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Abstract—Distributed hash tables (DHTs) have been actively
studied in literature and many different proposals have been
made on how to organize peers in a DHT. However, very few
DHTs have been implemented in real systems and deployed on
a large scale. One exception isKAD , a DHT based on Kademlia,
which is part of eDonkey, a peer-to-peer file sharing system with
several million simultaneous users. We have been crawling a
representative subset ofKAD every five minutes for six months
and obtained information about geographical distribution of
peers, session times, daily usage, and peer lifetime. We have
found that session times are Weibull distributed and we show
how this information can be exploited to make the publishing
mechanism much more efficient.

Peers are identified by the so-calledKAD ID, which up to
now was assumed to be persistent. However, we observed that a
fraction of peers changes theirKAD ID as frequently as once a
session. This change ofKAD IDs makes it difficult to characterize
end-user behavior. For this reason we have been crawling the
entire KAD network once a day for more than a year to track
end-users with static IP addresses, which allows us to estimate
end-user lifetime and the fraction of end-users changing their
KAD ID.

I. I NTRODUCTION

PEER-TO-PEER systems have seen a tremendous growth
in the last few years and peer-to-peer traffic makes a

major fraction of the total traffic seen in the Internet. The
dominating application for peer-to-peer is file sharing. Some
of the most popular peer-to-peer systems for file sharing have
been Napster, FastTrack, BitTorrent, and eDonkey, each one
counting a million or more users. Since these systems are
mainly used by home-users and since the content shared is
typically copyright-protected, the users of these systemsoften
stay connected only as long as it takes them to download the
content they are interested in. As a result, the user population
of these peer-to-peer systems is highly dynamic with peers
joining and leaving all the time.

In this paper, we focus on a single peer-to-peer system,
namely KAD , which is the publishing and search network of
eDonkey. Our aim is to characterizeKAD in terms of metrics
such as arrival/departure process of peers, session and inter-
session lengths, availability, and lifetime.

To obtain the relevant raw data we decided to “crawl”KAD .
Each crawl gives a snapshot of the peers active at that instant.
The three major challenges in crawling are

• Time necessary to carry out a single crawl, which should
be as short as possible to get a consistent view of the
system.

• Frequency of the crawls, i.e. the time elapsed between
two consecutive crawls should be short (no more than a
few minutes) in order to achieve a high resolution for
metrics such as session length.

• Duration of the crawl, which should be in the order of
many months, to be able to correctly capture the tail of
the session and inter-session length distributions.

We have built our own crawler, which will be described in
Section IV, that meets all three goals.

While peer-to-peer systems have been explored previously
using a crawler, the duration of these crawls was limited to a
few days at best. We were able to crawl a subset ofKAD for six
months at a frequency of one crawl every five minutes, which
makes a total of 51,552 snapshots. We obtained a number of
original results such as:

• Session lengths are heavy–tailed, with sessions lasting as
long as 78 days and are best characterized by a Weibull
distribution, with shape parameterk < 1. One property
of Weibull distributed session lengths is that a peer that
has so far been up fort units of time will – we expect –
remain up for a duration that is in the order ofO(t1−k).
We can exploit this fact to use the past uptime in order
to predict the remaining uptime.

• For many peers, the amount of time a peer is connected
per day, called daily availability, varies a lot from one
day to the next. This makes it difficult to predict daily
availability.

• Contrary to what was known up to now,KAD IDs are
not persistent and can change as frequently as once
per session. By using a subset of peers with static IP
addresses we can also show that the end-user lifetime is
significantly longer than theKAD ID lifetime with 50%
of the peers participating inKAD for six months or more.

• When classifying peers according to their geographic
origin, the peers from China make about 25% of all peers
seen at any point of time, while Europe is the continent
whereKAD is most popular. We also see a big difference
between peers in China and Europe with respect to some
of the key metrics such as session length or duration of
daily usage.

The remainder of the paper is organized as follows. Section
II presents related work followed by a section describingKAD .
Section IV presents the measurement methodology followed
by two sections that contain the results. We then discuss in
Section VII how some of our findings can be used to improve
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the performance ofKAD and summarizes the major findings
in Section VIII.

II. RELATED WORK

STUDIES measuring peer-to-peer networks may have dif-
ferent goals, such as analyzing the traffic patterns [27],

[37]; learning about the content shared in the network [11],
[26], [7]; or learning about the peers, their geographical
distribution [11], their latency to the measurement site or
their bandwidth [14], [26], and the user behavior expressed
e.g. in session times or peer availability [2], [14], [35], [26],
[36], [7]. There are also different ways to measure peer-to-
peer networks, which can be either passive or active. Passive
techniques consist of (i) instrumenting a client that captures
all the traffic [37] sent and received, (ii) analyzing the central
log file such as the track log of BitTorrent [13], or capturing
the traffic of a whole network, e.g. at the POP or an ISP [27],
[21].

Active techniques consist in crawling the peer-to-peer sys-
tem. In some systems, such as Napster or eDonkey, it is
sufficient to contact the server(s), instead of every single
peer [7], [26], [23]. If one wants to know all peers in a
DHT, such as Overnet orKAD , it is necessary to contact every
single peer and to query it for contacts in its routing tables.
Here crawling is equivalent to a graph exploration. Findingall
peers amounts to building the transitive closure of the graph.
Examples of DHTs studies that employ crawling are [11], [23],
[2], [14], [35].

Overnet was the first widely deployed peer-to-peer applica-
tion that used a DHT, namely Kademlia. The implementation
of Overnet is proprietary and its operation was discontinued
in September 2006 after legal action from the media industry.
Overnet has been the subject of several studies [2], [14] and
up to 265,000 concurrent users have been seen online. In our
study we use the active measurement approach and want to
learn about peer behavior. One study relevant to our work is
by Bhagwan et al. [2] where a set of 2,400 peers in Overnet
was contacted every 20 minutes over two weeks. This study
discusses theIP aliasing problemwhich results from the
fact that many peers periodically change their IP address.
Therefore, in order to properly compute session times and
other peer-specific metrics, one needs to use a globally unique
identifier for each peer.

KAD is the first widely deployed open-source peer-to-peer
system relying on a DHT. Two other studies onKAD that are
very relevant to our work have been published by Stutzbach
and Rejaie. The first one explains in detail the implementation
of Kademlia in eMule [34] and the second one [35] compares
the behavior of peers in three different peer-to-peer systems,
namely BitTorrent, Gnutella andKAD . The results obtained
for KAD are based on crawling a subset of theKAD ID space.
We call a continuous subset of the totalKAD ID space that
contains allKAD peers whoseKAD IDs agree in the high order
k bits ak-bit zone. Stutzbach and Rejaie have implemented a
custom crawler that allowes them to crawl a 10-bit zone in 3-4
minutes and a 12-bit zone in approximately 1 minute [35]. A
total of 4 different zones were crawled, each one being crawled

for 2 days. The short duration of the crawls implies that the
maximum values for some metrics such as session times or
inter-session times that can be observed are naturally limited
to 2 days. The paper by Stutzbach and Rejaie [35] is the most
relevant to our work and we will refer to the results reported
on several occasions. As we will see, our work significantly
extends the findings of Stutzbach and Rejaie.

Le Fessant at al. [11] crawled eDonkey for one week and
connected 55,000 out of 230,000 peers. The geographical
distribution of these peers is very similar to the one we have
observed (cf. Section V-B), except for the large number of
Chinese peers that we see.

In 2002, Saroiu et al. [26] presented one of the first
measurement studies for Gnutella and Napster. They developed
their own crawler that connects, in the case of Napster, to
each of the 160 servers and asks for the connected clients.
The Gnutella crawler explores the graph of neighbor relations.
The Gnutella crawl spans 8 days and the Napster crawl spans
4 days. For both Gnutella and Napster, Saroiu et al. report
median session times of about 1 hour, which is half the time
compared to the peers inKAD (cf. Section VI-A).

Chu et al. [7] repeated the measurements of Saroiu et al. and
extended them to a duration of six weeks measuring session
lengths and content popularity.

Qiao and Bustamante [23] compared the performance of
structured and unstructured Overlay networks for the case of
Overnet and Gnutella. For their study they performed session
measurements for 7 days and reported median session times
of 71 minutes for Gnutella and of 135 minutes for Overnet,
which is very close to our results forKAD (cf. Section VI-A).
In [5] the same authors present a new peer-to-peer system
that makes use of the expected session times of the peers that
follows a heavy-tailed Pareto distribution in order to improve
resilience to churn.

Tian and Dai [36] analyzed the logs of Maze, a Chinese
peer-to-peer network with about 20,000 concurrent users. All
users are connected via the high speed Chinese research
network. Although it is a peer-to-peer network, all peers
connect every 5 minutes to a central server that writes a global
log file. This enables an analysis to be made.

III. KAD B ACKGROUND

K AD is a Kademlia-based [16] peer-to-peer DHT routing
protocol that is implemented by several peer-to-peer

applications such as Overnet [20], eMule [10], and aMule [1].
The two open–source projects eMule and aMule have the
largest number of simultaneously connected users since these
clients connect to the eDonkey network, which is a very
popular peer-to-peer system for file sharing. Recent versions
of these clients implement theKAD protocol.

Similar to other DHTs like Chord [32], CAN [24], or
Pastry [25], eachKAD node has a global identifier, referred
to as a KAD ID, which is a 128-bit long random number
generated using a cryptographic hash function. TheKAD ID
is generated when the client application is started for the
first time and is then permanently stored. TheKAD ID stays
unchanged on subsequent joining and daparture of the peer,
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until the user deletes the application or its preferences file1.
Therefore, using theKAD ID, a particular peer can be tracked
even after a change of its IP address. This is important since
many ISPs reassign IP addresses to their customers as often
as once a day.

A. Routing

Routing in KAD is based on prefix matching: Nodea
forwards a query destined to a nodeb, to the node in his
routing table that has the smallest XOR-distance tob. The
XOR-distanced(a, b) between nodesa andb is d(a, b) = a⊕b.
It is calculated bitwise on theKAD IDs of the two nodes,
e.g. the distance betweena = 1011 and b = 0111 is
d(a, b) = 1011 ⊕ 0111 = 1100, and the distance between
a = 1011 and c = 1100 is 0111. Thusa is closer toc than
to b, sinced(a, b) = 1100 > d(a, c) = 0111. The fact that
this distance metric is symmetric is an advantage compared to
other systems, e.g. Chord, since inKAD if a is close tob, then
b is also close toa. Therefore, a nodea that announces its
existence to a nodeb might be added by nodeb to its routing
table.

The entries in the routing tables are calledcontactsand are
organized as an unbalancedrouting tree: A peerP stores only
a few contacts to peers that are far away in theKAD ID space
and increasingly more contacts to peers closer in theKAD ID
space. For details of the implementation see [34]. For a given
distance,P knows not only one peer but abucketof peers.
Each bucket can contain up to ten contacts, in order to cope
with peer churn without the need to periodically check if the
contacts are still online. Each contact consists of the node’s
KAD ID, IP address, TCP and UDP port. Theleft side of the
routing tree contains contacts that have no common prefix with
the nodea that owns the routing tree (XOR on the first bit
returns1). The right side of the routing tree contains contacts
that have at least one prefix bit in common. This tree is highly
unbalanced and the right side of each tree node is (recursively)
further divided into two parts, containing on the left side the
contacts having no further prefix bit in common, and on the
right side the contacts having at least one more prefix bit in
common. Abucketof contacts is attached to each leaf of the
routing tree.

To route a message toward its destination the next hop
is chosen from the bucket with the longest common prefix
to the target. Routing to a specificKAD ID is done in an
iterative way, which means that each peer, on the way to
the destination, returns the next hop to the sending node.
While iterative routing experiences a slightly higher delay
than recursive routing, it offers increased robustness against
message loss and it greatly simplifies the crawling of theKAD

network.

B. Publishing

A key in a peer-to-peer system is an identifier used to
retrieve information.KAD distinguishes between two different
keys:

1As we will see later, not all peers inKAD behave this way.

• A source key that identifies the content of a file and is
computed by hashing thecontentof a file.

• A keyword key that classifies the content of a file and
is computed by hashing the tokens of thenameof a file.

In KAD , keys are not published just on a single peer that is
numerically closest to that key, but on 10 different peers whose
KAD ID agrees at least in the first 8 bits with the key. This
8-bit zone around a key is called the tolerance zone. All peers
inside a tolerance zone around a given keyword are qualified
to accept a publication for this keyword.

Keys are periodically republished:source keys every 5
hours andkeyword keys every 24 hours by default. Anal-
ogously, a peer on which a source key or keyword key was
published will delete the information after 5 and 24 hours,
respectively. This way re-publishing is done in exactly the
same way as publishing.

The peer that accepts the publish message for a keyword
returns the load factor to the publishing peer. The load factor
takes values between 0 and 100 and is computed as a function
of the number of publications for the specific keyword and the
total number of publications the peer received and stored. If
the load factor is below 20, the default republishing delay of 24
hours is kept; otherwise it is adjusted as follows:republishing
delay = load factor

100
∗ 7 ∗ 24. The maximum republishing

delay can thus be as long as 7 days.
The four most important message types for the route,

publish, and search process are:

• hello: to check if the other peer is still alive and to
inform the other peer about one’s existence and the IP
address andKAD ID.

• route request/response(kid): to find peers
that are closer to theKAD ID kid.

• publish request/response: to publish informa-
tion.

• search request/response(key): to search for
information whose hash iskey.

IV. M EASUREMENTMETHODOLOGY

A. Crawling KAD

We have developedBlizzard, our own crawler forKAD , with
the aim to crawlKAD very frequently and over a duration of
several months. Our crawler logs for each peerP the time of
the crawl, the IP address ofP , theKAD ID of P , and whether
or not P has responded to the crawler.

In a large peer-to-peer system such asKAD , peers are
constantly joining and leaving, which makes it difficult to
get a consistent view of the system. Therefore, the overall
duration of a single crawl should be as short as possible. To
speed up a single crawl, previous crawlers (such as [35]) were
often distributed and ran simultaneously on multiple machines.
However, we noticed that in a distributed crawl a lot of CPU
time is used up for the synchronization between the different
machines. To make our crawler run very fast, we decided to
run Blizzard on asingle machine and to keep all relevant
information in main memory. The implementation of Blizzard
is straightforward: It starts by contacting a seed peer run by
us. Then it asks the seed peer for a set of peers to start with



IEEE/ACM TRANSACTIONS ON NETWORKING 4

and uses a simple breadth first search and iterative queries.
It queries the peers it already knows to discover new peers.
For every peer returned, the crawler checks if this peer has
already been discovered during this crawl. We use a hash table
of already discovered peers that fits in main memory, which
makes this test very efficient. After one crawl is completed,
the results are written to disk.

At the beginning of each crawl, the number of new peers
discovered grows exponentially before it approaches asymp-
totically the total number of peers inKAD . At some point
the crawl needs to be stopped, otherwise the crawl accuracy
decreases, since new peers are joining the system all the time
[33]. We choose to stop querying new peers when 99% of the
peers discovered have been queried. We then wait for 30 more
seconds for late replies before terminating the crawl.

Not all the peers discovered can be contacted directly by
the crawler. Approximately half of the peers queried do not
respond to the crawler. There are two main reasons why a peer
does not respond to our queries: either the peer has left the
system, or the peer is behind a NAT that blocks our query.
For the crawler it is not possible to distinguish between these
two cases.

The crawler is implemented as two asynchronous threads:
One thread to send theroute requests(kid) (Alg. 1)
and the other one to receive and parse theroute
responses (Alg. 2). A list that contains all the peers
discovered so far is used and maintained by both threads. The
receiving thread adds the peers extracted from theroute
responses(kid) to the list, whereas the sending thread
iterates over the list and sends 16route requests(kid)
to every peer in the list. The value of theKAD ID kid is
different in each of the 16route requests. Care is taken
to assure that each value ofkid falls in a different bucket
of the peer’s routing tree, which allows us to minimize the
overlap between the sets of peers returned in the response.

There are various pitfalls when crawling a peer-to-peer
system, such as incomplete data due to crawler crashes, loss
of network connectivity, or random failures due to temporary
network instability. To address these problems, we run simul-
taneously two independent instances of our crawler, one at the
Universiẗat Mannheim, Germany, connected to the German
research network, and a second one at Eurécom, France,
connected to the French academic network. Running two
crawls in parallel turned out to be very useful: at some point,
due to network problems, one instance of the crawler was
seeing fewer peers than the other one. Also, occasionally one
of the two crawlers crashed.

B. Full Crawl

The speed of Blizzard allows us to crawl the entireKAD ID
space, which was never done before. Such afull crawl of KAD

takes about 8 minutes. The first million peers are identified in
about 10 seconds, the second million in 50 seconds; thereafter
the speed of discovery decreases drastically since most peers
returned in theroute response messages have already
been seen during the same crawl. A full crawl ofKAD produces
about 3 GBytes of inbound and 3 GBytes of outbound traffic.

Algorithm 1 : send thread (is executed once per crawl)

Data: peer: struct{IP address, port number,kid}
Data: sharedlist Peers = list ofpeer elements
/* the list of peers filled by the

receive thread and worked on by the
send thread */

Data: int position = 0
/* the position in the list up to which

the peers have already been queried

*/
Data: list ids = list of 16 properly chosenkid elements
Peers.add(seed);/* initialize the list with1

the seed peer */
while position< size(Peers)do2

for i=1 to 16 do3

destkid = Peers[position].kid ⊕ ids[i];4

/* normalize the bucket to the
peers position */

sendroute requests(destkid) to5

Peers[position];

position++;6

Algorithm 2 : receive thread (waits for theroute
response messages)
Data: message mess =route response message
Data: peer: struct{IP address, port number,kid}
Data: sharedlist Peers = list ofpeer elements
/* the list shared with the send thread

*/
while true do1

wait for (mess =route response) message;2

foreach peer∈ messdo
if peer /∈ Peersthen3

Peers.add(peer);4

A full crawl was done once a day from March 20, 2007 to
May 25, 2008.

C. Zone Crawl

A full crawl generates an extremely high amount of trace
data and network traffic (with peak data rates close to 100
Mbit/sec). Also carrying out just one crawl per day is not really
sufficient to capture the dynamics ofKAD peers over short
timescales, which is needed to measure e.g. session times.
For this reason, we decided to carry out azone crawl on an
8-bit zone, where we try to find all active peers whoseKAD

ID has the same 8 high-order bits. Such a zone crawl that
explores one 256-th of the entireKAD ID space, takes less
than 2.5 seconds. The high resolution and long duration zone
crawl from September 23, 2006 to March 20, 2007 allowed us
to collect 51,552 snapshots (one every 5 minutes) of a subset
of all KAD peers. In section V, we will use the results of a full
crawl to validate that the subset ofKAD peers captured via a
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zone crawl is indeed a representative sample of the peers in
KAD .

D. Data Cleaning

Crawling a zone happens periodically with a new crawl
every five minutes and the two crawlers at the Universität
Mannheim and Eurécom being synchronized. A peer that
replied to at least one of the two crawlers during roundi
is considered to be up at roundi 2. The snapshots obtained
by both crawlers are not always identical. The difference in
the number of peers discovered is sometimes in the order of
10%, whereas most of the time the difference is less than 1%.
Analyzing these differences reveals that the peers seen by one
crawler but not by the other one are well distributed over all
countries and the entire IP address space.

However, we realized that a peer that is up may occasionally
be declared by both crawlers as not responding, i.e. considered
as being down. One reason can be that the peer is overloaded
and does not reply to our query. To validate this hypothesis we
ran aKAD peer on an ADSL line: when neither the machine
nor the peer application was loaded it always responded to the
crawlers. When the machine was loaded with heavy calcula-
tions the peer still responded. However when theKAD peer
was loaded with a large number of simultaneous downloads
it frequently did not respond to the route requests of our
crawlers.

Another reason can be that the path between the two
crawlers and the peer is disrupted somewhere close to the peer.
In both cases, the crawlers will not receive a response from the
peer even when it is up and running. While it is not possible
to tell exactly why a peer is not answering, we implemented
the following data cleaning rule that we consider “reasonable”:
When a peerP that has been reported up at roundi− 1 does
not reply to either of the two crawlers during the next round
i, and then replies again during roundi + 1, then peerP will
also be considered up at roundi.

We refer to this filtering mechanism as eliminating1 hole.
One can of course generalize this approach to eliminatingi
holes, which means considering a peer that responded during
crawl k, then did not respond for up toi consecutive crawls
before responding again, as being continuously up from crawl
k to crawl k + i + 1.

Since we have no answer as to what data cleaning technique
is the most appropriate, we ran different experiments where
we eliminatedi holes, with i ∈ {0, 1, 2, 3, 5}. The resulting
Cumulative Distribution Functions (CDFs) of the session times
are shown in Fig. 1 and the first two moments of the session
times in Table I. Of course, the bigger the holes we eliminate
the larger the mean session times. However, it is important that
independently of the number of holes eliminated, the session
times could always be a perfect fit using a Weibull distribution,
which is described by two parameters, referred to as scale and
shape. We will come back to this in section VI-F.

2As we can see in Algorithm 1 the crawler sends 16 route requests to each
peer. A peer is considered alive if at least one route response is received by
the crawler.

For the rest of the paper we will use the data with1 hole
eliminated.
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Fig. 1. CDF of the session times (1,2,3, and 5 hole(s): after data cleaning,
0 hole: raw data without data cleaning).

TABLE I
SESSION CHARACTERISTICS BEFORE AND AFTER DATA CLEANING.

ELIMINATING i HOLES MEANS THAT WE CONSIDER A PEER ASconnected
EVEN IF IT DOES NOT RESPOND DURINGi CONSECUTIVE CRAWLS.

Weibull Session times
Eliminating Scale shape mean std dev.

Raw data 55.91 0.52 113.73 297.41
1 hole 97.62 0.56 169.21 405.26
2 holes 129.53 0.61 199.62 455.9
3 holes 144.28 0.63 215.8 486.2
5 holes 165.4 0.65 238.38 525.25

The following two sections present the results of our crawl.
Section V will provide general information such as the number
of KAD users and their geographic distribution and will also
discussKAD ID aliasing and its implications. Section VI will
focus on statistics related to session times that are very relevant
for the optimization of certain design parameters ofKAD such
as the republishing interval and metrics that characterizethe
daily usage behavior ofKAD clients.

V. GLOBAL V IEW OF KAD

I N this section, we will present results obtained via a full
crawl of KAD , such as the total number of users, the

geographic distribution of the users, and the distributionof
the KAD IDs over the hash space. We will and compare these
results where appropriate to the ones obtained via the zone
crawl. Moreover we will characterize the fact of IP address
aliasing andKAD ID aliasing.

A. Full Crawl

During each full crawl, we discovered between 3 and 4.3
million different peers. Between 1.5 to 2 million of these
reply to our queries, and can thus bedirectly contactedby
our crawler. The other peers either have left the system or are
located behind NATs or firewalls. In the rest of the paper we
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will only report statistics on the peers that our crawler could
contactdirectly.

In Fig. 2, we plot the distribution of the percentage of peers
seen per country, using the Maxmind database [15] to resolve
IP addresses to countries and ISPs. The continent with the
highest percentage of peers is Europe (Spain, France, Italyand
Germany), while the country with the largest number of peers
is China. Less than 15% of all peers are located in America
(US, Canada, and South America). We can also see that the
geographical distribution of the peers obtained with the two
zone crawls of an 8-bit zone each is very close to the result
obtained with the full crawl, which is to be expected since the
KAD IDs are chosen at random.
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Fig. 2. Histogram of geographic distribution of peers seen on 2006/08/30.

In fact, we see from the results of the full crawl that the
peers are uniformly distributed over the hash space, except
for some outliers (Fig. 3). All the outliers are due to modified
KAD clients that use the sameKAD ID and are always limited
to one country (Korea, Spain, Israel, China, Argentina). The
outlier in zone0xe1 is a modified client used in Israel, for
which we counted 25069 instances [28]. We also observed
250,000 instances ofKAD , with KAD IDs that systematically
cover the entireKAD ID space. All the IP addresses belong
to the domainmediadefender.com. By carrying out a so-
called Sybil attack [9], [29], the company Media Defender is
able to closely monitor all publish and search activities ofall
peers inKAD . We have filtered out these “anomalies” from
our trace data since we are interested in characterizing the
behavior of ordinaryKAD peers.

Given that KAD IDs are uniformly distributed, we can
estimate the total number of peers inKAD by simply counting
the number of peers in a zone and multiplying this value by
the number of zones (256 zones). Using Chernoff Bounds (see
[19] Chapter 4) we tightly bound the estimation error.

Let N(t)part be the number of peers counted during a zone
crawl of an 8–bit zone at timet and N̂(t) := 256 ∗ N(t)part

the estimate for the total number of peers in theKAD system.
The true valueN(t) for the total number of peers at timet is
very close to the estimatêN(t), with high probability. More
precisely:Prob[|N(t)− N̂(t)| < 45000] ≥ 0.99, which means
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Fig. 3. The distribution of the peers over the hash space. The256 8-bit
zones on the x-axis go from0x00 to 0xff.

that our estimateN̂(t) has most likely an error of less than
3% for a total population of at least 1.5 million peers.

B. Zone Crawl

All the results in the following subsection were obtained
using the zone crawl of the 8-bit zone0x5b that lasted for
179 days.

In Fig. 4, we plot the number of peers seen that originate
from China and some European countries. The number of
peers in each country follows a diurnal pattern, with a peak
around 9 PM local time. The eight-hour time shift between
Europe and China is clearly visible.
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Fig. 4. Peers online according to country of origin.

Table II summarizes the basic findings on the zone crawl.
The peers seen came from 168 different countries and 2384
providers. For theKAD IDs seen on the first day of our zone
crawl, we observe that about one third of the peers come
from Europe and about one fourth from China. If we compare
the lifetime of the peers, which is defined as the difference
between the time a givenKAD ID was seen the last time and
the time thisKAD ID was seen the first time, we notice that
the lifetime of peers in China is much smaller than that of
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TABLE II
KEY FACTS ABOUT THE PEERS SEEN DURING THE ZONE CRAWL SPANNING179 DAYS ORGANIZED BY COUNTRY OF ORIGIN(LT=L IFETIME).

Total China Europe Rest

Different KAD IDs 400,278 231,924 59,520 108,834
Different IP addresses 3,228,890 875,241 1,060,848 1,292,801

KAD IDs seen for a single session 174,318 131,469 11,644 31,205
KAD IDs with LT ≤ 1 day 242,487 183,838 15,514 43,135

KAD IDs seen for the first time on
- 1st crawl 5,670 455 2,879 2,336
- 1st day 18,549 4,535 6,686 7,328

- 60th day 1,893 1,083 259 551
KAD IDs seen for the first time on 1st day

- with LT ≤ 1 day 2,407 1,568 286 553
- 1 day< LT ≤ 1 week 1,368 497 393 478

- 1 week< LT ≤ 1 month 2,735 791 944 1,000
- LT > 1 month 12,039 1,679 5,063 5,297
- LT > 3 months 8,423 936 3,679 3,808

avg. of the median session time per peer (minutes) 165 103 326 210
avg. of the median-inter session time per peer (minutes) 1,341 586 2,825 2,136

TABLE III
KEY FACTS ABOUT THE PEERS SEEN DURING THE ZONE CRAWL SPANNING179 DAYS ORGANIZED BY ISP OF ORIGIN (LT=L IFETIME).

Total Europe China
Proxad Orange Dt. Tel. Telefonica DDV CNCgroup ChinaNet

Different KAD IDs 400,278 5,565 4,834 3,129 8,294 55,668 75,300 79,057
Different IP addresses 3,228,890 5,446 4,668 3,099 7,930 42,163 55,449 65,964

KAD IDs seen for a single session 174,318 941 677 502 1,356 34,863 40,745 40,306
KAD IDs with LT ≤ 1 day 242,487 1,209 899 649 1,822 48,195 57,730 56,518

avg. of the median session time per peer (minutes) 165 408 324 376 359 107 87 112
avg. of the median inter-session time per peer (minutes) 1,341 2,880 2,908 2,601 2,527 375 641 788

peers in the other countries. More than half of the peers in
China were seen for the duration of onlyonesession. We will
come back to this point in the next subsection V-C.

Table III presents the relevant statistics for some of the ISPs
in Europe and China where most of the peers originate. For
both Europe and China, the key metrics of the peers do not
vary much across the different ISPs.

Arrivals and Departures:Since we crawl the same zone
in KAD once every 5 minutes, we can determine the number
of peers that join and leave between two consecutive crawls.
Knowing the arrival rate of peers is useful since it allows us
to model the load inKAD due to newly joining peers. Each
time a peer joins, it first contacts other peers for information
to populate its routing table, before it publishes the keywords
and source keys for all the files it will share.

In Fig. 5 we depict the CDF of the number of peers that
arrive and that depart between two consecutive zone crawls.
We see that the distributions for arrivals and departures are
the same. This is to be expected, since we observe the system
in “steady state”: in this case, the system should behave like
G/G/∞, for which, according to Little’s Law, the arrival rate
is equal to the departure rate [18]. The arrival process is very
well described by a Negative Binomial distribution (see Fig. 5b
of [31]).

C. Aliasing

IP Address Aliasing:It has been known for several years
[2], [14] that many peers frequently get assigned new IP
addresses, which is referred to asIP address aliasing. For
instance, we know that some ISPs in France change the
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Fig. 5. CDF of the number of arrivals and departures.

IP address of their ADSL customers approximately every
24 hours, while others assign static IP addresses to their
clients. We observed a total of 400,278 distinctKAD IDs and
3,228,890 different IP addresses (see Table II). In Europe,a
peer has on average about 18 IP addresses, whereas in China
the number is 4 IP addresses per peer. About 80% of the peers
in China have only one IP address since their lifetime is much
shorter than the lifetime of peers in other parts of the world.
We saw that the number of different IP addresses per peer is
strongly correlated with the peer lifetime (see Fig. 6 of [31]).

KAD ID Aliasing: Up to now it was assumed thatKAD

IDs are persistent, i.e. the same end-user ofKAD permanently
keeps the sameKAD ID across all its sessions. As it turns
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out, this is not true. We refer to the fact thatKAD IDs are
non-persistent asKAD ID aliasing.

We see in our zone crawl approx. 2,000 newKAD IDs a
day, which means that for the entireKAD system the number
of new KAD IDs per day is around 500,000. If we extrapolate,
this makes about 180 MillionKAD IDs a year. It is hard to
believe that there exist such a large number of different end-
users ofKAD .

Figure 6 reports the number ofnew KAD IDs per day.
i.e. KAD IDs seen for the first time, according to country of
origin. More than 50% of the newKAD IDs are from peers
in China, which is more than one order of magnitude greater
than the number of newKAD IDs seen for any other country
such as Spain, France, or Germany.
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Fig. 6. NewKAD IDs according to country of origin.

We were curious to find out whether it is plausible that
many end-users really stop usingKAD after one session, or
whether the same users come back with a differentKAD ID.
To investigateKAD ID aliasing, we need to look for peers with
static IP addresses, which we can track fornon-persistentKAD

IDs. We know that, for instance in France, one of the ADSL
providers (Proxad) assigns static IP addresses to customers
who are located in areas where the service offer is completely
“un-bundled”.

Our hypothesis is that a peer that keeps the same IP address
and port number for 10 days is assigned a static IP address.
Therefore, we take the logs of the two full crawls (cf. Section
V-A) of March 20, 2007 and March 30, 2007 and extract the
140,834 peers that have the same IP address, port number
and KAD ID in both crawl logs. IP addresses running more
than oneKAD ID are filtered out. This way we exclude all
users having dynamically assigned IP addresses, moreover we
exclude all users with static IP addresses who were not online
on March 20 and March 30. We call this set of peers apivot
set.

Since this heuristic is very strict, the number of users with
static IP addresses is underestimated. However the pivot set
still contains enough peers to make statistically meaningful
statements. 32% of the peers in the pivot set come from Spain,
18% from France, 5% from Poland and Italy, 4% from the US
and Taiwan, and 3% from Israel and Argentina.

We then take the logs of the full crawls starting March 31st,
2007 to look for peers in the pivot set that havechanged their
KAD ID.
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Fig. 7. The fraction of peers in the pivot set that changed their KAD ID at
least once.

In Fig. 7, we plot the fraction of peers from the pivot set
that change theirKAD ID at least once. Since we perform a
full crawl only once a day, we are not able to estimate the rate
of change of theKAD IDs. Instead, we can only detect which
peers have changed theirKAD ID. We see that a significant
fraction of end-users in different countries change theirKAD

ID over time. After seven months, more than one third of the
end-users in Spain and France changed theirKAD ID at least
once.

A very recent study confirmed thatKAD ID aliasing is quite
common. Pietrzyk et al. [21] monitored a population of about
20,000 ADSL clients in France for ten days. About 20% of the
peers change theirKAD ID for every new session and some
peers change it even during a session. In comparison to clients
that do not change theirKAD ID, these peers have longer
session times, whereas the amount of files they share is sig-
nificantly smaller. It seems that peers who frequently change
their KAD ID do so in order to improve their anonymity.

Implications of KAD ID Aliasing: The fact that theKAD

ID assigned may be non-persistent obliges us to distinguish
between a peer and an end-user:

• A peer is an instance ofKAD identified by a fixedKAD

ID.
• An end-user is a physical person who launches a peer to

participate inKAD . The same end-user can, at different
times, participate inKAD via different peers.

When KAD ID aliasing occurs, it is not really possible to
characterize the lifetime ofend-userstracking aKAD ID, as
compared to the lifetime of peers. We will see in section VI-F
how we can use the peers in the pivot set to estimate the
lifetime of end-users.

VI. PEER V IEW

I N this section, we will present metrics that describe the
behavior of individual peers, such as lifetime, session

and inter-session time, residual uptime, and daily availability
using the observations made with our 179-day zone crawl. To
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estimate the end-user lifetime we also make use of the data
obtained via the full crawl.

Using these metrics we will compare the peer behavior of
different countries. Knowing the session statistics allows us (i)
to validate implementation choices ofKAD and (ii) to make
suggestions on how to improve the efficiency ofKAD (cf.
Section VII).

A. Session Statistics

Most of the peers will not be online, i.e. connected toKAD ,
all the time. By crawlingKAD every five minutes, we can de-
termine precisely for each peerk the instancestj1(k), ..., tjn(k)
when k joined and the instancestl1(k), ..., tln(k) when k has
left KAD . We define thesession lengthas the time a peer was
present in the system without any interruption, i.e.tli(k)−tji (k)
for i ∈ {1, ...,m}. For the peers that were online on the first
crawl, we did not consider the first session, since we can not
know when it began. Analogously, we did not consider the
sessions that were still ongoing during our last crawl. For the
European countries the distributions of the session times are
very similar. The Chinese peers, however, have significantly
fewer long session times above 2 hours.

The session length of the peers seen in thefirst crawl is
about twice that of the peers seen for the first time during
later crawls of day 1 (Fig. 8). When we crawlKAD for the
first time, we have a much higher chance of seeing peers that
are connected “most of the time” than peers that are connected
from time to time and only for short periods. This means that a
single crawl of the system cannot give a representative picture
of the characteristics of the peers: Instead, we need to sample
the system many times.

For the peers seen in the first crawl, we observe session
times (in minutes) with a mean = 670, standard deviation
= 1741 and median = 155. For the peers seen during the
remaining crawls on the first day these values are only about
half as large with mean = 266, standard deviation = 671
and median = 75. In both cases, the coefficient of variation,
which is defined as the ratio between standard deviation and
mean, which characterizes the “variability” of a distribution,
is between 2 and 3.
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Fig. 8. CCDF of the session lengths perKAD ID.

Weibull fit of the session time distribution:The empirical
distribution of the session length exhibits a considerabletail.
At least 0.1% of the sessions are longer than 1 week and the
longest session observed is 78 days. We did a distribution
fitting for the session times and found that the Weibull
distribution provides a very good fit (See Table I for Weibull
parameters).

The Weibull distribution has two parametersk > 0 (shape)
andλ > 0 (scale). The Weibull distribution withk < 1 is part
of the class of the so-called sub-exponential distributions, for
which the tail decreases more slowly than any exponential tail
[12]. Sub-exponential distributions are a subclass of the class
of heavy-tailed distributions [4]. This implies that knowing the
past (uptime) of a peer allows us to predict the future (residual
uptime). More formally, ifS denotes the session length then
the expected residual uptime isE[S − t|S > t] ∼ O(t1−k),
i.e. it growssub-linearly. For comparison: ifS where Pareto
distributed, the growth of its residual uptime would be linear,
i.e. O(t).

B. Remaining Uptime

Figure 9 shows the expected residual uptime for the scale
and shape values that describe the session length of peers seen
in the first crawl. There is a nice fit between the empirical
values and the interpolation using a function whose growth is
O(t1−k). We see that for small observed uptime values the
remaining expected uptime values are considerable: A peer
that has been up for 1,000 minutes will have a remaining ex-
pected uptime of 1,500 minutes. Based on their data set, which
did not contain any sessions longer than 1 day, Stutzbach and
Rejaie [35] concluded thatKAD sessions times could be fit
either by a log-normal or a Weibull distribution. Our crawl,
which allowed us to observe sessions that lasted several weeks,
confirms this point.
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Fig. 9. Expected residual uptime fork = 0.54, λ = 357 (for peers seen in
the first crawl).

The eMule and aMule implementations ofKAD only publish
on peers that have been up forat least 2 hours. Source keys
will expire after 5 hours and keyword keys after 24 hours. We
may ask whether selecting a peer that has been up for at least
2 hours will increase the chances that this peer will be up for
another 5 or 24 hours.
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In Fig. 10, we plot the remaining uptime of peers given
that they have already been up 5 minutes, 1h, 2h, or 8h. For
this analysis we choose the set of peers seen in the first crawl
since this is the view a joining peer has of the system. We
see that a higher uptime translates into a higher remaining
uptime. This means that the minimum age-based peer selection
as implemented in eMule and aMule is a sensible policy.

Only about 20% of the peers with an uptime of 2 hours will
remain up for at least another 24 hours. Therefore, the only
way to ensure that keywords remain available for 24 hours
is to publish information about a keyword onmore than one
peer, as is done by eMule and aMule.

Trying to increase the lifetime of published content only
makes sense for those peers that are themselves highly avail-
able. Therefore, the publication strategy needs to choose the
content lifetime as function of both, the past availabilityof
the publishing peer and the availability of the peers where the
data is going to be published.

C. Next Session Time

One may ask the question whether consecutive sessions are
correlated in length. If there is a strong positive correlation,
one could use information about past session lengths as a
predictor of the length of future sessions: If a publishing peer
could predict its session time it could then choose the optimal
value for the expiration time of the information it publishes
in KAD .

If we take all session length samples and compute the
coefficient of correlation over consecutive session lengths we
obtain a value of0.15, which indicates that there is almost
no correlation. However, if we only consider session lengths
up to 1 day, there is a considerable positive correlation of
0.85, which was also observed by Stutzbach and Rejaie
(Figure 10(b) of [35]).

D. Inter-Session Time

The inter-session time is defined as the time a peerk is
continuously absent from the system, i.e.tji+1

(k) − tli(k) for
i ∈ {1, ..., n}.

The peers seen in the first crawl have, on average, not only
longer session times but also smaller inter-session times than
peers seen the first time in later crawls (cf. Table II). The
average inter-session time is 1110 minutes for peers seen in
the first crawl compared to 1349 minutes for peers seen first
during crawls 2 up to 288. Peers in China have much shorter
inter-session times than peers in Europe (cf. Table II). The
longest inter-session time observed is 177 days. For the inter-
session times we could not find a distribution that makes a
good match with our observed data.

E. Lifetime of Peers

For a givenKAD ID k, let tj(k) be the time thisKAD ID is
seen joiningKAD for the first time, and lettl(k) be the time
this KAD ID is seen for thelast time. The lifetime ofKAD

ID k is defined astl(k)− tj(k). Since our crawl is of a finite
duration, we can never be sure if a peer withKAD ID k will
not come back after we stopped crawling. To make such an
event very unlikely, we have decided to compute the lifetime
only for peers withKAD IDs seen for the last time 60 days
or more before the end of our crawl. We set the cut-off at 60
days, since the inter-session times seen are very rarely longer
than 60 days.

Among the peers seen on the first day, about2/3 of the
peers have a lifetime longer than one month and close to 45%
have a lifetime longer than three months (Table II).
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to their country of origin.

Figure 11 depicts the complementary cumulative distribu-
tion (CCDF) of the peers seen on the first day. There is a big
difference in the lifetime of peers from China as compared
to Europe: more than a third of the Chinese peers disappear
after only one day and only 10% have a lifetime of more than
150 days, while close to 40% of the peers in Europe have a
lifetime of more than 150 days.

In fact the lifetime of KAD IDs strongly depends on the
number of times a peer reconnects to the system. Figure 12
shows the CCDF of the number of sessions for peers coming
from China and Europe. About 30% of the Chinese peers use
the sameKAD ID for only one session compared to 5% for the
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European peers, which explains the difference in peer lifetime
seen in Fig. 11.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Number of sessions

C
C

D
F

 

 

China

Spain

Germany

France

Fig. 12. CCDF of the number of sessions perKAD ID.

F. Lifetime of End-users

The lifetime of end-users expresses in some way the sat-
isfaction of end-users. If users come back again and again it
means that they rely heavily on peer-to-peer file sharing for
accessing and exchanging content with other users.

Due to KAD ID aliasing (cf. Section V-C) we can not
estimate the lifetime of end-users by measuring the lifetime
of KAD IDs (cf. Section VI-E). The only way to measure the
lifetime of end-users is to analyze peers from the pivot set that
we already used in section V-C to measure aliasing ofKAD

IDs. Since the pivot set contains over one hundred thousand
peers from numerous countries we expect that these peers
are representative of all peers inKAD . In Fig. 13, the CCDF
of the lifetime of end-users is plotted. End-user lifetimesare
significantly larger than peer lifetimes (see Fig. 11). 50% of
the end-users have been usingKAD for 6 months and more.
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Fig. 13. CCDF of the lifetime of theend-usershaving static IP addresses
and fixed port numbers.

G. Daily Availability

Characterizing availability is important for building efficient
distributed applications such as overlay multicast or distributed

file systems. For instance, availability guided file placement
can help reduce the cost of object maintenance [17], which
may potentially be prohibitive as was pointed out by Blake
[3].

Availability in the case ofKAD measures theusage behav-
ior, i.e. how many hours a day users are connected and how
they useKAD over longer time periods such as weeks.

Daily availability measures the fraction of time a peer is
connected per day. Daily availability expresses the “intensity”
of participation of users in the exchange of files. For a given
peerP , we definedaily availability of P as the percentage of
time P was seen online that day. For a peer that was first seen
at day i and last seen at dayj, we will get a time series of
daily availability values that hasj− i+1 elements. We define
the mean daily availability as the average of thosej − i + 1
values.

Peers in China spend much less time per day connected
than peers in Europe (Fig. 14). The “online times” for peers
in Europe are quite impressive, with 40% of the peers being
connected more than 5 hours per day and 20% even more than
10 hours per day.
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Fig. 14. CDF of the mean daily availability of peers seen the first day.

Next day availability: Observing availability over several
days or weeks can give an indication about the stability of
peer participation inKAD over time.

Figure 15 shows a scatter plot of the daily availability for
each peer for two consecutive days. We see that for a given
availability value on the first day, the availability of these peers
on the secondvaries widely. If we compute the correlation of
the availability on dayi and dayi + 1 of each peer we get a
low value of 0.52. Given thatKAD is predominantly used to
download copyright-protected content, the users probablystay
connected the least possible time required to download the
requested content. As the download time depends on various
factors such as content size, content popularity, and available
bandwidth, the daily availably will vary accordingly.

Figure 16 plots the daily availability (in hours) time series
for a random set of peers over a duration of 100 days. While
there are a few peers for which the daily availability changes
little over time, most of the peers exhibit daily availability
values that vary a lot.
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Douceur [8] analyzed different traces of machine availabil-
ity3 from Microsoft, Internet, Gnutella, and Napster. Applying
a Fourier transformation to the availability values he found
cyclic behavior in the daily availability of the Microsoft
machines, but did not find any diurnal patterns for the other
traces. We did a Fourier and Wavelet transformation on the
daily availability time series of ourKAD peers and could not
find any cyclic behavior or diurnal patterns.

To formally quantify the daily availability patterns of peers,
we use a metric calledapproximate entropy ApEn, which
is a “regularity statistic” that quantifies the unpredictability of
fluctuations in a time series. For details on the approximate
entropy see [22] and the Appendix. This metric was recently
used by Mickens [17] to analyze several traces of machine
availabilities such as the Microsoft trace and the Overnet trace.
We calculateApEn of the daily availability of KAD peers
seen on the first day. The smaller the value forApEn, the more
regular the daily availability values over time. Thus, small
values ofApEn imply that similar patterns of measurements

3The traces are available at
http://www.cs.berkeley.edu/∼pbg/availability/

will be followed by additional similar measurements. However,
if the time series is highly irregular, the occurrence of similar
availability patterns will be very unlikely for the following
days, andApEn will be relatively large.

We were able to confirm the results of Mickens for the
Microsoft trace, where 80% of the values ofApEn(m),where
m = 2, are close to zero, which indicates that daily availability
varies little over time. On the other hand, theApEn(m) values
for the KAD trace are much higher (see Fig. 17). About 50%
of the peers haveApEn(m) values above 0.5, which indicates
that the daily availability values are quite irregular. Mickens
made a similar observation for the Overnet trace.
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Fig. 17. CDF of the approximate entropy for peers seen the firstday.

VII. D ESIGN IMPLICATIONS

T HE results presented in this paper can be used to validate
design choices made by the developers and improve the

performance of the implementation ofKAD in various ways:
In today’s implementation ofKAD , a source key that points
to the peer that holds the content will expire 5 hours after it
has been published. On the other hand, the median session
length of peers is only 155 minutes and less than 40% of the
sessions are longer than 5 hours (cf. figure 8). This means that
in more than 60% of the cases, a peer that publishes a source
key will leave KAD before the reference to that file expires.
As a consequence, many references to sources will bestale,
resulting in unsuccessful attempts to download that file. An
improvement of the current implementation could be to first
publish a source key with an expiration time much smaller than
5 hours. Each time the published source key expires, the peer
that owns the file republishes the source key, progressively
increasing its expiration time.

In [30] we measured that the total traffic inKAD due to
publishing is about 100 times higher in volume (bytes) than
the total search traffic. In a follow-up to this measurement
study, we have shown how to exploit the fact that session
times are Weibull distributed in order to reduce the publish
traffic by one order of magnitude [6].

We have seen (cf. Section VI-A) that for peers with session
times less than one day, the duration of the next session is
highly correlated to the duration of the previous session. This
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means that a peer could set the initial expiration time of a
source key using the value of its last session time.

Peers seen first during the very first crawl have much
higher mean session durations and smaller inter-session times
than peers seen later for the first time. As already suggested
by Stutzbach and Rejaie [35], this fact can be exploited to
find “more stable” peers without knowing anything about the
history of the peers: One simply “crawls”KAD once and
selects the peers that are online at that instant.

VIII. C ONCLUSION

I N this paper we have investigated the user behavior ofKAD ,
which is currently the only DHT deployed on a large scale.

Studying KAD poses a number of unique challenges to be
addressed. To obtain the necessary data,

• We have implemented a very fast and highly efficient
crawler of KAD . The speed of our crawler made it
possible, for the first time ever, to carry out a full crawl
of the entireKAD system. It also allowed us to track the
behavior of a representative subset ofKAD peers (with
a precision of± 5 minutes) over a period of almost six
months. To the best of our knowledge this is the longest
crawl of a peer-to-peer system ever carried out.

• We need to crawl for such a long duration to unambigu-
ously identify the peers that joinedKAD for the first time
and to “capture the tail” of the session and inter-session
time distributions, which is in the order of months.

• To be able to cope with transient network and machine
failures, we ran two crawlers in parallel and we “post-
processed” our measurements to account for missing
replies of peers that are overloaded.

We have carried out a full crawl once a day in order to

• Validate that crawling a single zone will return a sample
of the peers inKAD that is representative of the entire
KAD network.

• Obtain a subset (pivot set) of peers with static IP ad-
dresses that can be used to estimate the rate of change of
KAD IDs and the lifetime ofend-usersand not only the
lifetime of KAD IDs.

• Detect various “anomalies” such as thousands of peers
with the sameKAD ID or a company “observing” the
entire search and publish traffic via thousands ofsybil
peers.

Our high resolution zone crawl lead to a number of interesting
findings:

• Session times are heavy tailed following a Weibull dis-
tribution.

• KAD IDs are not necessarily persistent as was assumed
up to now. Nevertheless, the most important metrics such
as session times and inter-session times are not affected
by the non-persistentKAD IDs.

• The total number of peers online at any time can be
precisely estimated.

• Peers in China differ significantly from peers in Europe
with respect to key metrics such as session time, inter-
session time, peer lifetime, and daily availability.

• The majority of clients useKAD every day for many
hours.

• Since most of the content is copyright protected and the
sharing of such content is illegal, users take measures to
reduce the risk of being tracked by changing theirKAD

ID frequently or by staying connected only as long as
necessary to download the desired content.

The full dataset of the zone crawl and of the full crawl
are available on the Webhttp://www.eurecom.fr/
∼btroup/kadtraces.
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APPENDIX

T HE approximate entropy (ApEn) is a “regularity statis-
tic” that quantifies the unpredictability of fluctuations in

time series.
The algorithm for computingApEn has been published

in [22]. Here, we provide a brief summary of the algorithm.
Given a sequenceUN , consisting ofN measurements equally
spaced in timeU(1), U(2), · · · , U(N), we must choose values
for two input parameters,m andr, to compute the approximate
entropy, ApEn(m, r), of the sequenceUN . The parameter
m, specifies the pattern length, andr, defines the criterion
of similarity. We denote a subsequence (or pattern) ofm
measurements, beginning at measurementi within UN , by the
vector x(i). Two patterns,x(i) and x(j), are similar if the
difference between any pair of corresponding measurements
in the patterns is less thanr, i.e., if

|U(i + k) − U(j + k)| < r for 0 ≤ k < m

Now consider the set of all patterns of lengthm [i.e.,
x(1), x(2), · · · , x(N−m+1)], within UN . We may now define

Cm
i (r) =

ni(r)

N − m + 1

where ni(r) is the number of patterns that are similar to
x(i) (given the similarity criterionr). In this work, we used
r = 0.1 ∗ std deviation(daily availability) as suggested in
[22]. The quantityCm

i (r) is the fraction of patterns of length
m that resemble the pattern of the same length that begins at
i. We can calculateCm

i (r) for each pattern of sizem, and
we defineΦm(r) as the mean of theseCm

i (r) values. The
quantityΦm(r) expresses the prevalence of repetitive patterns
of lengthm in UN . Finally, the approximate entropy ofUN ,
for patterns of lengthm and similarity criterionr, is defined
as

ApEn(m) = ln

[

Φm(r)

Φm+1(r)

]

i.e., as the logarithm of the ratio of the relative prevalence
of repetitive patterns of lengthm andm + 1.
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