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High-SNR Analysis of Outage-Limited
Communications With Bursty and Delay-Limited
Information

Somsak Kittipiyakul, Petros Elia, and Tara Javidi, Member, IEEE

Abstract—This work analyzes the high-SNR asymptotic error
performance of outage-limited communications with fading,
where the number of bits that arrive at the transmitter during
any timeslot is random but the delivery of bits at the receiver
must adhere to a strict delay limitation. Specifically, bit errors
are caused by erroneous decoding at the receiver or violation of
the strict delay constraint. Under certain scaling of the statistics
of the bit-arrival process with SNR, this paper shows that the
optimal decay behavior of the asymptotic total probability of bit
error depends on how fast the burstiness of the source scales down
with SNR. If the source burstiness scales down too slowly, the total
probability of error is asymptotically dominated by delay-violation
events. On the other hand, if the source burstiness scales down too
quickly, the total probability of error is asymptotically dominated
by channel-error events. However, at the proper scaling, where the
burstiness scales linearly with \/1——1\13 and at the optimal coding

log S

duration and transmission rate, the occurrences of channel errors
and delay-violation errors are asymptotically balanced. In this
latter case, the optimal exponent of the total probability of error
reveals a tradeoff that addresses the question of how much of the
allowable time and rate should be used for gaining reliability over
the channel and how much for accommodating the burstiness with
delay constraints.

Index Terms—Batch service, delay effects, diversity, error anal-
ysis, fading channels, large deviations, queueing analysis.
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1. INTRODUCTION

HIS work analyzes the high signal-to-noise-ratio (SNR)
T performance of outage-limited communications where
the information to be communicated is delay-limited and where
the information arrives at the transmitter in a stochastic manner.
We consider the following setting (Fig. 1) in our study.

* A random number of bits arrive at the transmitter during
any given timeslot. Bits accumulate in an infinite buffer
while waiting for their turn to be bunched into codewords
and transmitted under a first-come, first-transmit policy.

¢ There is no feedback to the transmitter; retransmission of
the bits in error is not considered.

e Communication over the fading channel is outage-limited
([11, [2]), where the transmitter is unaware of the instan-
taneous channel state and, as a consequence, operates at
a fixed transmission rate, R. During a deep fade (also
known as an outage), the channel seen by the decoder
is too weak to allow recovery of the data content from
the transmitted signal. Characteristic settings are those of
multiple-input-multiple-output (MIMO) and cooperative
outage-limited communications.

* Coding takes place in blocks where each codeword spans
over a fixed and finite integral number, T, of timeslots.
Each codeword has an information content of RT bits. In
addition, coding is “fully-diverse,” i.e., the decoding at the
receiver takes place only at the end of the coding block.

* The delay bound, D, is a maximum allowable time dura-
tion from the moment a bit arrives at the transmitter until
the moment it is decoded at the receiver. The delay expe-
rienced by a bit is the sum of the time spent waiting in the
buffer and the time spent in the block decoding process.
Note that the waiting time in the buffer is random due to
the stochastic arrival process.

* A bit is declared in error either when it is decoded incor-
rectly at the decoder, or when it violates the delay bound.

For the above setting, we are interested in the high-SNR

asymptotic total probability of bit error. Note that for a given
transmission rate, R, and a coding block duration, 7', there
exists a tradeoff between the probabilities of decoding error
versus the delay violation. We expect that longer coding blocks
allow the encoded bits to be transmitted over more fading
realizations and hence, achieve higher diversity and fewer de-
coding errors. However, longer coding blocks cause more bits
to violate the delay requirement. In other words, one intuitively
expects that there is an optimal choice of the fixed transmission
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Fig. 1. System model.

rate, R, and the fixed coding block duration, T, for which the
total probability of bit error is minimized. The goal of this
paper is to identify these optimal quantities.

A. Prior Work and Our Contribution

High demands on the quality of service (QoS), in terms of
both packet losses and packet delays, have fueled substantial
research interest in jointly considering channels and queues.
Communication of delay-sensitive bits over wireless channels
has been addressed under various assumptions and settings in
works such as [3]-[8]. Often, asymptotic approximations are
employed to enable tractable analysis of the problem. Below we
detail the existing work with their corresponding settings and
the relationships to this paper.

The first group we discuss, [3]-[6], consists of scenarios
where the current channel state information (CSI) is assumed to
be known at both the transmitter and receiver. For example, in
[3] and [4], Berry and Gallager address the tradeoff between the
minimum average power consumption and the average delay
(the power-delay tradeoff) over a Markovian fading channel
with CSI both at the transmitter and the receiver. In such a
setting, the transmitter dynamically varies power (i.e., the rate)
in response to the current queue length and channel state. In
[5], Rajan et al. derive optimal delay-bounded schedulers for
transmission of constant-rate traffic over finite-state fading
channels. In [6], Negi and Goel apply the effective capacity [9]
and error exponent techniques to find the code-rate allocation
that maximizes the decay rate of the asymptotic probability of
error for a given asymptotically large delay requirement. Sim-
ilar to [3] and [4], the proposed dynamic code-rate allocation in
[6] is in response to the current channel fading and is possible
by assuming CSI knowledge at the transmitter.

A second group of work (e.g., [7], [8]) focuses on scenarios
where CSI is unknown to the transmitter but there is a mech-
anism for retransmission of codewords when the channel is
in outage. As a tradeoff to protection against channel outage,
this retransmission incurs extra delays to the bits in the buffer.
In [7], for example, Bettesh and Shamai (Shitz) address the
problem of minimizing the average delay, under average power
constraints and fixed transmission rate. They provide asymp-
totic analysis, under heavy load condition and asymptotically
large queue length, for the optimal adaptive policies that adjust
the transmission rate and/or transmission power in response to
the current queue length at the transmitter. In another example,
Liu et al. in [8] study the problem of optimal (fixed) transmis-
sion rate to maximize the decay rate of the probability of buffer

overflow for ON—OFF channels and Markov-modulated arrivals.
The channel is considered “off” when outage occurs.

Although our work uses a similar performance measure to
[6], namely the decay rate of the asymptotic probability of
error, it covers the scenarios in which CSI is not available to the
transmitter (no CSIT) and there is no retransmission. In such a
setting, the variation of the fading channel is combatted via a
coding over multiple independent fading realizations.! While
this approach improves the transmission reliability, its longer
coding duration increases the end-to-end delay any bit faces,
and can potentially increase the probability of delay violation.
In other words, in the absence of CSIT and retransmission,
the transmission reliability, as well as the delay violation
probability, are functions of the coding rate and duration.
Consequently, our work compliments this previous research as
it considers the effect of a delay violation requirement, in the
absence of CSI at the transmitter and retransmission, on the op-
eration of the physical layer. We consider a fixed transmission
rate and code duration, as opposed to dynamic policies.

Since it is difficult to derive the exact relationship between
the system parameters and the probabilities of channel decoding
error and the delay violation, we choose to study an asymptotic
approximation when the signal-to-noise ratio (SNR) is asymp-
totically high. The first advantage of this choice is the avail-
ability of an asymptotic high-SNR analysis for the channel de-
coding error probability. This high-SNR analysis is known as
the diversity-multiplexing-tradeoff (DMT) analysis [1] and has
received a great deal of attention during the past few years. An-
other advantage of the high-SNR analysis is that, for the class
of arrival processes we consider in this paper, we can derive an
asymptotic approximation of the delay violation probability that
is valid even when the delay requirement D is finite and small.
This derivation (Lemma 2) is based on a large-deviations re-
sult known as the Girtner-Ellis theorem (see, e.g., [10]) and
extends the large deviations exponent for a queue with asymp-
totic number of flows (as provided in [11]-[14]) to a queue with
batch service discipline. Given that the asymptotic expression
of the total probability of bit error is valid without requiring
asymptotically large D, it is then meaningful to ask about the
optimal coding block duration, a question which is not answered
in studies with asymptotic D (e.g., [3], [4], [6], [15]-[17]).

We also would like to point out that our work was motivated
by the work of Holliday and Goldsmith [18] where, under a
high-SNR asymptotic approximation, the optimal operating
channel transmission rate for a concatenated source/channel

IFor example, the multiple independent fading realizations can be a result of
fading in multiple channel coherence time intervals (known as time diversity),
or fading in multiple independent spatial channels, as in MIMO channel (spatial
diversity), or cooperative relay channel (cooperative diversity).
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system is studied. Following the approach in [18], we study a
concatenated queue/channel system under a high-SNR approx-
imation.

B. Overview of the Results

This work focuses on the notion of SNR error exponent as
a measure of performance. Specifically, we are interested in
finding how the asymptotic total probability of error decays with
SNR. To keep the problem meaningful, we consider a scenario
under which the overall traffic loading of the system (the ratio
between the mean arrival rate and the ergodic capacity of the
channel) is kept independent of SNR. That is, we consider a
case where the arrival rate scales with log SNR. Note that this
scaling of arrival process is necessary to ensure a fixed loading
and hence a comparable cross-layer interaction as SNR scales.

From the DMT result, we already know that, if the channel
operates below the channel ergodic capacity, the asymptotic
probability of channel decoding error decays exponentially
with SNR. The best one can hope for is that the asymptotic total
probability of error decays exponentially with SNR. For that,
the asymptotic probability of delay violation needs to decay
with SNR. Specifically, we consider a class of independent and
identically distributed (i.i.d.) 2 arrival processes with light tail
(i.e., the processes have all moments finite) whose burstiness
(defined as the ratio of the standard deviation over the mean of
the number of bits arrived at a timeslot) monotonically goes to
zero as SNR goes to infinity. We show that for all such pro-
cesses (called smoothly scaling processes), the total probability
of error decays.

The main result of the paper shows that the optimal decay
behavior of the asymptotic total probability of bit error depends
on how fast the burstiness of the source scales down with SNR.
If the source burstiness scales down too slowly (too quickly),
the majority of the errors are due to delay violation (channel
error), i.e., the total probability of error is asymptotically
dominated by delay-violation (channel-error) events. However,
at the proper scaling where the burstiness scales linearly with

——L___ and with the optimal coding duration and transmis-
\/log SNR

sion rate, the occurrences of channel errors and delay-violation
errors are asymptotically balanced. Equivalently, one can inter-
pret our result, the optimal choice of block coding duration and
transmission rate, as that which balances the channel atypicality
(deep fading or outage events) and the arrival atypicality (large
bursts of arrivals).

We apply this result to several examples of outage-limited
communication systems to find the optimal setting of the op-
erating parameters.

C. Outline of the Paper

The precise models for the coding/channel process and the
bit-arrival/queue process are described in Section II. We pre-
cisely define the scaling of the source process with SNR and give
a simple example of such source processes. Section III provides

2Note that, since the adopted channel model is not assumed to be i.i.d.,
assuming an i.i.d. arrival process, intuitively, is not consequential: think of
our chosen time slot as an upperbound for the “coherence time” of the arrival
process. The i.i.d. source assumption mostly serves to simplify the exposition
and presentation of results, and does not fundamentally limit the setting.

the asymptotic probability of delay violation. The main result of
the paper is found in Theorem 1 of Section I'V. This theorem pro-
vides the optimal asymptotic decay rate of the total error prob-
ability as well as the optimal coding duration and transmission
rate. Section V gives some examples to illustrate the utility of
Theorem 1. These examples consider the question of optimally
communicating delay sensitive packet stream with a compound
Poisson traffic profile over the following outage-limited chan-
nels: SISO Rayleigh fast-fading channel, quasi-static coopera-
tive relay channel, and quasi-static MIMO channel. Section VI
concludes the paper. Appendices include the proofs of lemmas
and theorems.

D. Notations

We use the following symbols and notations. We use p to de-
note SNR. The notation < for a strictly increasing and positive-
valued function g represents the equivalence between y(p) =8

o logy(p) _ y: 0 logz(p) S 9.
z(p) and phi& ogs) = plggo 3(lons) - We define > and < ina

similar manner. Note that when g is an identity function, then L
is equivalent to the familiar = notation in the DMT analysis [1].

We denote the high-SNR approximation of the ergodic ca-
pacity of AWGN channel by NV := log p and use N and log p
interchangeably. The sets Z, N, and 7+ represent the set of all,
positive, and non-negative integers, respectively. In addition, the
set T represents the set {1, 2,00, L%J } Flooring and ceiling
functions are denoted by | -] and [-], respectively. For all a < b,
[]2 = max(a, min(b,z)) and [z]* = max(z,0). We write
g(z) = O(h(x)) to denote that the function g scal}f:s linearly

with the function A, i.e., lim % < oo and lim % < 0.

Finally, for any function f, we denote its convex conjugate, f*,
by f*(z) = supger Oz — f(6).

II. SYSTEM MODEL

As discussed in the introduction, we consider a system com-
posed of a bursty and delay-limited information source, con-
catenated with an infinite buffer and a fading channel, as shown
in Fig. 1. We assume the queue follows a first-come-first-serve
(FCFES) discipline. The departures out of the queue occur ac-
cording to a block channel coding scheme, while the arrivals to
the queue follow a stochastic model. If the transmission rate is
above the instantaneous capacity of the channel, an outage event
is said to occur where the received signal is erroneously de-
coded. The delay requirement asks that each bit of information
be decoded at the destination within a maximum allowable delay
of D timeslots from the time it arrives at the buffer. Otherwise,
the bit will be obsolete, discarded, and counted as erroneous.3
We assume no retransmission of unsuccessful transmissions or
those bits which violate the delay bound. In Sections II-A-C, we
describe in detail the models for the channel, the arrival process,
and the system performance measure.

3Note that due to the constant service rate of the queue and the FCFS service
discipline, any bits arriving at the queue know immediately whether they will
exceed their delay constraints, using the knowledge of the current queue length.
It seems wise to drop these bits immediately after their arrivals to improve the
system performance. However, we do not need to consider such method because
it has been established (see [14, Theorem 7.10]) that, in the asymptotic regime
of interest, such method does not improve the exponent of the delay violation
probability.
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A. Channel and Coding Model

We consider a general fading-channel model
y=Hz+w

where z is the transmitted vector, H is the channel matrix, Y is
the received signal, and w is the noise vector. The average SNR
is defined as [1]

_ E[|Hz|?
7 Ewl?]

and in the asymptotic scale of interest, it is equivalent to

p = E[ll|?)-
Coding takes place over T timeslots, using rate-R, length-T'
codes that meet the DMT tradeoff d.y,(r, T) [1], defined as

log Pch(r7 T7 p)

den(r,T) := — lim Tog

p—00

ey

where Pe,(r, T, p) is the codeword error probability induced
by the channel, given an optimal code of multiplexing gain r,
coding block size T" timeslots,* and average SNR p. The channel
multiplexing gain r is related to the transmission rate R as (refer

to [1])

r:= lim .
p—oo log p

@

That is, the transmission rate R is assumed to scale linearly as
rlog p. We denote by 7.y the maximum value of 7, i.e., 0 <
7 < Tmax- This mp,x relates to the ergodic capacity as

max,_ I(z; g)

log p

Tmax =

and is the smallest r such that d.,(r, T') = 0.

The DMT tradeoffs have been extensively studied for var-
ious finite-duration communication schemes (for example, see
[19], [21]-[24] for MIMO point-to-point communications, [25]
for multiple access communications, [26], [27] for cooperative
communications, and [20], [28] for cooperative communica-
tions with small delay).

Remark 1: The condition that each bit be transmitted over all
timeslots in the coding block3, together with the first-come first-
transmit service discipline, makes it so that every 71" timeslots,
the RT oldest bits are instantaneously removed® from the queue
and are transmitted over the next 7' timeslots. We assume that
it is only at the end of the T timeslots that all the RT bits are
decoded by the decoder.

4For most settings, there exist codes that meet the entire DMT tradeoff in
minimum delay, independent of channel dimensionality and fading statistics
[19]-[21].

SCurrently, all known minimum-delay DMT optimal codes over any fading
channel with nonzero coefficients ask that each bit be transmitted over each
timeslot.

SIf an insufficient number of bits exists in the buffer, null bits are used and the
rate is maintained. It is easy to show that, in the asymptotic scale of interest, the
use of null-bits does not incur any change in the SNR exponent of the probability
of error.

Example 1 (Rayleigh Fast-Fading SISO Channel): Consider
the single-input—single-output (SISO) time-selective channel
with Rayleigh fading coefficients (correlated or uncorrelated)
and with additive white Gaussian noise at the receiver. The
corresponding channel model over T timeslots is given by

y = diag(h) z + w
where y, h, z, and w are ' x 1 vectors and H = diag(h)isal'x
T diagonal fading matrix with the fading at the ¢th timeslot, A4,
as its (¢, t) element. The optimal DMT, given optimal signaling,
takes the form

log Pr(I(z; ylh) < 287)

dCh(T7 T) Z:—pli)l’glo Ing
. log Pr(TT,_, (1 + plhe|?) < p'T)
p— 00 Ing ’

For the fast-fading case where the coherence time is equal to
one timeslot and the elements of h are Rayleigh i.i.d. random
variables, the tradeoff takes the form

dch(’r7 T) = T(l - T) 3)

and it can be met entirely in 7' timeslots (see [1]). This SISO
channel allows for 7., = 1.

Other examples which will be discussed later in Section V
are quasi-static MIMO and cooperative-relay channels. In this
paper, for simplicity we assume that d.y,(r, T") is continuous on
r, decreasing on r, and increasing on 7.

B. Smoothly Scaling Bit-Arrival Process

In this section, we describe the SNR-scaling of a family of ar-
rival processes of interest. The specific choice of SNR-scaling
for the statistics of the bit-arrival process is such that the average
traffic load of the system (defined as the ratio of the average ar-
rival rate over the ergodic capacity) is kept constant, indepen-
dent of SNR.7 This means that scaling in the ergodic capacity
T'max 10g p (= Tmax V) is matched by scaling the average bit-ar-
rival rate as Alogp (= AN) as well, for some A > 0. Now
we are ready to introduce the arrival process of interest: The se-
quence of asymptotically smoothly scaling bit-arrival processes,
in which the process becomes “smoother” for increasing N.

Definition 1: Let G denote a class of functions which contains
any function g : RT — R (called scaling function) which
is continuous and strictly increasing and whose tail behavior is
such that

lim = o0. @

"It can be seen that unless the traffic load (average bit arrival rate over the
channel rate) scales as log(SNR), i.e., lim,_, o 'i‘;;] = ( for some fixed
0 < € < oo, the problem is void of cross-layer interactions. Otherwise if
£ = 0, corresponds to the case where too few bits arrive and effectively there
is no queuing delay. On the other hand, when the traffic load scales much faster
thanlog(SNR), i.e., { = oo, the overall performance is dominated by queueing
delay, independently of the channel characteristics.
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Definition 2: (g-Smoothly Scaling Source): Consider a
scaling function ¢ € G and a famil(r of bit-arrival processes

(AN N € N), where AN) = AgN),t € Z ) denotes an

i.i.d. sequence of the random numbers A,EN) of bits that arrive
at time ¢ with E [AﬁN)] — AN, for all £. The family of bit-ar-
rival processes is said to be g-smoothly scaling if the limiting
g-scaled logarithmic moment generating function, defined for
eachf# € R as

log E[exp( (N)A(N)]

A(f) = lim 4)
=, 9(N)
exists as an extended real number in R* := R U {oo} and is

finite in a neighborhood of the origin, essentially smooth, and
lower-semicontinuous [14].8

Remark 2: 1t is straight forward to show that A is convex and
A'(0) = A (see [14, Lemmal.11]).

Note that A describes how close the average bit-arrival rate is
to the asymptotic approximation of the ergodic capacity of the
channel. For stability purpose and to ensure the existence of a
stationary distribution, we require that A < 7,.x. Also, note that
we abuse the notation and denote the arrival process by AgN),
despite its possible dependency on the scaling function g.

Motivation for Smoothly Scaling Assumption: The assump-
tion of g-smoothly scaling arrival processes allows us to find
the decay rate of the tail probability of the sequence of process

(St(N), N e N) , which is a sum process defined as

S = ZA(N), teN

since (AJ(»N), j€Z)areiid., Sf is also a g-smoothly scaling

process with the limiting g-scaled log moment generating func-

tion Ag, given as
log K [exp (%Sﬁm)]
g(N)

Now, given that the sequence (St(N)7 N e N) is g-smoothly
scaling, we can use the Gértner—FEllis theorem (see, e.g., [10]
and [14]) to give the following result on the decay rate of the tail
probability of the sequence. The following proposition provides
an important basis for the analysis of the asymptotic probability
of delay violation in Section III.

Ag,(8) := lim

— 00

= tA(d). (6)

Proposition 1: (Gdrtner-Ellis Theorem for g-Smoothly
Scaling Process): Consider g € G and a family of g-smoothly
scaling processes (AY), N € N) with the limiting g-scaled
log moment generation function A. Let St(N) = Z§=1 A,EN),
for t € N. Then, for a > At, we have

1 (N)
J\;Ego o) log P N a| =—tA*(a/t) 7

where A* is the convex conjugate of A.
Proof: See Appendix A. O

8A function f : R — R* is essentially smooth if the interior of its effective
domain D = {z : f(x) < oc} is nonempty, if it is differentiable in the interior
of D and if f is steep, which means that for any sequence £,, which converges
to a boundary point of D, then lim,, _, o |f'(8,. )| = +oo. f is lower semicon-
tinuous if its level sets {x : f(z) < a} are closed for o € R.

1) Asymptotic Characteristic of Smoothly Scaling Processes:
Intuitively, the g-smoothly scaling arrival processes become
smoother as SNR increases. This intuition follows from (5),
which implies that for § € R such that A(f) < oo and € > 0,

there exists Ny such that for N > N
fg(N
exp (AVNE) = 9(V)0) < [exp (P340
< exp (g(N)A(0) + g(N)e) -

Then, if we let Yy () be a sum of (V) i.i.d. random variables
(e, Yoov) == X1 4 -+ + Xy with E[e?51] = A9,
we have E[e?Yov)] = ¢AO)9(N) Therefore, at sufficiently
large N, 2 (N AgN) and Y, (n) have the same moment gener-
ating functlon and hence the same distribution. If we define

the burstiness of the random variable AgN) as the (dimension-

less) ratio of its standard deviation over its mean,® then, using

ﬁ for large N is ap-

- Sl G D NED))
proximately equal to SRR
std(X) . Hence, the burstiness of A(

Aa(N)

imately as

the above intuition, the burstiness

, which is reduced to
) decays to zero approx-

ﬁ. In other words, the g-smoothly scaling ar-
g(log p
rival processes become smoother as SNR increases.

Examples of Smoothly Scaling Processes: One of the
common arrival processes used for traffic modeling is a com-
pound Poisson process with exponential packet size, denoted as
CPE. For this source, the random number of bits, AgN), arrived
at timeslot ¢, is i.i.d. across time ¢ and is in the form of

where Mt(N) is the random variable corresponding to the
number of packets that have arrived at the ¢th timeslot, and
where Yl(iv ) corresponds to the random number of bits in the

(N)

ith packet. MfN) are independently drawn from a Poisson
distribution with mean v(N); and Yl(i\), i = 1,..., Mt(]\),
are independently drawn from an exponential distribution

with mean ﬁ (nats per packet). Note that the assumption
that £ [AEN)j — AN forces that Y0 = AN.In addition, a

(N )
larger average packet size —N implies a more bursty arrival
process.10 It is known (see [16]) that the log moment generating

function of this CPE random variable A;

v (N)
log E[*A] = { avy=ge 0 <nl) )
00, otherwise.

The following examples illustrate that, depending on the
scaling of the average packet arrival rate and the average packet

9Note that the burstiness definition here is basically the normalized variation
of the random variable around its typical value (its mean). A more familiar defi-
nition of traffic burstiness would involve how the traffic are correlated with time,
i.e., a bursty source tends to have large bursts of arrivals in a short period of time.
However, since we only consider the source which is i.i.d. over time, we use this
definition of burstiness.

107t can be easily shown that the burstiness of this CPE process, as defined in

Section II-B2, is #(N)
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size, some CPE processes may or may not be g-smoothly
scaling.

Example 2 (g -Smoothly Scaling CPE Process): For g € G
and ¢ > 0, consider a CPE process AgN) with packet arrival
rate pAg(IN') and average packet size %. This family of pro-
cesses is g-smoothly scaling because, using (9), we have

99(N) 4(N)
log E 4 A
A(f) := lim ogFle ¥ 7 ] — )= 0< "
N—oo g(N) 00, otherwise

which satisfies the conditions in the definition of g-smoothly
scaling. Since we will use this particular g-smoothly scaling
CPE process for examples in the paper, we denote it as CPE(),
i, g, N). It is useful to note a particular case when g(NN)
grows linearly with N. Using a property of the Poisson process
[29], this particular scaling case can be viewed as aggregating
an increasing number of Poisson traffic streams (this number
grows linearly with N), with each stream having the same
packet length distribution.

To complete our discussion on smoothly scaling processes,
below we give an example of a family of CPE arrival processes
which is not g-smoothly scaling.

Example 3: A family of CPE processes where AgN) has
packet arrival rate puA and average packet size N/u (note
the dependence on N only in the average packet size) is not
g-smoothly scaling for any ¢ € G. This is because, using (9),

log K [e T~

we have
g(N) } B {20

which is not finite in the (open) neighborhood of § = 0. Hence,
this family of processes is not g-smoothly scaling.

0g(N) 4(N)

6<0

lim .
otherwise

N—oo

Remark 3: The scaling function, g, describes the way the
source statistics scale with SNR. Example 2 describes the case
of the compound Poisson process, where g can be identified

as the function that specifies how the average packet arrival

log SNR )

rate (uAg(log SNR)) and the average packet size (m

scale with SNR.

C. Performance Measure and System Objective

The overall performance measure is the total probability of bit
loss, Piot(r, T'), where loss can occur due to channel decoding
error or the end-to-end delay violation. Specifically,

Ptot(T7 T) = Ch(T7 T) + (1 - Pcll(T7 T)) Pdclay(r7 T) (11)

where Py, (r, T') denotes the probability of decoding error due to
channel outage and Pyelay (r, T') denotes the probability of delay
violation. We are interested in finding the high-SNR asymptotic
approximation of Py (r,T) as a function of r, T', SNR, D, as
well as the source and channel statistics (including A and the
source scaling function g). In the interest of brevity, we denote
Pyt as a function of only r and T, the two parameters over
which the performance will later be optimized.

Since the high-SNR asymptotic expression of P, (r,T) is
already given by the DMT in (1), what remains is to find the

asymptotic expression for Pyelay(r,T), which is shown in
Section III.

III. ASYMPTOTIC ANALYSIS OF PROBABILITY OF DELAY
VIOLATION

In this section, we derive the asymptotic probability of delay
violation Pgelay (7, T") for the channel multiplexing rate » and
coding block size T'. We observe that the adopted block coding
forces the queue to have a batch service that occurs every T'
timeslots with the instantaneous removal of the oldest 7 N'T" bits.
The decay rate of the asymptotic tail probability of the sum
arrival process, given in Proposition 1, in conjunction with an
asymptotic analysis of a queue with deterministic batch service,
gives the following result.

Lemma 2: Giveng € G, T € T,r > ), a batch service
of rNT every T timeslots, and a g-smoothly scaling bit-arrival
process characterized by the limiting g-scaled log moment gen-
eration function A, the decay rate of Pyelay (7, T') is given by the
function I, i.e.,

1
lim ——— log Paetay (1, T) = —I(r,T),

12
N —o0 g(N) ( )

where

I(r,T) = min T+T—-1-k)
T k50

xXA* <7‘ +

for k = D(mod T). In addition, I(r,T') is lower-semicontin-
uous and increasing on 7.
Proof: See Appendix B. O

(D+1-2T)r
tT—I—T—l—k) (13)

Approximation 1: Relaxing the integer constraint in (13)
gives the lower bound of I as

I(r,T) > 6,7(D4+1-=2T) =: L.(r,T) (14)
where

6 =sup{f > 0: A(F) < 0r}. (15)

We use this lower bound as an approximation to [ as well, i.e.,

I(r,T) = Lip(r,T) = 6,7(D + 1 — 27T)). (16)

Proof: See Appendix B. O

Example 4: For a g-smoothly scaling CPE(), p, g, N) bit-
arrival process, the function I in (13) can be calculated exactly
with the following A*:

A (@) = (Va = VA) (17)
However, an approximation of / in (16) is simpler to work with
and given as

2
, zeR

I(r,T) = Liy(r,T) = p(r — A)(D + 1 —2T), (18)
where, using (15) and (10), 6, is given as
A
6T:u(1——>. (19)
r
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We will see via numerical examples in Section V-Al that the
approximation in (18) is sufficient for our purpose.

IV. MAIN RESULT: OPTIMAL ASYMPTOTIC TOTAL PROBABILITY
OF ERROR

In this section, we present the main result of the paper which
states the optimal decay rate of the high-SNR asymptotic total
probability of bit error. Recall the definition of P from (11):

P, tot <T7 T) =

Ch(n T) + (1 — Pch(T; T)>Pde1ay('r7 T)

where we now know that

Pch(7"7 T) - p—dch(raT)
and
Paclay (1, T) 4 o~ I(rT)g(logp)
Hence, the asymptotic optimal decay behavior of P; depends
on the function g. The following theorem gives the main result
of the paper.

Theorem 1: Consider g € G and a g-smoothly scaling bit-ar-
rival process. The optimal rate of decay of the asymptotic prob-
ability of total bit error, maximized over all 7 € (A, rpax) and
T € T, and the optimizing r* and 7™ are given, depending on
the tail behavior of the function g, as follows.

Case I:1f lim_ 9N) — € (0,00), then

— IOg Ptot(r7 T)

d* =
log p

sup lim
re€(A\,Tmax) P
TeT

=dn(r*, T%) = ~vI(r*,T") (20)

r*(T) := inf{r € (X, "max) : 7I(r,T) = den(r,T)} (21)

T = arg max I(r*(T),T) (22)
r* =r*(T"). (23)
Case 2:1f lim “G) =0and lim {73 = oo, then
—log Py (r, T
sup lim M < max I(rmax,T). (24)
r€Qrmax), P g(logp) TeT
TeT
Case 3: If lim % = 00, then
N —oo

—log Pyos(r, T D
sup lim Ogt—w < d <)\7 {—J) . (25
r€Armax), P log p 2
TeT
Proof: See Appendix C. O

Theorem 1 shows that the optimal decay behavior of the
asymptotic total probability of error depends on the tail be-
havior of the function g. As discussed earlier, the burstiness
of the g-smoothly scaling arrival process scales down as

1

g(log p)
with respect to the scaling of the source burstiness:

. Below, we discuss each case of Theorem 1,

In Case 1, where the source burstiness scales down with

1

© < \/log p

exponentially with log p. In this setting, one can optimize the

choices of r and T to arrive at a nontrivial optimal decay rate

d*. The optimal r* and T* balance and minimize the decay rate

in Poy(r,T) and Pgeray(r, T'). Hence, for Case 1, the optimal
asymptotic total probability of error decays as follows:

, both components of the probability of error decay

*

Ptot(r*7T*) = Pdelay(r*7T*) = P(‘,h(r*7T*) = P_d .

Note that d* is nothing but the optimal negative SNR exponent.
In Case 2, where the source burstiness scales down slower

1 1
than © ( Jioss but faster than © (—m

Pyot(r,T) is asymptotically equal to Pgelay (7, T) for all 7 €
(A, Tmax) and T' € T. In this case, the decay rate of Py (r,T")
is equal to I(r,T). In other words, the channel error (outage)
probability is dominated by the delay violation probability and,
hence, can be ignored.

Finally, in Case 3, when the source burstiness scales down
1

(e

3, the delay violation probability is dominated by the channel
error probability and, hence, can be ignored.

, we have that

faster than © , we have the opposite of Case 2. In Case

A. Approximation of the Optimal Negative SNR Exponent

For Case 1 in Theorem 1, we use the following approximation
which is an immediate result of relaxing the integer-constrained
optimizations of I and T to obtain approximated expressions
with much simpler forms. These approximations become espe-
cially useful in Section V.

Approximation 2: Relaxing the integer constraints in the cal-
culation of I (as in Approximation 1) and 7™ in (22) gives the
following “integer-relaxed” approximations for d*, r*, and T™*:

d* ~dj,. = den(r},, T;)
T =717

26)

and r* = 1},
where, for §, givenin (15) andany T € T,

ri(T) := min{r € (A, rmax) : den(r, T) = 6,7 (D—2T+1)}

r

27
and
e e yle
= {mln{ eERT: d—T(dCh(ri,,(T),T)) = 0}]1
(28)
7 =7 (T3)- (29)

V. APPLICATIONS OF THE RESULT

In this section, we apply the result of Case 1 in Theorem 1
to analyze and optimize the end-to-end error probability of
systems communicating delay-sensitive and bursty traffic over
three outage-limited channels: SISO Rayleigh fast-fading
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channel, quasi-static cooperative relay channel, and quasi-static
MIMO channel.

To illustrate the methodology, we restrict our attention to the
case of CPE(\, p, g, log p) arrival process where g(logp) =
log p, for simplicity. Note that to better gain insights, we use the
integer-relaxed approximations obtained in Approximation 2.

A. SISO Rayleigh Fast-Fading Channel

Our first example considers an example of SISO Rayleigh
fast-fading channel, whose dy, (r, T') = T'(1—7) (see (3)). Com-
bining this with (19) and (27) gives the optimal choice of mul-
tiplexing gain when the coding duration is fixed at 7" as

1-A

— - (30)
D+1-2T
1 + u( = )

v (1) = A+

In addition, using (28), the integer-relaxed approximated op-
timal coding duration can be expressed as

D

1 D+1 %]
2

* _
ir

€1y

L
1+\/ﬁ 1

Inserting 77, into (30), we get the approximated optimal channel
multiplexing gain as

1-A
14++/2p

Also, from (26), the approximated optimal negative SNR expo-
nent is given as

rmn o

v = (T8 = [A ;
vt (1)

di, =T; (1 =7,

r

2] (L2]))

1-r7 (1)
(33)

Below, we provide some observations of the above results:

* The above result on d* can also be interpreted as a tradeoff
which describes the relation between the normalized av-
erage arrival rate

A=

. - - E[AY]
lim (average bit-arrival rate) /N = lim N

N —o0 N —o0
and the corresponding optimal negative SNR exponent
d¥.(X) as a function of the delay bound D, and the average
packet size 1/u. For constant bit arrivals (CBR) at rate
Alog p, i.e., mathematically when 1/p — 0, any coding
durations less than half!! of D (or more precisely |2 ])
and any channel multiplexing rates greater than A result
in zero probability of delay violation. Hence, the optimal
negative SNR exponent of the total error probability,
denoted by df g, is equal to the corresponding channel

The first half of D is spent waiting for the next coding block and the other
half waiting to be decoded at the end of the block.

—O6— deterministic, D=11
- -u=1, D=11
40 1=.01, D=11
~—#-1=.01, D=300

- B-p=.001, D=3000

Fig. 2. SISO, Rayleigh fast-fading, coherent channel. The solid line describes
the DMT (r = X). The dashed and dotted lines describe d, () for various p
and D.

diversity when the optimal coding duration is at its max-
imum value, L%J , and the channel multiplexing gain is at
its minimum, \. That is

desn) = |5 | 1=

It is not surprising that this coincides with the classical
DMT. With traffic burstiness, however, the optimal neg-
ative SNR exponent d}.(\) given in (33) is smaller than
df.gr(A). The ratio

di,(N) 1

~ <1
d¢pr(A)

(eak)

can be interpreted as the reduction factor on the SNR ex-
ponent in the presence of burstiness. Fig. 2 shows the im-
pact of traffic burstiness (which is parameterized by ) on
di, (A).

* From a coding point of view, 1. is independent of the av-
erage bit-arrival rate A. This implies that for a fixed value
of the average packet size 1/, the optimal negative SNR
exponent is achieved by a fixed-duration 1 x 77, code. Op-
timal codes for this setting exist for all values of r and
T ([20], [21], [28]). On the other hand, if T is already
given, the performance is optimized when the coding mul-
tiplexing gain is chosen as in (30), i.e.,

1-A
(DF1-2T)
L+ 5=

= A+

* Since rypax = 1 for this SISO channel, we can verify that
r¥. /" Tmax for very bursty traffic (i.e., 1/u — o0). That
is for very bursty traffic the channel should operate close
to its highest possible rate, which is the channel ergodic
capacity.

1) Numerical Comparison of the Approximation: Before we
move to the next example, we illustrate numerically that the ap-
proximations in (31)—(33) well approximate their actual values
in Theorem 1. In Fig. 3, we show an example of a comparison
at 1/p = 100 and various values of D and A. We observe that
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1.4¢

1.2

5 25 45 65 85 105 125 145 165 185
D
(a) d* and d vs D and A

12( e
=y T*
100 —T,

“ A=0.1,04,and 0.7

5 25 45 65 85 105 125 145 165 185
D

(b) T* and T;; vs D and A

Fig. 3. Comparisons of the exact values d*, T*, and r* (3a, 3b, 3c, respec-
tively) and the integer-relaxed approximations d,., I7,., and r},., at various D

ir?

and A. The dotted lines with markers correspond to the exact solutions while the
solid lines represent the approximated solutions.

the approximated values match well with the exact values if D
is sufficiently large. The matching is remarkably good for d*
and d},. Note that 7}, is independent of D, except when D is so
small that 77}, = 1.

B. Cooperative Wireless Networking With Optimal Clustering

As studied in [30], [31], we consider communicating bursty
and delay-limited information from an information source in a

Node 1 Cooperative

Cluster with
v* nodes
Nofe 2
[}
[ J
[ ]
(3 Node V*C e
® [
A‘ I
Source Destination
Node  Node v¥*+1 Node

Node v

OO

Fig. 4. Snapshot of a wireless network, where the source node utilizes a subset
of its peers (nodes 1,2, ..., v*) as relays for communicating with the destina-
tion.

cooperative wireless relay network, shown in Fig. 4, where the
diversity benefit of user cooperation is due to encoding across
space and time [26], [32]. In the absence of delay limitation,
having more cooperative users almost always improves perfor-
mance. This is not the case, though, when one considers bursti-
ness and delay QoS requirement. Take for example a network
where the information-source node cooperates with v relays,
under an orthogonal amplify-and-forward (OAF) cooperative
diversity scheme and half-duplex constraint. This cooperation
scheme gives the DMT:

dyP(r) = (v+1)(1 = 2r).

Note that rmax = 1/2 under this protocol. To realize this
amount of diversity, the coding duration 7' is required to be
at least 2(v + 1) channel uses or timeslots. This means that,
in spite of the increase in the negative SNR exponent of the
probability of decoding error with the number of cooperative
relays, relaying over all nodes in the network might not be de-
sirable as it increases the delay violations. Applying the result
of Approximation 2 to CPE source and the above dg; " (r) with
T = 2(v + 1), the optimal performance is achieved when the
nodes cooperate in clusters with

v

D1,
r T —1_
(1 gm) |,

relays and transmit at multiplexing rate,

13-
r*zr:}:§—2—l.
1+—/2—H

Note that v}, is independent of the traffic average arrival rate \.
This means that meeting the optimal tradeoff for various values
of A does not require modifying the cluster sizes, unless the
traffic burstiness (parameterized by the average packet size 1/ )
changes.

C. MIMO Quasi-Static Communications

In the case of the MIMO Rayleigh-fading channel with n;
transmit and n,. receive antennas, and with complete channel
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4 | :
——D=10, no burstiness
N - - -D=10, p=1
IIIIII D=10, u=1/10
’ [
N
~
250 N
—~ \\
t‘é 2 \\
= ~
~
1.5¢ A
~
\\
1 h
0-5— vvvvvvvvvvvvvvvvvvvvvvvvvvvv ~ B - -~ -
O | | i 1y
0 0.5 ; N 2

Fig. 5. MIMO, quasi-static, coherent 2 X 2 channel. d* versus A for different
values of D and p.

state information at the receiver (CSIR) and no CSI at the trans-
mitter, the channel diversity gain d.,(r) is shown (see [1]) to be
a piecewise linear function that connects points

(k, (nt — k)(n, — k)), (34)

The entire tradeoff is met if T > n,; [19]. An example of the
effect of burstiness is shown in Fig. 5, for the case of the 2 x 2
Rayleigh-fading channel (n; = n,. = 2). By assuming that 7" is
given (not an optimizing parameter) and equal to 2, the optimal
multiplexing gain r*, which balances the SNR exponents of the
probabilities of delay violation and decoding error, is the solu-
tion to den(r*) = I(r*, T = 2). Using the approximation (18)
of I for CPE source, the approximation 773, is the solution to

den (r3;) = p(riy = A)(D =3) =0
where d.y, is the piecewise linear function connecting points in
(34). In other words, 77, is given as
ifA €[l — —a—,2),

2—)\
{ A oo W(D=3)"

PRI = > ST (0,1—@]

k=0,1,...,min(n,n,).

*
Tip

3+u(D-3)

Fig. 5 shows the resulting d*(\) = dcy, (r},.) for various values
of burstiness p and D.

VI. SUMMARY AND FUTURE WORK

This work offers a high-SNR asymptotic error performance
analysis for communications of delay-limited and bursty infor-
mation over an outage-limited channel, where errors occur ei-
ther due to delay or due to erroneous decoding. The analysis fo-
cuses on the case where there is no CSIT and no feedback, and
on the static case of fixed rate and fixed length of coding blocks.
This joint queue-channel analysis is performed in the asymp-
totic regime of high-SNR and in the assumption of smoothly
scaling (with SNR) bit-arrival processes. The analysis provides
closed-form expressions for the error performance, as a function
of the channel and source statistics. These expressions identify
the scaling regime of the source and channel statistics in which
either delay or decoding errors are the dominant cause of er-
rors, and the scaling regime in which a prudent choice of the
coding duration and rate manages to balance and minimize these

errors. That is, in this latter regime, such optimal choice man-
ages to balance the effect of channel atypicality and burstiness
atypicality. To illustrate the results, we provide different exam-
ples that apply the results in different communication settings.
We emphasize that the results hold for any coding duration and
delay bound.

Many interesting extensions of the current work remain. One
example is the high-SNR analysis of systems with retransmis-
sion mechanism and/or adaptive adjustment of the transmis-
sion rate and coding duration as a function of the current queue
length at the transmitter. With retransmission, the diversity of
the channel can be improved considerably [33] but at the cost of
longer and random transmission delays. On the other hand, we
may be able to improve the system performance by adjusting the
transmission rate according to the need of the bits in the queue.
For example, when the queue length is short, we may reduce the
transmission rate, which improves the probability of channel de-
coding error but possibly at the cost of longer delays of the bits
that arrive later. However, since in high-SNR analysis the prob-
ability of error is asymptotically dominated by the worst case
probability, it is not clear whether such adaptive transmission
rate mechanism will improve the asymptotic decay rate of the
probability of bit error.

In addition, this work focuses on the notion of SNR error ex-
ponent as a measure of performance. This view of communica-
tion systems provides a tractable and intuitive characterization
of various suggested schemes in the high-SNR regime. It would
also be interesting to fine-tune the high-SNR asymptotic anal-
ysis presented here, for the regime of finite SNR, as well as ex-
tend it to different families of bit-arrival processes.

APPENDIX A
PROOF OF PROPOSITION 1

Proposition 1: Consider a g-smoothly scaling process
AM) with the limiting g-scaled log moment generation func-
tion A. Let St(N) = Zle AEN), for t € N. Then, for a > \t,
we have

lim

! log P St(N) A*
N ) 0g N = —tA*(a/t)

where A* is the convex conjugate of A.

Proof: Letn = g(N) and Y, = w&@). From (6)
and the property of A for the g-smoothly scaling process, we
have

(35)

Ay, (6) = lim_ % log E[e®Y "] = As, (8) = tA(9)
which exists for each # € R as an extended real number and
is finite in a neighborhood of # = 0, essentially smooth, and
lower-semicontinuous. Then, the Girtner-Ellis theorem ([14,
Theorem 2.11]) shows that Y;(") /mn (which, in this case, is equiv-
alent to St<N) /) satisfies the large deviations principle (LDP)
in R with good convex rate function

Ay, (z) :=sup 0z — Ay, (0) = sup Oz — tA(f) = tA*(x/t).
0ER fER
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For
S(N )
E|=Lt—| =X
a > N
the LDP result gives the assertion of the proposition (see [14,
Lemma 2.6 and Theorem 2.8]). O
APPENDIX B

PROOF OF RESULTS ON THE ASYMPTOTIC PROBABILITY OF
DELAY VIOLATION

Lemma 2: Giveng € G, T € T,r > ), a batch service
of rNT every T timeslots, and a g-smoothly scaling bit-arrival
process characterized by the limiting g-scaled log moment gen-
eration function A, the decay rate of Pyelay (r, T') is given by the
function I, i.e.

lim

log Paetay (7, T
N%oq(z\f)og actay (r, T) =

~I(r,T)  (36)

where

min
tezZ™t:
tT+T—1—k>0

I(r,T) = (T +T —1—k)

xA* (r+

and k = D(mod T). In addition, I(r,T) is lower-semicontin-
uous and increasing on 7.

Proof: Letg € G, T € T={1,2,...,|2]|},r > X and
k = (modT). Without loss of generality, we assume that
I(r,T) <

(D+1—2T)r
iwrr-1-%) 7

For any given SNR p and N = log p, there are AgN) bits
arriving at time ¢. The queue is being served exactly at times
mT, for m € Z, with an instantaneous removal of the oldest
RT = rNT bits. The corresponding queue dynamics for the

. (N) .
queue size (); ’, at time ¢, are as follows.
ift=mT,me”Z

(N) _ [Q L AN - TRTr

' Qt_l + AgN), otherwise

(38)
where Q(_N) = 0. Since the arrival process is stationary and
the system started empty at time —oo then QEN)
steady-state distribution as that of QmT LM E Z,foreachi =
0,...,T — 1. The delay at time ¢ also has the same steady-state
distribution as the delay at time mT + 4. Since Pelay (1, T), as a
function of r, T', is defined as the probability of the steady-state

delay being greater than D, we have

has the same

Pdelay(T; T) :
= P(steady-state delay of a bit > D)
1 L
=7 Z P(s-s delay of a bit arriving at time i > D) (39)
i=0

where the equality holds since the arrivals are independent
across time. From Lemma 4 in Appendix E, we have that
the delay violation probability of any bit arriving at time ¢ is

asymptotically equal to the delay violation probability of the
last bit arriving at time ¢, (39) becomes

T-1
9 (MY g ()
Pactay (r,T) £ ZP(Q )—;P(Ql ) o

where QZ(.N) denotes the event that the last bit arriving at timeslot
1 violates the delay bound D. This holds because T is a constant
independent of p. Hence, (40) says that Pyc1ay is asymptotically

equal to the sum of P (QEN)).

Next, we relate the event QEN) to a condition on the queue
length QEN), fors = 0,...,T — 1. To do this, we need to
describe the condition that the delay of the last bit arriving at
timeslot ¢ violates the delay bound D. Upon arrival, the last bit
sees QgN) bits (including itself) waiting in the queue. Since the
batch service happens exactly in multiples of 7', the bit must

wait 1" — ¢ timeslots for the next service to start and another

(N)
Q T timeslots for all Q( ) bits (including the last bit) to

get served and be decoded. Hence, the last bit arriving at time %
violates the delay bound D if, and only if

Q(N)

-
'Y\ R

T>D.

Let QM) contains all measurable random events. The condition
above implies that the delay violation event for the last bit is

given as
(N)
(N) _ (N) Q; " (w)
Q. {wEQ T — ’V T

T>D}4M)

Using (38) and (41), we show in Lemma 3 of Appendix D

that
£r (e x)

2P Q> (D-T=-kR). @

Intuitively, this means that P(ielay(r7 T') is asymptotically equal

Pdelay(r7 T)

to P (QT 1— k) , equivalently Pgeiay(r,T") is asymptotically
equal to the probability that the last bit arriving at time 7' — 1 —k
sees a queue length greater than (D — T — k)R bits.

Finally, using (42), what remains is to establish that

log P (ng]\)k 1> (D-T- k‘)rN)
9(N)

lim
N—oo

=—I(r,T)

= — Hlln
tezt
tT+T—-1— k>0

o A <r+ (D+1—2T)r>

tr+7T—-k—-1
For notational simplicity, leté := T — 1 — k and q := (D —
T — k)r. Note that ¢ > ri > O since T € {1727 cee L%J} and
k = D(mod T'). Now, since

(T +T —k—1)

(43)

q+rTt
Tt4+i

(D +1—2T)r
tT+T—k—1
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it is sufficient to show that

log P (Q,EN) > Nq)
g(N)
= — min (Tt+4i)A" <q+TTt>. (44)

tez™t: Tt + 1
tT+i>0

lim
N—oco

We separately show (matching) upper and lower bounds.

First, we show the lower bound. By using the queue dynamics
in (38) recursively and the assumption of Q(_A;)) = 0, the queue
length QEN) is related to the arrivals AJ(»N), j < 1, in the fol-
lowing manner:

S AW — TN
j=—tT+1

N
Q™ = sup
tezZ+

(45)

where we use the convention that Z(])'=1 A§N) = 0. Using this
relation and the fact that ¢ > 0, we have

P (ng > Nq)

=P AN _ TN > Ng

sup j

tezt ;i

=P sup Z AE-N) —rtTN > Ngq

t€Z+: P
tTis0 =T+

Now, for any fixed ¢t € Z+ so that t1" + 4 > 0, we have

P(QS,N) > Ngq) > P Z AJ(-N) —rtT'N > Ngq

j=—tT+1
tT+i

=P Z AE-N) > N(q+ rTt)
7=1
)

=P % >q+rTt).

Taking the limit of both sides and using Proposition 1, we have

lim inf
N—oo

log P (Q§N) > Nq)
g(N) Tt+1 46)

Since t is arbitrary, maximizing the RHS over ¢ gives the appro-
priate lower bound:

Tt
> (Tt +i)A* <q+r >

log P (Q§N> > Nq)

lim inf
N—oo g(N)
. . q+rTt
> — f (Tt+3)A* .47
z- ot (Tti) (Tt—i—z’) “7)
tT+i>0

For the upper bound, we use the following result from Lemma
5 in Appendix F:

log P (QEN) > Nq)

lim sup

. ax [qF+TT
< - f (Tt+i4i)A
N té%*: (Tt +1) (Tt—i—i)
tT+i>0

noting that the RHS is strictly greater than —oo, by assumption.
Hence, the lower and upper bounds coincide and (44) holds.
To complete the proof, we show the properties of I(r, T') for
T € T. First, [ is increasing on r > X because A*(x) is in-
creasing on x > A ([14, Lemma 2.7]). Second, I(r,T') is lower
semicontinuous on 7 because / is the minimum of a number
of function A* which are lower semicontinuous ([14, Lemma
2.7)). O

Approximation 1: Relaxing the integer constraint in (13)
gives the lower bound of I as

I(r,T) > 6,7(D4+1-=2T) =: I;.(r,T) (48)
where
6 =sup{f > 0: A(F) < 0r}. (49)
Proof: By the definition of I, we have
I(r,T) =

min
teZt:

tT+T—-1—k>0
onr (yop D241
T T 11—k

D-2T+1
> min TA* (r—i— r—+>

(tT+T —1-k)

TERT T

=6,r(D—2T +1)

where the last equality is a result of [14, Lemma 3.4] with §,
defined as in (49). O

APPENDIX C
PROOF OF THE MAIN RESULT

Proof of Theorem 1: Recall that
Ptot (T7 T) = ch(’ra T) + (1 - Pch(r7 T))Pdelay(’r7 T) (50)

where, from (1)

Puy(r,T) = p~ 0T (51)
and, from Lemma 2
Pelay (r,T) Z ¢~ 1(nTgllogr), (52)
Case 1: when A}i_r)noo % =~ € (0,00). We have
Paetay (r, T) = p7 100 (53)
and
Peoi(r,T) = p~ min{yI(r,T), den(r,T)} (54)
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The optimal negative SNR exponent of F;.; is

log Pioi (7, T
d* = sup { lim _ 08 ot 1) (1, )}
r€(X,"max) p—0o0 1ng
TET
= sup {min {yI(r,T), den(r,T)}}
r€(A,Tmax)
TET

=m mi I(r,T), den(r,1 .
TGaW)r( {re(itlrlzm) { " {’Y (7"7 ) 1(7” )}}}
(55)

We first solve the optimization subproblem within the bracket
for any given integer T € T. Because I(r,T) is increasing on
r > A while dey(r, T) is strictly decreasing on r € [0, rmax],
the subproblem is solved by the optimal choice of multiplexing
gain when the coding duration is fixed at " as

r*(T) := inf{r € (\,"max) : YI(r,T) = den(r,T)}. (56)

Hence, (55) is solved with the optimal coding duration 7, given
as

T* = arg I(+*(T),T
Arg max y (r*(T),T),

and the optimal multiplexing gain r*, given as
r* =" (T").

Note that, since I(r,T) > 0 when r > X and de,(r,T) > 0
when r < r'max, it is guaranteed that *(T') € (A, 7'max)-
Case 2: when

lim 9(N)

. g(N)
aim = lim

an N—oco log N

In this case, for all ¥ € (A, ryax) and all T € T, we have
Pielay(r,T) asymptotically dominates Pe,(r,7") and hence
Pioi(r,T) is asymptotically equal to Pgejay(r, ). Since, for
any T € T, I(r,T) is increasing on r > \, we have

—log Piot(r, T)

sup lim
reQrmay), P g(logp)
TeT

< max sup I(r,T
TeT {Te()\miax) ( )}

= max I(rmax,T).
TeT

Case 3: when lim # = oo. This case is an opposite of

N —oo

Case 2. Here, Pio(r, T') is asymptotically equal to Py (7, T') for

all 7 € (A, 7max) and all T € T. Since de,(r, T') is decreasing
on r and increasing on 7', we have

—log Piot(r,T)

sup lim
log p

r€(Armax), P
TeT

< max sup  den(r,T
TeT {TG(A,TmM) ( )}

= max den(A, 1)

(b2 :

APPENDIX D
PROOF OF LEMMA 3

In this appendix, we prove the following lemma which is used
in Appendix B.

Lemma 3: Considerg € G, T € T = {17 - [%J }, >
A, a family of g-smoothly scaling bit-arrival processes charac-
terized by the limiting g-scaled log moment generation function
A, and a periodic batch service of r/NT bits at timeslots mT,

m € Z.Let QgN) be the queue length attime ¢ € {0, ..., T—1}.
Then, the event ng\i)k_l, defined as

N

g“—)k—1(w)-‘ T> D}

Q(T]\i)k—1: {wEQ(N):k+1+ RT

with & = D(modT'), asymptotically dominates Peelay (7, T).
In other words

Paetay (r, T) £ Pr (Q(TAi)k_l > (D—T - k)rlog p) .57

Proof: Letk = D(modT) andi € {0,...,T — 1}. Re-
call from (41) that

(V)
QEN):{weQ(N):T—i—l— {QiT;w)-‘T>D}.

Now using the observation that, for any xz,y € R

[z] >y & [z] > |yl & 2> [y]

we have (58) shown at the bottom of the page.

o™ — {w

{w QM (W) > (D-T - k)R}, i €[0,T —k—1]
{w QM (W) > (D—k)R},

QM w) {DH—TJ}

(58)
i€l —kT-1]
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On the other hand, (40) implies that

T-1

Paclay (1, T) Z P (QEN)>

(QT . 1>(D—T—k)R>

P (Y > (D - k)R)}

P > -T-RER) (9

(

where the equality in (b) is from (58). Next, we establish the
(asymptotic) equalities (a) and (c). For (a), we first need to
show that

T k-1
Z P( (N)) gP(Qg{\i)k_l) (60)
7=0

To establish this, we first observe that

N N N N
Q@) = QM (@) + AN (@) + -+ 4V (W)
>0
> QM (w) 1)

forall w € QW) and 0 <1 < j <T—1.Hence, from (58), we
have

PN, ) > P (M), ieqo,...,

which implies

T_Zkf_lf’ (™) < (T~

=0

T—k—1}

bP(9r%-1)

On the other hand, from the nonnegativity of probability, we
have

(62)

T—k—-1

=0

P(e™M) =P (oY, ). (63)

Combining (62) and (63), we have (60). Similarly, we can show
that

T-1
o)) w

Combining (60) and (64), equality (a) in (59) is established.

To establish equality (c), it is sufficient to show that
P ( (N 5 p R) (QgN) > D’R)
<p ( M s (D - T)R) (65)

forany D’ > T and j € {0,...,T — 1}. This is because for
ji=T—1and D} = D — k, we get

P (@40 > (0 -mR) <P (V) > (D-T-kR)
while for jo =T —k—1land D, = D — T — k, we get
P( 5N>>(D—T—k)R)§P(Q(TN)k 1>(D—T—k)R)

asserting (c).
We prove (65) in two steps. The lower bound directly follows
from (61), i.e.

QM) 2 QM (W), Ywea®.
For the upper bound, we notice that, for D’ > T and
w € {w e QM) QE»N)(w) > D'R}
C {w e QW) . QJ(-N)(w) > TR}

QJ(»N)(w) is related to Q%N)(w) as
N
A( )( )+

M) = (@M (w) + 41
=@V @) + AT @) + -

+
+ AN (W) - TR]

+ A (w) - TR

?

where [-]T is removed. As a result, we have
P (%™ > D'R)
_ P () - a0+
<P (Y > (D'~ T)R)
P (Q((]N) > ( D

where the last equality holds since Q(TN) and Q(()N) have the
same stationary distribution. O

+ 49} + TR > D'R)

- T)R)

APPENDIX E
PROOF OF LEMMA 4

This appendix shows that the average probability of delay vi-
olation for bits that arrive at time 7 is asymptotically equal to the
corresponding probability for the last bit arriving at that time.
The proof is mainly based on the definition of the g-smoothly
scaling process.

Lemma 4: Consider ¢ € G and a family of g-smoothly
AN 4 ¢ z) Ne N),
terized by the limiting g-scaled log moment generation function
A. For any given N, let W(™) be a random variable having the
same distribution as the steady-state distribution of the delay of
a randomly chosen bit that arrives at time ¢ € {0,...,7 — 1}
while Z(") is a random variable having a distribution that is

scaling bit-arrival processes ( ( charac-
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identical to the steady-state distribution of the delay for the last
bit that arrives during time . Then, for any D > 0

PW®™ > DyL p(z™ > D). (66)
Proof: We show (66) by showing the upper bound
PWW™ > Dy < P(z™) > D) (67)
and the lower bound
PW®™ s D)2 p(z™ > D). (68)

The upper bound is an immediate consequence of W) (w) <
ZWMN)(w) for w € QW) Below we prove the lower bound. We
have

PWW > D)=

S P (W™ > DA =a) P (4N =a). (69)
aeN

Now, given that AEN) — ¢ bits arrive at time ¢, we index the a
bits as bit 1 to a, where bit 1 arrives first and bit a arrives last.
Given AEN) = a, we let W™ to be the steady-state delay of
the jth bit, j € {1,...,a}. Since the bit can have any index,
from 1 to a, with equal probability of 1/a, we have

P (W(N) > DA = a)
_1 Zajp (W™ > Dl =a).

a
j=1

Ignoring all but the last term in the sum, we have
1
P (W(N) > D[AMN = a) >-p (W;M > DA™ = a)
a

_1p (2 > D]A™ = o)

a

where the equality is a result of how Z (V) is defined. This means
that
P(W®™ > D)
1 r
>3 -p (Z<N> > DA = a) P (A,E“ - a)
a€eN a

1 7
= Z -P (Z(A) > D and AEN) = a) )
aeNa

Now, for a given 3 > 0, define
BW) .= {beN:b< e'gg(N)}.

We can further lower bound P(W®) > D) as follows:

PW®™ > D)
1
> - (V) (V) _ )
> ¥ aP(Z >D and AN =4
acBWN)
> ¢ N p (20 > Dand AN = a)
a€eBN)

— o BaN) p (Z(N) > D and AEN) € B(N)) (70)
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where the second inequality holds because 1/a > e~?9(N) for
any a € BV,

Next, we show that P AEN) e BM)) S 1as N — oo. We

do this by using the definition of the g-smoothly scaling process:
there exists # > 0 such that

log 15 [¢?41" 9(V)/X ]
g(N)

Hence, for any € > 0, there exists Ng = Ny(e) such that for all
N > Ny, we have

lim
N —oo

= A(f) < .

g(N)(A(B) + ¢) > log E [JAEN)g(N)/N} .y

The RHS can be lower bounded, for any a; € N:

log B [ #4790/ ]

= log (Z P (AEN) _ a) eéhzg(N)/N)

aeEN

>log [ S P (4 = a) efratON

a>ay

> log (P (A7) > ;) s/
g(N)
N

=fa; + log P (AEN) > al) .

This together with (71) gives

log P (A,EN) > al) < g(N) [A(f)) +e— wﬂ}

N

Bg(N)

for all a; € N. Now, we select a1 = ¢ to get

log (1P (4™ € BM)) =10g P (A > ¢?™)

geP9(N)
v

< g(N) {A(@) +e—

g(N) _
logN —

Since lim 00, we, then, have

N —oo

P (A§N> € B<N>) ~ 1 (72)

Finally, combining (72) and (70) implies that, for any 5 > 0,

log P(WN) > D) log P(Z(N) > D)

lim > lim -0
N—oo g(N) N—oo 9(N)
Since 3 can be chosen arbitrarily small, we have the lower
bound in (68), hence the assertion of the lemma. O
APPENDIX F

PROOF OF LEMMA 5

In this appendix, we prove the following lemma which is used
in Appendix B.

Lemma 5: Considerg € G, T € T = {17...7 [%J},T >

A, a family of g-smoothly scaling bit-arrival processes charac-
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terized by the limiting g-scaled log moment generation function
A, and a periodic batch service of 7 NT bits at timeslots mT’,
m € Z.Let QEA) be the queue length attime ¢ € {0,...,T—1}.
Then, for ¢ > r, we have
log P (QEN) > Nq)

g(N)

S_

lim sup
N—o0

inf (Tt+i)A*
rtT+Zq>0

q+rTt
73
(7)o
assuming that the RHS is strictly greater than —oco.

Proof: The proof uses the same technique as in [14,
Lemmas 1.10 and 1.11]. Using (45), we have the following
bound:

P (QE.M > Nq) =P| swp Y AN —rTN>Ng
tezt: ;g
tT+i>0

=P sup St(T+ —rtT'N > Ngq
+
tT+Zz>0
(N)
< Z Sirii>N(g+1rTt)) .

tit>— T
Now, for any fixed ¢ty € N, we have
P (Q§N> > Nq) < Y r (SSTVL > N(q+ th))
— i <t<to
+ 3 P (S50 > Na+rT)) . (74)
t>tg
Employing the principle of the largest term!2 gives

log P (Q(N) > Nq)

lim sup
log P (3, > N(g +1Tt))
< max| max limsup ,
—£<t<ty N—oo g(N)

lim Sup
N—oo

vy o8 > P (S50 > N+ th))). (75)

t>1to

12The principle of the largest term [14, Lemma 2.1]: Let @,, and b,, be se-
quences in RT. If n="log a,, — a and n~"'logb,, — b, then n~"log(a., +

For the first term (the ¢ < ¢ term) in the maximum, we use
Proposition 1 to get

1 Sl
max limsup ——log P > qg+rTt
— 5 <t<to N—>oop g(N) s N 1
T
< max —(Tt+19)A" <q tr _t>
— & <t<to Tt+1
. e [qFTTE
< - f (Tt A 76
<= b (Tt4i) <Tt+7j) (76)

tT+i>0

which is the RHS of (73) and finite by assumption.

Now, we show that we can select ¢ appropriately such that
the second term (the £ > ¢( term) in the RHS of (75) is also no
greater than the RHS of (73). In other words, we show that there
exists tg such that

limsup —— log P(S’( )z>N(q+TTt))
N —oco g(N) f; i
. ax [+ TTE
< — f (Tt+9)A LT
<- ot Ttrd <Tt+i> 7
tT+i>0

This is shown by proving that there exist some § > 0 and ¢ > 0
such that

limsup ——

s g(N) log ) P (SETL > N(q+ th))

t>to

< —ef ((to+1)T+14) (78)

for all o € N. Now, selecting

1 . q+rTt
to= |—— inf (Tt A*
0=\ T ot T <Tt+z'>
tT+i>0

provides (77).

To prove (78), we first use Chernoff bound as shown in (79)
at the bottom of the page, where @ is an arbitrary positive scalar
an((]iv t)he second equality is a consequence of i.i.d. assumption on
Ay

Next, we use the convexity of A and the fact that A’(0) =
A < r (Remark 2) to establish that there exist some # > 0 and
€ > 0 for which

b,,) — max(a,b). This extends easily to finite sums. A(H) < 0(1" 3 26). 0
Z r (SEJTVL > N(q+ th)) = Z P (eg o SilTVJ)rz > e%N(ﬁm))
t>tg =
(N) g(N)
< Z e~ 09(N)(g+rTt) [eaStT+i 8 }
t>tg
= Z —6g(N)(q+rTt) (E[ Al N)g( ])tT+i
t>tg
OQ(N)A(N)
=Y exp| —g(N)(tT +1) |6 q+riT _IOgE[e v } )
- t>tg S\ tT + 1 g(N)
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On the other hand, from (5), we know that
log £ [ - N)A(N)}

— A(6).
9(N) )
This means that there exists a Nog = No (0, €) such that, for all
N > Ny
g 2 [o 440
< A(0) + fe.

g(N)
Combining this with (80), we have
log E [e P A(IN)}
g(N)

forall N > Nj.
Hence, using (81), the term inside the square bracket in (79)
can be bounded, uniformly over all £ > %y, as

<O(r—2e)+0e=0(r—e), (81

oy s []
0 _
( tT +1 > g(N)
o\ g [
q—ir
Sy -
(’" try z) 9N
g 1[40

9(N)
>0r —0(r—e)

= fe (82)

> Or —

where the first equality holds because ¢ > ir, by assumption.
Inserting (82) into (79), we have (78)

lim sup log Z ( T > N(q+ th))
N—oo bt

< lim sup log Z exp (—g(N)(tT + i)fe)
N—oo . t>to
. 1 e 9(N)0e((to+1)T+4)

= h]f;n_ilop 9V log < T )

= —efl ((to + )T + 1)

and, hence, the assertion of the lemma. O
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