zone, where we try to find all active peers whegse
space, which was never done before. Suillacrawl of KAD  ID has the same 8 high-order bits. Such a zone crawl that
takes about 8 minutes. The first million peers are identifited eéxplores one 256-th of the entiread ID space, takes less
about 10 seconds, the second million in 50 seconds; thereathan 2.5 seconds. The high resolution and long duration zone
the speed of discovery decreases drastically since moss peeawl from September 23, 2006 to March 20, 2007 allowed us
returned in ther out e response messages have alreadyto collect 51,552 snapshots (one every 5 minutes) of a subset
been seen during the same crawl. A full crawkefd produces of all KAD peers. In section V, we will use the results of a full
about 3 GBytes of inbound and 3 GBytes of outbound trafficrawl to validate that the subset RAD peers captured via a

Algorithm 2: receive thread (waits for the oute
response messages)

ata: message mess =r out e r esponse message
ata: peer: struc{IP address, port numbekj d}
Data: sharedlist Peers = list ofpeer elements
/+* the list shared with the send thread
* |
1 while true do
wait for (mess =r out e r esponse) message;
foreach peer e messdo
if peer¢ Peersthen
L | Peers.add(peer);
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zone crawl is indeed a representative sample of the peers ifror the rest of the paper we will use the data wittole

KAD. eliminated.
D. Data Cleaning L
Crawling a zone happens periodically with a new crawl o9
every five minutes and the two crawlers at the Univétsit 08¢ S———
Mannheim and Ewcom being synchronized. A peer that 0.7r - = = 1hole
replied to at least one of the two crawlers during round 060 2 holes
is considered to be up at rouric®. The snapshots obtained & o5k ——3holes
by both crawlers are not always identical. The difference in  ° 0al = = =5 holes
the number of peers discovered is sometimes in the order of 0al
10%, whereas most of the time the difference is less than 1%. '
Analyzing these differences reveals that the peers seeméy o 0.2
crawler but not by the other one are well distributed over all 01r
countries and the entire IP address space. oL : 5 s s .
However, we realized that a peer that is up may occasionally 10 10 Sessil,% length in1n3inutes 10 10

be declared by both crawlers as not responding, i.e. carside
as being down. One reason can be th.at the peer IS overlloagﬁ.dl. CDF of the session times (1,2,3, and 5 hole(s): aftea deaning,
and does not reply to our query. To validate this hypothesis W hole: raw data without data cleaning).

ran akAD peer on an ADSL line: when neither the machine

nor the peer application was loaded it always respondedeto th

crawlers. When the machine was loaded with heavy calcula- TABLE |

. . SESSION CHARACTERISTICS BEFORE AND AFTER DATA CLEANING
tions the peer still responded. HoweYer when KD PEEer gy uiNATING i HOLES MEANS THAT WE CONSIDER A PEER ASonnected
was loaded with a large number of simultaneous downloads EVEN IF IT DOES NOT RESPOND DURING CONSECUTIVE CRAWLS

it frequently did not respond to the route requests of our

| Weibull Session times
crawilers. Eliminating | Scale [ shape| mean [ std dev.
Another reason can be that the path between the two Rawdaa | 5501 | 052 | 11373 29741
crawlers and the peer is disrupted somewhere close to the pee 1 hole 97.62 | 0.56 | 169.21| 405.26
In both cases, the crawlers will not receive a response fram t g Eo:es iii-gg 8-2; 1291%%2 322-2
peer even when it is up and running. While it is not possible = hgéi 1654 | 065 | 23838 52525

to tell exactly why a peer is not answering, we implemented
the following data cleaning rule that we consider “reasdeiab i i
When a peelP that has been reported up at round 1 does The following two sections present the results of our crawl.
not reply to either of the two crawlers during the next roung€ction V will provide general information such as the numbe
i, and then replies again during round- 1, then peerP wil of KAD users and their geographic distribution and will also
a,lso be considered up at round ' discusskAD ID aliasing and its implications. Section VI will
We refer to this filtering mechanism as eliminatihdole. focus on st_at!st|gs related to_sesspn times that are végyaet
One can of course generalize this approach to eliminatin or the optimization of certain design parameterkab such

holes, which means considering a peer that responded du the republishing interval ?”d metrics that charactafiee
crawl k, then did not respond for up tbconsecutive crawls dlly usage behavior GfAD clients.
before responding again, as being continuously up fromlcraw
ktocrawlk 4+i + 1. V. GLOBAL VIEW OF KAD
Since we have no answer as to what data cleaning technigueN this section, we will present results obtained via a full
is the most appropriate, we ran different experiments whefe crawl of kap, such as the total number of users, the
we eliminatedi holes, withi € {0,1,2,3,5}. The resulting geographic distribution of the users, and the distributidn
Cumulative Distribution Functions (CDFs) of the sessiomets  the kAD IDs over the hash space. We will and compare these
are shown in Fig. 1 and the first two moments of the sessi@ssults where appropriate to the ones obtained via the zone
times in Table I. Of course, the bigger the holes we eliminatgawl. Moreover we will characterize the fact of IP address
the larger the mean session times. However, it is importett t aliasing andkAD 1D aliasing.
independently of the number of holes eliminated, the sassio
times could always be a perfect fit using a Weibull distribafi
which is described by two parameters, referred to as scale é% Full Crawl
shape. We will come back to this in section VI-F. During each full crawl, we discovered between 3 and 4.3
million different peers. Between 1.5 to 2 million of these
2 : . reply to our queries, and can thus deectly contactedby
As we can see in Algorithm 1 the crawler sends 16 route reguestach .
peer. A peer is considered alive if at least one route regp@ngeceived by our crawler. The other peers either have left the systemeor ar
the crawler. located behind NATs or firewalls. In the rest of the paper we
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will only report statistics on the peers that our crawlerldou 22000
contactdirectly. 20000 f 8
In Fig. 2, we plot the distribution of the percentage of peers 18000 - i
seen per country, using the Maxmind database [15] to resolve
IP addresses to countries and ISPs. The continent with the 16000 - |
highest percentage of peers is Europe (Spain, France glitaly & 14000} .
Germany), while the country with the largest number of peers < 12000
is China. Less than 15% of all peers are located in America
(US, Canada, and South America). We can also see that the 10000
geographical distribution of the peers obtained with the tw 8000 f
zone crawls of an 8-bit zone each is very close to the result
obtained with the full crawl, which is to be expected since th 6OO%X0 0x20 0x40 0x60 0x80 Oxa0 OxcO Oxed
KAD IDs are chosen at random. zones
025 L T T T oneox91— Fig. 3. The distribution of the peers over the hash space. 256 8-bit
zone Oxf4 7 i zones on the x-axis go frox00 to Oxf f .
0.2} full crawl g
£ o5l that our estimateV(¢) has most likely an error of less than
% 3% for a total population of at least 1.5 million peers.
£ o4}
B. Zone Crawl
0.05 1 All the results in the following subsection were obtained
ﬂ H A e using the zone crawl of the 8-bit zorfix5b that lasted for
Hﬂﬂﬂﬂﬁﬁ 179 days.
CNESFR IT DEPL IL BRUSTWKRAR PT GB In Fig. 4, we plot the number of peers seen that originate
countries from China and some European countries. The number of

peers in each country follows a diurnal pattern, with a peak
Fig. 2. Histogram of geographic distribution of peers seer2006/08/30. around 9 PM local time. The eight-hour time shift between
Europe and China is clearly visible.

In fact, we see from the results of the full crawl that the , ,
peers are uniformly distributed over the hash space, except 16004‘9'30% Beling 9PM Madrid, Paris. Rome*
for some outliers (Fig. 3). All the outliers are due to modifie 1400/} o N
KAD clients that use the samD ID and are always limited R ‘-‘ { T
to one country (Korea, Spain, Israel, China, Argentina)e Th 12008, R S ; N x|
outlier in zoneOxe1 is a modified client used in Israel, for ¢ 1000f frur” = | % [ |
which we counted 25069 instances [28]. We also observed § 800l :

250,000 instances ofAD, with KAD IDs that systematically g ; S . S\
cover the entirecAD ID space. All the IP addresses belong & 600[f-. - e — N |]
to the domaimedi adef ender. com By carrying out a so- 400! i ---Es|]
called Sybil attack [9], [29], the company Media Defender is o™ AT e - - RY
able to closely monitor all publish and search activitiesbf 200 _gE ]
peers inKAD. We have filtered out these “anomalies” from 0 ‘ ‘

Saturday Sunday Monday Tuesday

our trace data since we are interested in characterizing the time of day (CET)
behavior of ordinarkAD peers.
Given that KAD IDs are uniformly distributed, we canrig 4. peers online according to country of origin.
estimate the total number of peersiab by simply counting
the number of peers in a zone and multiplying this value by Taple Il summarizes the basic findings on the zone crawl.
the number of zones (256 zones). Using Chernoff Bounds (sgige peers seen came from 168 different countries and 2384
[19] Chapter 4) we tightly bound the estimation error. providers. For thecAD IDs seen on the first day of our zone
Let N(¢)pqrt be the number of peers counted during a zorawl, we observe that about one third of the peers come
crawl of an 8-bit zone at time and N (t) := 256 * N (t),4,« from Europe and about one fourth from China. If we compare
the estimate for the total number of peers in kxd system. the lifetime of the peers, which is defined as the difference
The true valueN (¢) for the total number of peers at tintdgs  between the time a givekaD ID was seen the last time and
very close to the estimaté’(t), with high probability. More the time thiskaD ID was seen the first time, we notice that
precisely:Prob[| N (t) — N (t)| < 45000] > 0.99, which means the lifetime of peers in China is much smaller than that of
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TABLE Il
KEY FACTS ABOUT THE PEERS SEEN DURING THE ZONE CRAWL SPANNINE&79DAYS ORGANIZED BY COUNTRY OF ORIGIN(LT=LIFETIME).
i Total [ China|  Europe | Rest |
Different KAD IDs 400,278 | 231,924 59,520 108,834
Different IP addresses 3,228,890 875,241 | 1,060,848| 1,292,801
KAD IDs seen for a single session 174,318 | 131,469 11,644 31,205
KAD IDs with LT < 1 day 242,487 | 183,838 15,514 43,135
KAD IDs seen for the first time on
- 1st crawl 5,670 455 2,879 2,336
- 1st day 18,549 4,535 6,686 7,328
- 60th day 1,893 1,083 259 551
KAD IDs seen for the first time on 1st day
- with LT < 1 day 2,407 1,568 286 553
-1day< LT <1 week 1,368 497 393 478
- 1 week< LT < 1 month 2,735 791 944 1,000
- LT > 1 month 12,039 1,679 5,063 5,297
- LT > 3 months 8,423 936 3,679 3,808
avg. of the median session time per peer (minutes| 165 103 326 210
avg. of the median-inter session time per peer (minutes) 1,341 586 2,825 2,136
TABLE Il
KEY FACTS ABOUT THE PEERS SEEN DURING THE ZONE CRAWL SPANNING79DAYS ORGANIZED BY ISP OF ORIGIN (LT=LIFETIME).
Total Europe China
Proxad | Orange[ Dt. Tel. [ Telefonica| DDV | CNCgroup | ChinaNet
Different KAD IDs 400,278 5,565 4,834 3,129 8,294 | 55,668 75,300 79,057
Different IP addresses 3,228,800 5,446 | 4,668 3,099 7,930 | 42,163 55,449 65,964
KAD IDs seen for a single session 174,318 941 677 502 1,356 | 34,863 40,745 40,306
KAD IDs with LT < 1 day 242,487 1,209 899 649 1,822 | 48,195 57,730 56,518
avg. of the median session time per peer (minutes 165 408 324 376 359 107 87 112
avg. of the median inter-session time per peer (minutes) 1,341 | 2,880 2,908 2,601 2,527 375 641 788
peers in the other countries. More than half of the peers in ] mea”=114'79' Stf’=29'93 o
China were seen for the duration of ordpesession. We will e
come back to this point in the next subsection V-C.
Table Ill presents the relevant statistics for some of thesIS 0.8/
in Europe and China where most of the peers originate. For /
both Europe and China, the key metrics of the peers do not W 0.6¢ H
vary much across the different ISPs. S / — Avrrivals
Arrivals and Departures:Since we crawl the same zone 0.4f / Departures
in KAD once every 5 minutes, we can determine the number
of peers that join and leave between two consecutive crawls. 0.2
Knowing the arrival rate of peers is useful since it allows us
to model the load irkAD due to newly joining peers. Each 0 D ‘ ‘
time a peer joins, it first contacts other peers for inforovati 0 50 100 150 200 250
No. of host

to populate its routing table, before it publishes the kaylso
and source keys for all the files it will share.

In Fig. 5 we depict the CDF of the number of peers thdid
arrive and that depart between two consecutive zone crawls
We see that the distributions for arrivals and departures ar

. 5. CDF of the number of arrivals and departures.

the same. This is to be expected, since we observe the systBraddress of their ADSL customers approximately every

in “steady state”: in this case, the system should behaee |ig4 hours, while others assign static IP addresses to their
G /G /oo, for which, according to Little’s Law, the arrival rateclients. We observed a total of 400,278 distireto IDs and

is equal to the departure rate [18]. The arrival process fig ve3,228,890 different IP addresses (see Table II). In Eurape,
well described by a Negative Binomial distribution (see.Big peer has on average about 18 IP addresses, whereas in China

of [31]).
in
sh

C. Aliasing

the number is 4 IP addresses per peer. About 80% of the peers

China have only one IP address since their lifetime is much
orter than the lifetime of peers in other parts of the world

We saw that the number of different IP addresses per peer is

IP Address Aliasing:It has been known for several yearsstrongly correlated with the peer lifetime (see Fig. 6 of]}31

[2], [14] that many peers frequently get assigned new IP
addresses, which is referred to W% address aliasing For

KAD ID Aliasing: Up to now it was assumed thataD

IDs are persistent, i.e. the same end-usexaid permanently

instance, we know that some ISPs in France change t#eeps the sam&aD ID across all its sessions. As it turns
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out, this is not true. We refer to the fact thehD IDs are
non-persistent agAD ID aliasing.

We see in our zone crawl approx. 2,000 newp IDs a KAD ID.

day, which means that for the entik@D system the number

We then take the logs of the full crawls starting March 31st,
2007 to look for peers in the pivot set that hakenged their

of newkAD IDs per day is around 500,000. If we extrapolate, Spain

this makes about 180 MilliokAD IDs a year. It is hard to 035 France ===

believe that there exist such a large number of differentend 0.3}

users ofkAD. §

Figure 6 reports the number afew KAD IDs per day. g 0.25¢

i.e. KAD IDs seen for the first time, according to country of g 0.2+

origin. More than 50% of the newAD IDs are from peers 5 ousl |

in China, which is more than one order of magnitude greater '

than the number of newAD IDs seen for any other country = 01}t i

such as Spain, France, or Germany. 0.05

; 0l : : : : : : :
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Apr May Jun Jul Aug Sep Oct Nov

Fig. 7. The fraction of peers in the pivot set that changed thed ID at
least once.

= china

In Fig. 7, we plot the fraction of peers from the pivot set
that change theikaD ID at least once. Since we perform a

h e Zfr”nf:ny full crawl only once a day, we are not able to estimate the rate

TR e, of change of thAD IDs. Instead, we can only detect which

Al peers have changed theinD ID. We see that a significant
fraction of end-users in different countries change theip

ID over time. After seven months, more than one third of the

end-users in Spain and France changed tkeiy ID at least

once.

A very recent study confirmed thanp ID aliasing is quite
common. Pietrzyk et al. [21] monitored a population of about
20,000 ADSL clients in France for ten days. About 20% of the

We were curious to find out whether it is plaUSible th%eers Change thekAaD ID for every new session and some
many end-users really stop usiR@\D after one session, or peers change it even during a session. In comparison taslien
whether the same users come back with a differext ID.  that do not change theikaD ID, these peers have longer
To investigate<AD ID aliasing, we need to look for peers withsession times, whereas the amount of files they share is sig-
static IP addressesvhich we can track fonon-persistenkAD pificantly smaller. It seems that peers who frequently cleang
IDs. We know that, for instance in France, one of the ADSt.he”‘ KAD ID do so in order to improve their anonymity_
providers (Proxad) assigns static IP addresses to cussomenmpliications of KAD ID Aliasing: The fact that thexAD
who are located in areas where the service offer is completgh assigned may be non-persistent obliges us to distinguish
“un-bundled”. between a peer and an end-user:

Our hypothesis is that a peer that keeps the same IP addres.sA peer is an instance okAD identified by a fixecdkAD
and port number for 10 days is assigned a static IP address.

Therefore, we take the logs of the two full crawls (cf. Settio
V-A) of March 20, 2007 and March 30, 2007 and extract the
140,834 peers that have the same IP address, port number
and KAD ID in both crawl logs. IP addresses running more
than onekaD ID are filtered out. This way we exclude all
users having dynamically assigned IP addresses, moreaver
exclude all users with static IP addresses who were notenli
on March 20 and March 30. We call this set of peersivat
set

Since this heuristic is very strict, the number of users with
static IP addresses is underestimated. However the pivot se
still contains enough peers to make statistically meaningf] N this section, we will present metrics that describe the
statements. 32% of the peers in the pivot set come from Spaln,behavior of individual peers, such as lifetime, session
18% from France, 5% from Poland and Italy, 4% from the U8nd inter-session time, residual uptime, and daily avaitgb
and Taiwan, and 3% from Israel and Argentina. using the observations made with our 179-day zone crawl. To

= = =spain

Number of new peers
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Fig. 6. NewkAD IDs according to country of origin.

« An end-useris a physical person who launches a peer to
participate inKkAD. The same end-user can, at different
times, participate irkAD via different peers.

When KAD ID aliasing occurs, it is not really possible to
gnaracterize the lifetime ofénd-usergracking akAD ID, as
ompared to the lifetime of peers. We will see in section VI-F
ow we can use the peers in the pivot set to estimate the
lifetime of end-users.

VI. PEERVIEW
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estimate the end-user lifetime we also make use of the dataVeibull fit of the session time distributiohe empirical
obtained via the full crawl. distribution of the session length exhibits a considerahile
Using these metrics we will compare the peer behavior 8t least 0.1% of the sessions are longer than 1 week and the
different countries. Knowing the session statistics aflams (i) longest session observed is 78 days. We did a distribution
to validate implementation choices ahD and (ii) to make fitting for the session times and found that the Weibull
suggestions on how to improve the efficiency 1iD (cf. distribution provides a very good fit (See Table | for Weibull

Section VII). parameters).
The Weibull distribution has two parametéts> 0 (shap¢
A. Session Statistics and X > 0 (scalg. The Weibull distribution withk < 1 is part

Most of the peers will not be online, i.e. connectedkem, Of the class of the so-called sub-exponential distribigtidor
all the time. By crawlingkap every five minutes, we can de-Which the tail decreases more slowly than any exponential ta
termine precise|y for each pekrthe instancesjl-(k)’ ey t%(k) [12] SUb-eXponential distributions are a subclass of thesc
when k joined and the instance$ (k), ..., ¢ (k) whenk has Of heavy-tailed distributions [4]. This implies that knawithe
left KAD. We define thesession lengthas the time a peer waspPast (uptime) of a peer allows us to predict the future (resid
present in the system without any interruption,ﬁéels;)—t{(k) uptime). More formally, ifS denotes the session length then
for i € {1,...,m}. For the peers that were online on the firshe expected residual uptime &S — ¢S > ] ~ O(t' "),
crawl, we did not consider the first session, since we can rig- it growssub-linearly For comparison: ifS where Pareto
know when it began. Analogously, we did not consider théistributed, the growth of its residual uptime would be &ne
sessions that were still ongoing during our last crawl. Fer ti-€. O(t).
European countries the distributions of the session times a
very similar. The Chinese peers, however, have signifigan8. Remaining Uptime

fewer long session times above 2 hours. _ Figure 9 shows the expected residual uptime for the scale
The session length of the peers seen infife crawl is  anq shape values that describe the session length of peers se
about twice that of the peers seen for the first time during the first crawl. There is a nice fit between the empirical
later crawls of day 1 (Fig. 8). When we crawhp for the ygjues and the interpolation using a function whose growth i
first time, we have a much higher chance of seeing peers tl@e(ttkk)_ We see that for small observed uptime values the
are connected “most of the time” than peers that are contiec{gmaining expected uptime values are considerable: A peer
from time to time and only for short periods. This means that{fat has been up for 1,000 minutes will have a remaining ex-
single crawl of the system cannot give a representativelfiCt pected uptime of 1,500 minutes. Based on their data sethwhic
of the characterlstlgs of the peers: Instead, we need tolsan{lqy not contain any sessions longer than 1 day, Stutzbach and
the system many times. _ Rejaie [35] concluded thatAD sessions times could be fit
For the peers seen in the first crawl, we observe sessiGther by a log-normal or a Weibull distribution. Our crawl,

times (in minutes) with a mean = 670, standard deviatiQpnich allowed us to observe sessions that lasted severiswee
= 1741 and median = 155. For the peers seen during th&nfirms this point.

remaining crawls on the first day these values are only about
half as large with mean = 266, standard deviation = 671 2500

and median = 75. In both cases, the coefficient of variation, g %
which is defined as the ratio between standard deviation and 32900
mean, which characterizes the “variability” of a distriiout, £
. Q.
is between 2 and 3. 2,500
I
> /
k=l
! ; ‘ S1000} /
= 15t Crawl % /
Up from second Crawl g
0.8f = = = 60th day :%, 500 |
w Numerical integra%iszn
0.6} ours 0 ‘ interpolation with O(x™)
[T
3 0 1000 2000 3000 4000
o 04l Observed uptime (min)
Fig. 9. Expected residual uptime fér= 0.54, A\ = 357 (for peers seen in
0.2t the first crawl).
0 ‘ ‘ The eMule and aMule implementationsiofD only publish
10° 10 102 10° 10 10° 10° on peers that have been up fatr least 2 hoursSource keys
Session time in minutes will expire after 5 hours and keyword keys after 24 hours. We
may ask whether selecting a peer that has been up for at least
Fig. 8. CCDF of the session lengths pexp ID. 2 hours will increase the chances that this peer will be up for

another 5 or 24 hours.
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The peers seen in the first crawl have, on average, not only

— Up 8h|| longer session times but also smaller inter-session titmas t
"'3‘; fE peers seen the first time in later crawls (cf. Table Il). The
—5min || average inter-session time is 1110 minutes for peers seen in

the first crawl compared to 1349 minutes for peers seen first
during crawls 2 up to 288. Peers in China have much shorter
inter-session times than peers in Europe (cf. Table Il). The
longest inter-session time observed is 177 days. For tlee-int
session times we could not find a distribution that makes a
good match with our observed data.

CCDF

E. Lifetime of Peers

10° 10° 10°* 10°
Uptime Remaining in minutes

1

10 °

10 For a givenkAD ID k, let t7(k) be the time thiAD ID is

seen joiningkAD for the first time, and let!(k) be the time

Fig. 10. CCDF of the remaining uptime of peers, given the uptiméas,  this KAD ID is seen for thelast time. The lifetime ofkAD

for peers seen in the first crawl. ID k is defined as!(k) — t/ (k). Since our crawl is of a finite
duration, we can never be sure if a peer wihD ID & will

ot come back after we stopped crawling. To make such an

In Fig. 10, we plot the remaining uptime of peers iveR . . o
that thegy have alrgady been up 5 n?inu?[es, 1h, th, or gh. eyent very unlikely, we have decided to compute the lifetime

this analysis we choose the set of peers seen in the first Crz?\my for ge;ers V;’:hKA% ”?S seen folr \t/\r}e Iafttrt:me ?Oﬁda%/zo
since this is the view a joining peer has of the system. more belore the end ol our crawl. Ve set the cut-oit a

see that a higher uptime translates into a higher remaini ys, since the inter-session times seen are very raregefon

i . L n 60 days.
uptime. This means that the minimum age-based peer selec ,
as implemented in eMule and aMule is a sensible policy. Among the peers seen on the first day, abd(# of the

Only about 20% of the peers with an uptime of 2 hours Wiﬁleers he}ve_a lifetime longer than one month and close to 45%
remain up for at least another 24 hours. Therefore, the o gve a lifetime longer than three months (Table 1I).

way to ensure that keywords remain available for 24 hours
is to publish information about a keyword enore than one
peer, as is done by eMule and aMule.

Trying to increase the lifetime of published content only 8
makes sense for those peers that are themselves highly avail ' - = = China
able. Therefore, the publication strategy needs to chduse t
content lifetime as function of both, the past availability
the publishing peer and the availability of the peers whiee t
data is going to be published.

1r

CCDF

C. Next Session Time

One may ask the question whether consecutive sessions are
correlated in length. If there is a strong positive corielat 0
one could use information about past session lengths as a
predictor of the length of future sessions: If a publishirgp
could predict its session time it could then choose the agtim_ . . .

L . . . . . Fig. 11. CCDF of the lifetime of thgpeersseen on the first day according
value for the expiration time of the information it publishe ( their country of origin.

in KAD.

If we take all session length samples and compute therjg,re 11 depicts the complementary cumulative distribu-
coeff|C|ent of correlation over 'copsecutlve seSS|on.Ie$1gvb tion (CCDF) of the peers seen on the first day. There is a big
obtain a value 0f0.15, which indicates that there is almosijifference in the lifetime of peers from China as compared
no correlation. However, if we only consider session leagth, £yrope: more than a third of the Chinese peers disappear
up to 1 Qay, there is a considerable positive correlat|on. Sfter only one day and only 10% have a lifetime of more than
0.85, which was also observed by Stutzbach and Rejajgg gays, while close to 40% of the peers in Europe have a

50 100 150
Peer lifetime in days

(Figure 10(b) of [35]). lifetime of more than 150 days.
] ] In fact the lifetime ofKAD IDs strongly depends on the
D. Inter-Session Time number of times a peer reconnects to the system. Figure 12

The inter-session timeis defined as the time a peéris shows the CCDF of the number of sessions for peers coming
continuously absent from the system, itg., (k) — ti(k) for from China and Europe. About 30% of the Chinese peers use
ie{l,...,n}. the sameAD ID for only one session compared to 5% for the
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European peers, which explains the difference in peeirtifet file systems. For instance, availability guided file placame

can help reduce the cost of object maintenance [17], which
may potentially be prohibitive as was pointed out by Blake

Availability in the case oikAD measures thesage behav-
ior, i.e. how many hours a day users are connected and how
they usekAD over longer time periods such as weeks.

Daily availability measures the fraction of time a peer is
connected per day. Daily availability expresses the “isitigh
of participation of users in the exchange of files. For a given
peerP, we definedaily availability of P as the percentage of
time P was seen online that day. For a peer that was first seen
at day: and last seen at day, we will get a time series of
daily availability values that hag—i+ 1 elements. We define
the mean daily availability as the average of thoge—i + 1

seen in Fig. 11.
" | [3].
N = = =China
== Spain
0.8r Germany
France
=
0.6 -
[T |
[a) ]
(@]
o
0.4+
0.2F
0 ; ;
10° 10' 10° 10° 10

Number of sessions

Fig. 12. CCDF of the number of sessions pemD ID.

F. Lifetime of End-users

values.

Peers in China spend much less time per day connected
than peers in Europe (Fig. 14). The “online times” for peers
in Europe are quite impressive, with 40% of the peers being
connected more than 5 hours per day and 20% even more than
10 hours per day.

The lifetime of end-users expresses in some way the sat-

isfaction of end-users. If users come back again and again it
means that they rely heavily on peer-to-peer file sharing for
accessing and exchanging content with other users.

Due to kKAD ID aliasing (cf. Section V-C) we can not
estimate the lifetime of end-users by measuring the lifetim
of KAD IDs (cf. Section VI-E). The only way to measure the
lifetime of end-users is to analyze peers from the pivotlsat t
we already used in section V-C to measure aliasingab
IDs. Since the pivot set contains over one hundred thousand
peers from numerous countries we expect that these peers
are representative of all peers waD. In Fig. 13, the CCDF
of the lifetime of end-users is plotted. End-user lifetinae

0.8

0.6

First day, liftime<= 2 months

== China

= = = Europe}

significantly larger than peer lifetimes (see Fig. 11). 5086 o % 5 10 15 20 25

the end-users have been usikgd for 6 months and more.

0.8 tal
\~~ H‘"-»“
0.6 . T
[T ~ -
o BTSN
@) ~ e
o ST
04r U
France ~
—— Spain
0.2 e Total
- = =China
0 i i i
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End-user lifetime in days

Fig. 13. CCDF of the lifetime of thend-usershaving static IP addresses

and fixed port numbers.

G. Daily Availability

Characterizing availability is important for building &fiént

Mean daily—availability in hours

Fig. 14. CDF of the mean daily availability of peers seen thst filay.

Next day availability: Observing availability over several
days or weeks can give an indication about the stability of
peer participation irkAD over time.

Figure 15 shows a scatter plot of the daily availability for
each peer for two consecutive days. We see that for a given
availability value on the first day, the availability of tleggeers
on the secondaries widely If we compute the correlation of
the availability on dayi and dayi + 1 of each peer we get a
low value of 0.52. Given thakAD is predominantly used to
download copyright-protected content, the users probstaly
connected the least possible time required to download the
requested content. As the download time depends on various
factors such as content size, content popularity, andablail
bandwidth, the daily availably will vary accordingly.

Figure 16 plots the daily availability (in hours) time sarie
for a random set of peers over a duration of 100 days. While
there are a few peers for which the daily availability change
little over time, most of the peers exhibit daily availatyili

distributed applications such as overlay multicast oritisted values that vary a lot.
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Correlation = 0.52 , will be followed by additional similar measurements. Hoeev
"% if the time series is highly irregular, the occurrence ofikm
availability patterns will be very unlikely for the followg
days, andApEn will be relatively large.

We were able to confirm the results of Mickens for the
Microsoft trace, where 80% of the values 4pEn(m),where
m = 2, are close to zero, which indicates that daily availability
varies little over time. On the other hand, the En(m) values
for the KAD trace are much higher (see Fig. 17). About 50%
of the peers havelpEn(m) values above 0.5, which indicates
that the daily availability values are quite irregular. kenis
made a similar observation for the Overnet trace.

24

= N
(4] o

-
o

Day i+1 availability

Day i availability First crawl, life time>30, m=2

1
Fig. 15. Scatter plot of the availability on dayvs. the availability of day
i+ 1 for peers seen in the first crawl. 0.8r 1
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Days VII. DESIGNIMPLICATIONS

HE results presented in this paper can be used to validate
Fig. 16. Daily availability in hours of 50 randomly chosen peseen in the design choices made by the developers and improve the
first . . i . :
ISt craw performance of the implementation &AD in various ways:
In today’s implementation okAD, a source key that points

Douceur [8] analyzed different traces of machine avaitabilo the peer that holds the content will expire 5 hours after it
ity® from Microsoft, Internet, Gnutella, and Napster. Applyindg!as been published. On the other hand, the median session
a Fourier transformation to the availability values he fdunlength of peers is only 155 minutes and less than 40% of the
cyclic behavior in the daily availability of the Microsoftsessions are longer than 5 hours (cf. figure 8). This means tha
machines, but did not find any diurnal patterns for the oth#t more than 60% of the cases, a peer that publishes a source
traces. We did a Fourier and Wavelet transformation on they will leave KAD before the reference to that file expires.
daily availability time series of oukAD peers and could not AS & consequence, many references to sources wititdle
find any cyclic behavior or diurnal patterns. resulting in unsuccessful attempts to download that file. An

To formally quantify the daily availability patterns of pse improvement of the current implementation could be to first
we use a metric calledpproximate entropy ApEn, which publish a source key with an expiration time much smallentha
is a “regularity statistic” that quantifies the unpredidtiéoof 5 hours. Each time the published source key expires, the peer
fluctuations in a time series. For details on the approximdieat owns the file republishes the source key, progressively
entropy see [22] and the Appendix. This metric was recentijcreasing its expiration time.
used by Mickens [17] to analyze several traces of machineln [30] we measured that the total traffic iAD due to
availabilities such as the Microsoft trace and the Ovenmaeget publishingis about 100 times higher in volume (bytes) than
We calculateApEn of the daily availability of KAD peers the total search traffic In a follow-up to this measurement
seen on the first day. The smaller the valuedpi#n, the more study, we have shown how to exploit the fact that session
regular the daily availability values over time. Thus, dmatimes are Weibull distributed in order to reduce the publish

values of ApEn imply that similar patterns of measurementgaffic by one order of magnitude [6].
We have seen (cf. Section VI-A) that for peers with session

3The traces are available at times less than one day, the duration of the next session is
http: //ww. cs. ber kel ey. edu/ ~pbg/ avai l abi i ty/ highly correlated to the duration of the previous sessidnis T



IEEE/ACM TRANSACTIONS ON NETWORKING 13

means that a peer could set the initial expiration time of a« The majority of clients us&AD every day for many

source key using the value of its last session time. hours.
Peers seen first during the very first crawl have muche Since most of the content is copyright protected and the
higher mean session durations and smaller inter-sessi@s ti sharing of such content is illegal, users take measures to

than peers seen later for the first time. As already suggested reduce the risk of being tracked by changing theip
by Stutzbach and Rejaie [35], this fact can be exploited to 1D frequently or by staying connected only as long as
find “more stable” peers without knowing anything about the necessary to download the desired content.
history of the peers: One simply “crawlsXAD once and The full dataset of the zone crawl and of the full crawl
selects the peers that are online at that instant. are available on the Welhhtt p://ww. eur ecom fr/

~bt r oup/ kadt r aces.
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of the entirekAD system. It also allowed us to track th HE approximate entropyApEn) is a “regularity statis-
behavior of a representative subsetkafp peers (with I P Py " 9 y

. . . . tic” that quantifies the unpredictability of fluctuations in
a precision oft 5 minutes) over a period of almost SiXi e series
months. To the best of our knowledge th.is is the Iongesp.l.he algoﬁthm for computingdpEn has been published
\(;\r/eelvx;:eoef datc??:?;-vtv(lj_g) ?esruif;elrgnevililf;[ir(r)lr?dtooﬂﬁambi in [22]. Here, we provide a brief summary of the algorithm.
* i X - 'ong UNambiglgi en a sequencEyy, consisting of N measurements equally
ously identify the peers that Jomedo\p for the _f|rst time .SI;])aced in time/(1), U/(2), - - -, U(N), we must choose values
?”d to_ C?pt“.re the t"?“l 9f fche session and |nter-seSS|?0r two input parametersy andr, to compute the approximate
time distributions, which is in the order of months. entropy, ApEn(m,r), of the sequencd/y. The parameter
« To be able to cope with transient network and machinée Py, 2D o q N P

. : N m, specifies the pattern length, amd defines the criterion
failures, we ran two crawlers in parallel and we “post-

N ._.of similarity. We denote a subsequence (or pattern)nof
processed” our measurements to account for missin o R
replies of peers that are overloaded ngrleasurements, beginning at measurenasvithin Uy, by the

) _ vector z(i). Two patterns,z(:) and z(j), are similar if the
We have carried out a full crawl once a day in order to  gjfference between any pair of corresponding measurements
« Validate that crawling a single zone will return a sampli the patterns is less than i.e., if
of the peers inKAD that is representative of the entire
KAD network. [UGE+k)—UG+k)| <rfor0<k<m
« Obtain a subset (pivot set) of peers with static IP ad- ow consider the set of all patterns of length [ie.,
dresses that can be used to estimate the rate of changea 9. . 2(N—m-+1)], within U We may now define
KAD IDs and the lifetime ofend-usersand not only the 2(1),2(2), -+ 2(N=m-+1)], N y
lifetime of KAD IDs. . ni(r)
« Detect various “anomalies” such as thousands of peers Cit(r) = N-_m+1

with the samekaD ID or a company “observing” the wheren;(r) is the number of patterns that are similar to

entire search and publish traffic via thousandssgbil z(¢) (given the similarity criterion-). In this work, we used

p_eers. _ _ = 0.1 * std deviation(daily availability) as suggested in
Our high resolution zone crawl lead to a number of intergstin2]. The quantityC:™(r) is the fraction of patterns of length

findings: m that resemble the pattern of the same length that begins at
« Session times are heavy tailed following a Weibull dis~. We can calculate”!(r) for each pattern of sizen, and
tribution. we define®™(r) as the mean of thes€!"(r) values. The

« KAD IDs are not necessarily persistent as was assumghntity ®™ (r) expresses the prevalence of repetitive patterns
up to now. Nevertheless, the most important metrics suoh lengthm in Uy. Finally, the approximate entropy @fy,
as session times and inter-session times are not affectedpatterns of lengthn and similarity criterionr, is defined

by the non-persistertAD IDs. as
o The total number of peers online at any time can be m
precisely estimated. ApEn(m) = ln[ o™(r) }
» Peers in China differ significantly from peers in Europe omtl(r)

with respect to key metrics such as session time, inter-i.e., as the logarithm of the ratio of the relative prevakenc
session time, peer lifetime, and daily availability. of repetitive patterns of lengthh andm + 1.
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