MONO-MICROPHONE BLIND AUDIO SOURCE SEPARATION USING EM-KALMAN
FILTERS AND SHORT+LONG TERM AR MODELING

Siouar Bensal, Antony Schutz, Dirk Slock
Eurecom Institute , 2229 route deséfas, B.P. 193,

06904 Sophia Antipolis Cedex, FRANCE
e-mai | : {si ouar. bensai d, ant ony. schut z, di rk. sl ock}@urecom fr

ABSTRACT one and which is mathematically formulated like
Bllnd sources sepgratlon (BSS) arises in a variety of fields v = Z Tt + e, @
in speech processing such as speech enhancement, speakers =

diarization and identification. Generally, methods for BSS e

consujer several observgtlons of the same recorc!mg. Sin- Thy = Z Qhom Thitn + Frs
gle microphone analysis is the worst underdetermined case,
but, it's also the more realistic one. In our approach, the au
toregressive structure (short term prediction) and thiogir
signature (long term prediction) of voiced speech signal ar ~ Wherey; is the scalar observatiom;. ; is the source: at
jointly modeled. The filters parameters are extracted usin§Met. ax,n is then'™ short term coefficient of the sourde
a combined version of the EM-Algorithm with the Rauch- While Z;, is the short term prediction errofy, is the long
Tung-Striebel optimal smoother while the fixed-lag Kalmanterm prediction coefficient of thé*" source, T} its period,

smoother algorithm is used for the initialization. which is not necessary an integer, afd.;} are Gaussian
mutually uncorrelated innovation sequences with variance

Ind_ex Terms— Blind sources e_xtraction, mono-microphonlent} is a white gaussian process with variande We aim
analysis, short+long term prediction, EM Algorithm. to seperate jointly these sources by estimating the shart an
long autoregressive (AR) coefficients of each one. We will
proceed like the following: first, estimate coarsly theeliéint
pitches by extending a classical approach of monopitch esti
mation to the multipitch case,then use the EM algorithm to

n=1

Tt = bp Thy—1), + €kt
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tion method (ACM) for pitch estimation, the method consists
in finding the first highest peak of the function. But when sev-
eral pitches are present, ACM is a bad estimator due to the fac
that all the periodicities present in the signal contribaiel
generates proper peak and interaction peak. For estimating
the different periodicity in the ACM we propose to estimate
the ratio of%QTT for a set of possible T (period) compared to

a threshold, where? is the autocorrelation function. In or-

. L der to achieve the second step (separation), we will derive a
we cor_13|der_the pmblem of estimating an unknovyn numbeétate—Space model formulatedpliﬁe fhe foIIov)ving
of multiple mixed Gaussian sources. We use a voice produc-
tion model that can be described by filtering an excitatign si Xpt = FeXpp—1 + Qpene, K = 1,--- ,c (2)
nal with short term prediction filter followed by a long term

Mobile Communication Department

2229 Route des @tes BP 193, 06904 Sophia Antipolis Cedex
France

Tel: +33 (0)4 93 00 81 98 - Fax: +33 (0)4 93 00 82 00

2. EXTENDED SUMMARY

Wherexm = [Sk(t) Sk(t—l) s Sk(t—pk) ‘ §k(t) §k(t—
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In our problem the data of interest dte= [p; --- p. o2 V3
_ ---v.]T wherev,, contains all the short and long term coeffi-

a’ivl Qk,2 k.pp O cients of the sourcg. A natural choice for the complete data
0 0 0 setX is the setX = [Xy,---,Xp, Ny, ,Ny]. The com-
Fiie = 0 L 0 0 plete data set and the incomplete data set are related in our
: : - : : case by the vectdr in the equatior(4). The EM Algorithm
0 0o .- 1 0 . ) is composed of 2 steps, the expectation step (E-step) where
- (i 1) e 1 \ye compute the following function
FE step :
[ 0 0 « bk (1 - a) bk 0
0 0 0 0 ;
Fiox = U9,6") = Epw {logp(X;0) | y} 6)
00 .. 0 0 and the maximization step where we maxim{ge
- (r +1) x (N) M step :
0O --- 0
Forx = 00t = argy U, 9(1)) (7)
0 -0 (N) x (px + 1) herei denote the iteration indice. In order to compuge),
we first evaluate the log-likelihood functidog p(X'; 6):
0 0 o bk (1 - Oz) bk O ¢
1 0 0 0 log p(X;0) = Y log p(Xk1,-++  Xknr) + log p(na, -+ nar)
k=1
Foo o = 01 - 0 0 c
Do ; ; = (logp(€k2,- - Xk | Xk,1) + log p(Xp,1) )
00 --- 1 0 k=1

(N) x (N)
+logp(n1,~-~ anM)
The N is chosen superior to the maximum value of pitches . _ ) _ _

Ty, in order to detect the long-term aspect. We concatenatgS"d the Gaussian assumption, we find, after some algebraic
the state equation (2) for = 1,---,c and introduce an manipulation

observation equation fdry; } to obtain the state space model
log p(X;0) =375y [ =5 (M + N +pr)log pr

Xt = Fx;1 + G 3 oy _
t ;]Tl . € §4; 72#[% (v{ ( Zi\iQ Xt X£t> Vi + trace {I‘kl Xk, 1 Xk, 1 } )
Yo = X¢ g ,
—%logai—i‘% ﬁl (yf—?yttht—i—thtxfh)

Wherex, = [x{,x3, --- xI,]T ande, = [e1 1 e2s - ecy]”. +K
The(> i_px +c+Nc) x (X5_, pr + ¢+ Ne) block di-
agonal matrixF is given byF = block diag(F4,--- ,F.). , " .
The(SC_, pi +c+ Ne) x e matrixG and(S"_ py+ e+ LTkl = LO" = S X, S,fu is a transformation matrix
Ne)x 1 column vectoh are given respectively I@ — block  Which extract the partial state; ; from the complete state

diag(gi,--- ,gc), andh = [h] ---hT]T where Xeoo Vi = [1 —arg = agp, —aby —(1—a) b,
h; = [10--- 0]T. The covariance matrice of the input vector K is a constant independent 6fandI';, is the normalized

e, is theex ¢ diagonal matrixQ =Cov(e;) =diag(p1, - - - , pe)- covariance matrix', = ,0,;1 Cov(xy,1).After applying the
This State-Space model will be used in the EM algorithmZec {- | ¥ } operator we deduce that
The Expectation Maximization algorithm is a general iteeat
method to compute ML estimates when the observed data caw/(9,0%) = >>7_, [ — 1
be regarded as “incomplete” and the incomplete data setcan VT T M N0 (X(i) )T N
be related to some complete data set through a noninvertible 2o« k Kk t=2 k,t|M k,t| M
transformation. Let the vector of observatigrse the incom- [=10) ) S v { -1 (A(i
, Vi + trace T )

plete data set which has probability dengity; 6). The ML ’“'é”)] N o § f’”M M
estimate off is obtained by maximizing the log-likelihood  + Pk,llM) } ) } — 4 log oy, — 352 2ut=1 (v
function Toli) T (o (¢ )T (i)

—2yh s, 0T (K, (), )+ P ) 4K

Orvr = arg max log p(y;0) ) (8)

Where)v(m = [Sk (t, 6) ce Sk (tfpk, 9) S (t, LTkJ R 9) S (t,

(M + N + py) log py

) ()A((i) )T



Whereféffw = B {X: |y} a”df(;(:,)ﬂM = Egoy {Xks |y}

denote the smoothed conditional me QM = Covgy (X¢ 1Y)

and Pz(;,ZqM = Covgw (Xg. |Y ) are the smoothed condi-
tional covariance matrices. These quantities are cakxliat

the E-step using the Rauch-Tung-Striebel optimal smoother
like described below

Set)A(l‘o =0
Set Pyjg = block diag(p1 Ty, -+, plc)
Fort=1toM do
K= Pt|t71h(hTPt|t71h +on)!
Xije = )A(tltA—l + Ky, — hT)A(t\t—l)
)A(t+1|t = Fxt\t

. LT
Pii1p = FPyF +GQGT
Fort=Mtoldo

~T
A, =Py F Ptjl‘t

Xejnr = Xepe + Ae(Req1jnr — ﬁﬁt\t)
P = Py + At(Peyrnr — Pt+1|t)A?

The maximization of(8) during the M-Step is trivial. Set-
ting the partial derivative with respect i, - - , p., o2 to
zero yields to the new estimates of this variables. To esti-
mate the vectors;, we use the fact thag, , = XZJV/@, by
multiplying on the left withx, , and applying the operator
Ey {. | y} we will obtain

. . T

St ( i (Xz(;)ﬂM (X%M) +
Pl(;,)tw[ ) ) SV =1[pr0 - pp 0o - 0"

where the secong; is the (px, + 2)*"* componentF de-
pends of the parameters of the problem, therefore, it shaaild
computed in each iteration in order to be used in the Kalman
algorithm (hence its estimatg). Converging to pretty good
values of parameters requires a good initialization. Tioeee
here we will proceed to a first sweep where we use the fixed-
lag Kalman smoothing algorithm. The obtained values will be
used as initializations to the the Rauch-Tung-Striebahugt
smoother algorithm described above and that will be runned
several times till convergence.



