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ABSTRACT

Blind sources separation (BSS) arises in a variety of fields
in speech processing such as speech enhancement, speakers
diarization and identification. Generally, methods for BSS
consider several observations of the same recording. Sin-
gle microphone analysis is the worst underdetermined case,
but, it’s also the more realistic one. In our approach, the au-
toregressive structure (short term prediction) and the periodic
signature (long term prediction) of voiced speech signal are
jointly modeled. The filters parameters are extracted using
a combined version of the EM-Algorithm with the Rauch-
Tung-Striebel optimal smoother while the fixed-lag Kalman
smoother algorithm is used for the initialization.

Index Terms— Blind sources extraction, mono-microphone
analysis, short+long term prediction, EM Algorithm.
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2. EXTENDED SUMMARY

We consider the problem of estimating an unknown number
of multiple mixed Gaussian sources. We use a voice produc-
tion model that can be described by filtering an excitation sig-
nal with short term prediction filter followed by a long term
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one and which is mathematically formulated like

yt =

c
∑

k=1

xk,t + nt, (1)

xk,t =

pk
∑

n=1

ak,n xk,t−n + x̃k,t

x̃k,t = bk x̃k,t−Tk
+ ek,t

Whereyt is the scalar observation,xk,t is the sourcek at
time t. ak,n is thenth short term coefficient of the sourcek
while x̃k,t is the short term prediction error.bk is the long
term prediction coefficient of thekth source,Tk its period,
which is not necessary an integer, and{ek,t} are Gaussian
mutually uncorrelated innovation sequences with varianceρk.
{nt} is a white gaussian process with varianceσ2

n. We aim
to seperate jointly these sources by estimating the short and
long autoregressive (AR) coefficients of each one. We will
proceed like the following: first, estimate coarsly the different
pitches by extending a classical approach of monopitch esti-
mation to the multipitch case,then use the EM algorithm to
estimate the different parameters of the problem. For the first
step, in speech processing it is common to use autocorrela-
tion method (ACM) for pitch estimation, the method consists
in finding the first highest peak of the function. But when sev-
eral pitches are present, ACM is a bad estimator due to the fact
that all the periodicities present in the signal contributeand
generates proper peak and interaction peak. For estimating
the different periodicity in the ACM we propose to estimate
the ratio ofR2T

RT

for a set of possible T (period) compared to
a threshold, whereR is the autocorrelation function. In or-
der to achieve the second step (separation), we will derive a
State-Space model formulated like the following

xk,t = Fk xk,t−1 + gk ek,t, k = 1, · · · , c (2)

wherexk,t = [sk(t) sk(t−1) · · · sk(t−pk) | s̃k(t) s̃k(t−
1) · · · s̃k(t − ⌊Tk⌋) · · · s̃k(t − N + 1)]T

andgk = [ 1 0 · · · 0 | 1 0 · · · · · · 0]T

Fk =

[

F11,k F12,k

F21,k F22,k

]
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The N is chosen superior to the maximum value of pitches
Tk in order to detect the long-term aspect. We concatenate
the state equation (2) fork = 1, · · · , c and introduce an
observation equation for{yt} to obtain the state space model

xt = F xt−1 + G et (3)

yt = hT xt + nt (4)

Wherext = [xT
1,t xT

2,t · · · xT
c,t]

T andet = [e1,t e2,t · · · ec,t]
T .

The(
∑c

k=1 pk + c + Nc) × (
∑c

k=1 pk + c + Nc) block di-
agonal matrixF is given byF = block diag(F1, · · · , Fc).
The(

∑c
k=1 pk + c + Nc)× c matrixG and(

∑c
k=1 pk + c +

Nc)×1 column vectorh are given respectively byG = block
diag(g1, · · · , gc), andh = [hT

1 · · ·hT
c ]T where

hi = [1 0 · · · 0]T . The covariance matrice of the input vector
et is thec×c diagonal matrixQ =Cov(et) =diag(ρ1, · · · , ρc).
This State-Space model will be used in the EM algorithm.
The Expectation Maximization algorithm is a general iterative
method to compute ML estimates when the observed data can
be regarded as “incomplete” and the incomplete data set can
be related to some complete data set through a noninvertible
transformation. Let the vector of observationsy be the incom-
plete data set which has probability densityp(y; θ). The ML
estimate ofθ is obtained by maximizing the log-likelihood
function

θML = arg max
θ

log p(y; θ) (5)

In our problem the data of interest areθ = [ρ1 · · · ρc σ2
n v1

· · · vc]
T wherevk contains all the short and long term coeffi-

cients of the sourcek. A natural choice for the complete data
setX is the setX = [x1, · · · , xM , n1, · · · , nM ]. The com-
plete data set and the incomplete data set are related in our
case by the vectorh in the equation(4). The EM Algorithm
is composed of 2 steps, the expectation step (E-step) where
we compute the following function
E step :

U(θ, θ(i)) = Eθ(i) { log p(X ; θ) | y } (6)

and the maximization step where we maximize(6)
M step :

θ(i+1) = argθ U(θ, θ(i)) (7)

herei denote the iteration indice. In order to compute(6),
we first evaluate the log-likelihood functionlog p(X ; θ):

log p(X ; θ) =
c

∑

k=1

log p(xk,1, · · · , xk,M ) + log p(n1, · · · , nM )

=
c

∑

k=1

( log p(ek,2, · · · , xk,M | xk,1) + log p(xk,1) )

+ log p(n1, · · · , nM )

Using the Gaussian assumption, we find, after some algebraic
manipulation

log p(X ; θ) =
∑c

k=1

[

− 1
2 (M + N + pk) log ρk

− 1
2 ρk

(

vT
k

(

∑M
t=2 x̆k,t x̆T

k,t

)

vk + trace
{

Γ−1
k xk,1 xk,1

}

) ]

−M
2 log σ2

n − 1
2 σ2

n

∑M
t=1

(

y2
t − 2 yt hT xt + hT xt xT

t h
)

+ K

wherĕxk,t = [sk(t, θ) · · · sk(t−pk, θ) s̃k(t−⌊Tk⌋, θ) s̃k(t−

⌊Tk⌋ − 1, θ)]T = ST
k xk,t, ST

k is a transformation matrix
which extract the partial statĕxk,t from the complete state
xk,t, vk = [1 − ak,1 · · · − ak,pk

− α bk − (1 − α) bk]T ,
K is a constant independent ofθ andΓk is the normalized
covariance matrixΓk = ρ−1

k Cov(xk,1).After applying the
Eθ(i) {. | y } operator we deduce that

U(θ, θ(i)) =
∑c

k=1

[

− 1
2 (M + N + pk) log ρk

− 1
2ρk

(

vT
k ST

k

(

∑M
t=2

(

x̂(i)
k,t|M

(

x̂(i)
k,t|M

)T

+

P(i)
k,t|M

) )

Sk vk + trace
{

Γ−1
k

(

x̂(i)
k,1|M (x̂(i)

k,1|M )T

+ P(i)
k,1|M

) } ) ]

− M
2 log σ2

n − 1
2σ2

n

∑M
t=1

(

y2
t

−2ythT x̂(i)
t|M + hT

(

x̂(i)
t|M

(

x̂(i)
t|M

)T

+ P(i)
t|M

)

h
)

+ K

(8)



wherêx(i)
t|M = Eθ(k) {xt | y } andx̂(i)

k,t|M = Eθ(k) {xk,t | y }

denote the smoothed conditional means,P(i)
t|M = Covθ(k) (xt | y )

andP(i)
k,t|M = Covθ(k) (xk,t | y ) are the smoothed condi-

tional covariance matrices. These quantities are calculated in
the E-step using the Rauch-Tung-Striebel optimal smoother
like described below

Setx̂1|0 = 0
Set P1|0 = block diag(ρ1 Γ1, · · · , ρcΓc)
For t = 1 to M do

K t = Pt|t−1h(hT Pt|t−1h + σ2
n)−1

x̂t|t = x̂t|t−1 + K t(yt − hT x̂t|t−1)

x̂t+1|t = F̂x̂t|t

Pt+1|t = F̂Pt|tF̂
T

+ GQGT

For t = M to 1 do

At = Pt|tF̂
T

P−1
t+1|t

x̂t|M = x̂t|t + At(x̂t+1|M − F̂x̂t|t)

Pt|M = Pt|t + At(Pt+1|M − Pt+1|t)A
T
t

The maximization of(8) during the M-Step is trivial. Set-
ting the partial derivative with respect toρ1, · · · , ρc, σ2

n to
zero yields to the new estimates of this variables. To esti-
mate the vectorsvk we use the fact thatek,t = x̆T

k,tvk, by
multiplying on the left withx̆k,t and applying the operator
Eθ(i) {. | y } we will obtain

ST
k

1
M

(

∑M
t=1

(

x̂(i)
k,t|M

(

x̂(i)
k,t|M

)T

+

P(i)
k,t|M

) )

Sk vk = [ρk 0 · · · ρk 0 · · · · · · 0]T

where the secondρk is the(pk + 2)th component.F de-
pends of the parameters of the problem, therefore, it shouldbe
computed in each iteration in order to be used in the Kalman
algorithm (hence its estimatêF). Converging to pretty good
values of parameters requires a good initialization. Therefore,
here we will proceed to a first sweep where we use the fixed-
lag Kalman smoothing algorithm. The obtained values will be
used as initializations to the the Rauch-Tung-Striebel optimal
smoother algorithm described above and that will be runned
several times till convergence.


