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Abstract—Cooperative relay communication in a fading channel
environment under the orthogonal amplify-and-forward (OAF),
nonorthogonal and orthogonal selection decode-and-forward
(NSDF and OSDF) protocols is considered here. The diver-
sity–multiplexing gain tradeoff (DMT) of the three protocols is
determined and DMT-optimal distributed space–time (ST) code
constructions are provided. The codes constructed are sphere
decodable and in some instances incur minimum possible delay.

Included in our results is the perhaps surprising finding that the
orthogonal and the nonorthogonal amplify-and-forward (NAF)
protocols have identical DMT when the time durations of the
broadcast and cooperative phases are optimally chosen to suit the
respective protocol. Moreover our code construction for the OAF
protocol incurs less delay.

Two variants of the NSDF protocol are considered: fixed-NSDF
and variable-NSDF protocol. In the variable-NSDF protocol, the
fraction of time occupied by the broadcast phase is allowed to vary
with multiplexing gain. The variable-NSDF protocol is shown to
improve on the DMT of the best previously known static protocol
when the number of relays is greater than two. Also included is a
DMT optimal code construction for the NAF protocol.

Index Terms—Cooperative diversity, cyclic division algebra
codes, distributed space–time (ST) code, diversity–multiplexing
gain tradeoff (DMT), nonorthogonal amplify-and-forward (NAF),
orthogonal amplify-and-forward(OAF), selection decode-and-for-
ward, ST codes.
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Fig. 1. Cooperative relaying in networks.

I. INTRODUCTION

C OOPERATIVE relay communication is a promising
means of wireless communication in which cooperation

is used to create a virtual transmit array between the source and
the destination, thereby providing spatial diversity for com-
bating the fading channel. Such cooperative communication is
under consideration for example, by the IEEE 802.16j Relay
Task Group, see [12], [26].

Consider a two-hop relay network as shown in Fig. 1, in
which there are nodes that cooperate in the communication
between source node and destination node . The remaining

nodes thus act as relays.

A. Assumptions

We follow the literature in making the assumptions listed
below concerning the channel. Our description is in terms of
the equivalent, complex-baseband, discrete-time channel.

• All nodes have a single transmit and single receive antenna
and are assumed to transmit synchronously.

• The channel uses over which communication relating
to a single message vector takes place is short enough
to invoke the quasi-static assumption, i.e., the channel
fading coefficients are fixed for the duration of
the communication, but vary randomly from one block
of channel uses to the next. Here, denotes the
fading coefficient of the channel between and , and

represent fading coefficients of the
channels between and the relay nodes , and chan-
nels between the and , respectively (see Fig. 1).

• All channels are assumed to be Rayleigh fading i.e., all
fade coefficients are independent and identically dis-
tributed (i.i.d.), circularly symmetric complex Gaussian

random variables.
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• We assume half-duplex operation at each node, i.e., at any
given instant a node can either transmit or receive, but not
do both.

• The additive-noise variables at the receivers are assumed
to be i.i.d., circularly symmetric, complex Gaussian,

distributed.
• The destination is assumed to know all fading coeffi-

cients in the case of amplify-and-forward (AF) protocols
but needs to know only the source–destination and
relay–destination channel-fading coefficients in the case
of decode-and-forward (DF) protocols. We assume that a
relay knows only the corresponding source–relay channel
fading coefficient, i.e., relay will know only in
the case of DF protocols. However, in the case of AF
protocols, it is not necessary for the relays to know any of
the channel-fading coefficients.

B. Protocols

Several cooperative communication protocols are studied
in this paper. All protocols considered here involve two-phase
communication, where during the first phase lasting for
channel uses, the source broadcasts to the relays and the des-
tination. In the second cooperation phase lasting for channel
uses, the relays and (or) the source communicate with the
destination. In all the protocols, one channel use corresponds
to one use of the two-hop network. A protocol is said to be
either nonorthogonal or orthogonal depending upon whether
the source continues to transmit (to the destination) in the
cooperation phase or otherwise. It is said to be a DF or AF
protocol depending upon whether the relays decode or amplify
the received signal, prior to forwarding it.

Within the class of DF protocols, one distinguishes between
fixed decode-and-forward (FDF) and selection decode-and-for-
ward (SDF) protocols. Under an SDF protocol, a relay
participates in the cooperation phase only if its measurements
of the corresponding source–relay channel fading coefficient

reveal the particular source–channel link to lie outside
the outage region. In FDF, a relay always decodes. Both
the FDF and SDF protocols are static protocols, where the
time for which relay participates in the cooperation does not
depend on the source–relay channel strength. There is also
the class of dynamic protocols which includes the dynamic
decode-and-forward protocol (DDF) as well as the enhanced
dynamic decode-and-forward protocol (E-DDF) or the partial
dynamic decode-and-forward protocol (PDDF). In a dynamic
protocol, the relay listens to the source as long as it is necessary
to ensure that it is not in outage. Under the DDF protocol,
the relay is required to decode the complete source message
before it takes part in the cooperation phase, whereas under the
E-DDF (PDDF) protocol the relay is required to decode only a
part of the source message. We will use OAF, OSDF to refer to
orthogonal AF and SDF protocols while NAF and NSDF are the
labels applied to nonorthogonal versions of the corresponding
protocols. Other protocols such as compress-and-forward [22],
incremental AF [5], and quantize-and-map [13] are not consid-
ered here.

C. Channel Model

The combination of physical wireless channel depicted in
Fig. 1 and a cooperative-communication protocol results in
an equivalent point-to-point multiple-input multiple-output
(MIMO) channel which we shall refer to as the induced MIMO
channel. The number of transmit and receive antennas in this
induced MIMO model is a function of the parameters of the
particular protocol. As we shall see, the induced channel model
is of the form

(1)

where corresponds to the signal at the destination, is the
induced channel matrix, is the vector transmitted by the
source in the case of an AF protocol, and is the compound
vector formed by concatenating the transmissions of the source
and the participating relays in the case of DF protocols and
where is the noise vector observed at the destination. In a
two-phase protocol, the induced channel model represents the
relation between the signal transmitted by the source and the
relays, and the signal received at the destination at the end of
the two phases (broadcast phase of duration channel uses and
cooperation phase of duration channel uses) of the protocol.
As a result, the vector is of size , where .
As we shall see later, the entries of the induced channel matrix

may not be Rayleigh. In the case of DF protocols, even the
structure of the induced channel matrix depends on the number
of relays participating in the cooperation phase.

D. Diversity–Multiplexing Gain Tradeoff (DMT)

The diversity–multiplexing gain tradeoff (DMT) was intro-
duced by Zheng and Tse in [23] as a means of assessing the
capabilities of point-to-point MIMO channels. Given a two-hop
network operating under a particular protocol, one can apply this
theory to the associated induced MIMO-channel model given in
(1). By this means, the DMT can be used to evaluate and com-
pare various proposed protocols for the two-hop network. We
shall now describe the DMT of the induced channel associated
with a particular protocol for the two-hop network.

Let be the average signal-to-noise ratio (SNR) of any link
in the network. Let be a family of distributed codes
indexed by , each one of block length , under a particular
protocol . Let be the average rate of the code ,
in bits per channel use (network use). The rate of the code is
allowed to vary with as

(2)

where is called the multiplexing gain of the coding scheme
. The network is said to be in outage for a fixed SNR

, under a particular protocol, if the induced channel of that
protocol is unable to support communication at a rate
bits per channel use.

a) Outage of the network under a particular protocol: As
mentioned earlier, the combination of two-hop network and pro-
tocol give rise to an induced channel model. Since we fix the
network and consider various protocols here, we will associate
the induced channel with the corresponding protocol. We will
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denote a protocol as . The probability of outage of the pro-
tocol is then defined as

(3)
where denotes the mutual information. We have imposed
an average energy constraint on the transmitted signal by
upper-bounding the trace of its covariance matrix . The nota-
tion means is a positive-semidefinite Hermitian ma-
trix. In general, if and are matrices, then
indicates that is a positive-semidefinite Hermi-
tian matrix.

The outage exponent of the two-hop network, op-
erating under protocol is defined as

(4)

The outage exponent of the two-hop network is then defined as
the supremum of the outage exponents taken over all possible
protocols.

b) DMT of the network under a particular protocol: A
coding scheme for the induced channel in (1) is said
to achieve multiplexing gain and diversity gain if

(5)

(6)

where is the average error probability of the code
under maximum-likelihood decoding and under the

protocol . In a slight abuse of terminology, we will simply
write code in place of coding scheme. We shall also refer to

as the SNR exponent of the code . The optimal
DMT of the two-hop network operating under the protocol ,
denoted as , is defined as the supremum of taken
over all possible codes i.e.,

(7)

It can be shown from an application of Fano’s inequality (see
[23]) that for any code

(8)

For all the protocols proposed in this paper, we identify explicit
codes which satisfy the above bound with equality, i.e., codes
whose SNR exponent equals the outage exponent of the two-hop
network under the particular protocol . As a result, the outage
exponent will coincide with the DMT of the
two-hop network operating under the protocol . We shall also
drop the subscript henceforth and refer to the DMT of a pro-
tocol as and the SNR exponent of a code as since
the protocol under consideration will be clear from the context.
The code which achieves the bound in (8) is known as the DMT
optimal code for that particular protocol.

c) Upper-bound on the DMT of the network: We first state
two definitions before discussing the upper bound on the DMT
of the network.

The DMT of the network is defined as the supremum
of the outage exponents taken over all possible protocols and
codes, i.e.,

(9)

The outage exponent of a matrix of size is defined
as the outage exponent of the associated channel ,
where is an vector, is an vector, and is an

vector distributed as .
The cut-set bound developed for general multiterminal net-

works [24] can be used to obtain an upper bound on the DMT
of any network (see [22]). The nodes in a network can be parti-
tioned into two sets , such that the source belongs to
and the destination belongs to . Such a partition is termed as
a cut. We shall denote a cut by and let be the set of
all such cuts.

Let and be the signals transmitted by the nodes in
and , respectively, and be the signals received by the

nodes in . Let be the channel matrix consisting of all the
fading coefficients of the network. The event that the cut is in
outage is defined as

(10)

and the probability of outage of the cut is given by

(11)

where is the probability distribution of the transmitted
signals. The outage exponent is then defined as

(12)

Then, for any coding scheme , under any particular pro-
tocol , it can be shown using Fano’s inequality and the cut-set
bound for the general multiterminal networks that

(13)

Since the above bound is true for every cut , we get

(14)

Each cut has an associated channel matrix , which is the
channel matrix between the nodes on the source and the des-
tination sides of the cut. It can be shown that is the
outage exponent of the channel matrix . Now from the defi-
nition of DMT of the network and (14) we get

(15)

(16)

where is known as the cut-set bound.
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Fig. 2. Dominating cut in the two-hop network.

In the case of the two-hop network considered here, the dom-
inating cut turns out to be the one in which the source and all
the relays are on one side of the cut and the destination alone is
on the other side of the cut (see Fig. 2). Thus, for the two-hop
network the cut-set bound is given by

(17)

where is the total number of relays. The cut-set bound
of the two-hop network is also referred to in the literature as
the transmit diversity bound. Construction of protocols whose
DMT equals remains to be an open problem when
the number of relays is greater than one.

We use the symbol to denote exponential equality, i.e., the
expression

(18)

is denoted as and , are similarly defined.

E. Prior Work

The idea of obtaining spatial diversity through the coopera-
tion of mobile users was first proposed in [16], [17] while the
quasi-static setting adopted in this paper is drawn from [5]. The
SDF and incremental AF protocols are introduced in [5], where
the focus is on the case of a single relay. The DMT of the OAF,
FDF, SDF, and incremental AF protocols is determined there for
the single-relay case when the two phases of the protocols are
of equal duration.

In [10], the authors expand their attention to the network as a
whole. They consider a wireless network with cooperating ter-
minals , with each terminal having
an interest in communicating to a corresponding destination ter-
minal . The communication between source and
destination , with the remaining terminals in acting
as potential relays, is envisaged to take place over a collection
of orthogonal channels (for, e.g., orthogonal in frequency), one
channel per source terminal in . The focus in [10] is on OSDF
protocols. A terminal in will decode the source mes-
sage only if the corresponding source–terminal channel is not

in outage and will then proceed to relay the signal to the des-
tination. Two variations of the OSDF protocol are considered,
labeled as repetition and space–time (ST) coded OSDF proto-
cols, respectively. Under the repetition-code-based OSDF pro-
tocol, each relay node is assigned a distinct time slot in which it
repeats the decoded message to the destination. In the ST coded
version, all relays are permitted to transmit simultaneously and
are permitted to re-encode the message using independent code-
books. The DMT of the repetition-based OSDF protocol is de-
termined as are bounds on the DMT of the ST-coded version of
the protocol.

In [1], Azarian et al. analyze the class of NAF protocols, in-
troduced earlier by Nabar et al. [11]. The authors show that
these NAF protocols have improved performance in compar-
ison with either the OAF protocol presented in [5] or the class of
OSDF protocols considered in [10]. The authors also introduce
the DDF protocol, where the relay listens to the source as long
as it is necessary to ensure that it is not in outage. They compute
the DMT of DDF protocol and show that the DMT achieves the
cut-set bound, , for multiplexing gains , where

is the total number of relays. The authors also consider
protocols for the cooperative broadcast and cooperative mul-
tiple-access channels and determine the corresponding DMT.

Prasad and Varanasi [14], consider improved versions of the
DF protocol, namely, enhanced static decode-and-forward pro-
tocol (E-SDF) and enhanced dynamic decode-and-forward pro-
tocol (E-DDF). The DMT analysis here is carried out for the
case of a single relay. In both the protocols, the source message
is split into two parts and the time durations of the first and the
second phases are fixed. The source broadcasts the first and the
second part of the message, in the first and the second phases,
respectively. In the E-SDF protocol, at the end of the first phase,
if the relay decodes the first part of the message, it will re-en-
code the message and transmit it, otherwise it remains silent. In
the E-DDF protocol, the relay waits until it is able to decode the
first part of the message and then participates in the cooperation.
The E-DDF protocol achieves the transmit diversity bound for

and performs better than DDF for .
Avestimehr and Tse [3] also consider an improved version

of the DDF protocol, namely, the PDDF. The PDDF and the
E-DDF protocol described above are similar in nature and share
the same DMT.

Jing and Hassibi [9] consider an OAF protocol in which relay
nodes are permitted to apply a linear transformation to the re-
ceived signal. The two-hop relay network considered here does
not have a direct link between the source and the destination.
The authors restrict attention to the case where both the source
and the relays transmit for equal-time durations and the linear
transformations applied by the relays are unitary. Performance
is measured in terms of pairwise error probability. Subsequent
work on this protocol, including the construction of distributed
ST codes with lesser decoding complexity, can be found in [15].
DMT-optimal codes for the NAF protocol are constructed in
[20]. In [21], the same authors consider a new class of NAF
protocols called slotted amplify-and-forward (SAF) protocols,
and show that these improve upon the performance of the NAF
protocol of [1] for the case of two relays. The authors also pro-
vide an upper bound to the DMT of the SAF protocol when the
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TABLE I
DMT OF VARIOUS AMPLIFY-AND-FORWARD PROTOCOLS

There is no known construction of explicit DMT optimal code for E-SDF protocol.

number of slots is finite. This upper bound tends towards the
cut-set bound as the number of slots increases. Under the as-
sumption of relay isolation, the naive SAF scheme proposed in
[21] achieves the SAF-protocol upper bound for any number of
slots. A general means of constructing DMT-optimal codes can
be found here, although the codes so constructed are not nec-
essarily of minimum delay. A key distinction between the SAF
and NAF protocols is that whereas the NAF protocol permits re-
lays to only forward signals received by them during the period
when no other relay is transmitting, the SAF protocol does not
place such a restriction.

Yuksel and Erkip [22] have considered the DMT of DF and
compress-and-forward (CF) protocols for both full-duplex and
half-duplex relays. For the case of single full-duplex relay, when
all the terminals (source, relay, and destination) have one an-
tenna each, the DF protocol is shown to achieve .
However, when all the terminals have multiple antennas, the DF
protocol fails to achieve whereas the CF protocol is
shown to achieve it. The CF protocol makes the added assump-
tion that all the fading coefficients are known at the relay. They
also show that for a single half-duplex relay, with all terminals
having multiple antennas, the CF protocol achieves the cut-set
bound. The multiple-access relay channel (MARC), where there
are multiple sources, one destination, and one relay, is studied
in this paper. For the single-antenna half-duplex MARC, the au-
thors compute the DMT of the CF protocol, and show that it is
optimal for a range of multiplexing gains.

Recently, Pawar et al. [13] propose a protocol which uses the
quantize-and-map scheme of [2]. Under this protocol, the source
continuously transmits to the destination. In the case of a single
relay, the relay listens to the source for half the channel uses,
then quantizes the received signal at the noise level, re-encodes
the quantized signal, and transmits it to the destination for the

remaining channel uses. It is shown that this protocol achieves
for the case of a single relay. The authors also gener-

alize the protocol to the case of arbitrary number of relays and
show that the generalized protocol achieves under
the assumption of relay isolation.

F. Results

Our results relate to cooperative relay communication under
the orthogonal OAF, OSDF, and NSDF protocols. Our proto-
cols differ from those considered by other researchers in that,
we permit the time durations , of the respective broadcast
and cooperation phases to be chosen optimally. Moreover, we
permit the parameters and to vary with the multiplexing gain

to improve the DMT performance.
We determine the DMT of the OAF, NSDF, and OSDF pro-

tocols. For all three protocols, we construct codes that are DMT
optimal. Code construction draws from elementary number
theory as well as from the theory of cyclic division algebras,
see [4], [6], [7], [18].

We have listed various AF and DF cooperative communica-
tion protocols proposed in the literature along with the corre-
sponding DMT in Tables I and II. For the purpose of compar-
ison, we have also listed the DMT of the protocols proposed in
this paper.

1) Orthogonal Amplify and Forward: As mentioned earlier,
this protocol was introduced by Laneman et al. [5], who analyze
this protocol for the case of a single relay. As the name suggests,
under this two-phase protocol, the source broadcasts a signal to
relay and destination, in the first phase. This is then followed by
a relaying phase, wherein the relay amplifies and forwards the
signals received by it to the destination.

Our version of the protocol is slightly more general than that
in [5] since we permit the relays to operate on the received signal
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TABLE II
DMT OF VARIOUS DECODE-AND-FORWARD PROTOCOLS WITH � � � RELAYS

However, transmitting uncoded QAM can achieve the DMT of the protocol which results in a delay of two channel uses.

using a linear transformation1 and we allow the source and the
relays to transmit for unequal time slots. For this more general
version of the protocol, we are able to determine the best pos-
sible DMT as well as construct, in a simple way, DMT optimal
codes that incur minimum delay.

Included in our results, is the perhaps surprising finding that
the DMT of the OAF protocol is identical to the DMT of the
NAF protocol. If and are the time durations of the broadcast
and cooperative phases, respectively, then the best OAF perfor-
mance results when the ratio is chosen to equal , where

is the number of relays. We also show how one can con-
struct an ST code that is DMT optimal for the OAF protocol and
incurs a total delay of channel uses as compared to the
delay of incurred by the DMT optimal code for the
NAF protocol having smallest known delay [20].

2) Selection Decode and Forward: This class of protocols
was introduced by Laneman and Wornell [10]. This is also a
two-phase protocol, with both phases being of equal time dura-
tion. In the first phase, the source broadcasts a message to the

1In this sense, a more appropriate term for this protocol we consider here
might be “linearly transform and forward.” However, following Jing and Hassibi
[9] we shall regard this protocol as falling under the category of AF protocols.

destination and the relays. In the second phase, all the relays
that are not in outage, independently decode the source mes-
sage, re-encode it, and then transmit it to the destination, while
the source remains silent. In the present paper, we permit the
time durations of broadcast and cooperative phases denoted by

and , respectively, to be unequal.
We consider two versions of this protocol in the present paper:
• Nonorthogonal Selection Decode and Forward (NSDF):

In this version of the protocol, the source continues to
transmit during the second phase. At this point, it is conve-
nient to distinguish between two variants of this protocol.
— Variable-NSDF: In this variant, in order to obtain the

best DMT possible, we allow and to vary with the
multiplexing gain . Note that since, and are not a
function of the channel fading coefficients, this protocol
falls within the category of static protocols.
• The variable-NSDF protocol is shown to improve on

the DMT of the best previously known static protocol
when the number of relays is greater than two. In the
case of single relay, the variable NSDF protocol has
better DMT compared to the E-SDF protocol [14], for

.
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Fig. 3. Optimal DMT for single-relay cooperative communication protocols.

Fig. 4. Optimal DMT for two-relay cooperative communication protocols.

• The DMT of the variable-NSDF protocol for the case
of two relays is better than the tradeoff of the SAF
protocol [21] for (see Fig. 4).

— Fixed-NSDF: Here and are fixed and independent
of . The DMT for this variant of the NSDF protocol is
determined here for every pair with .
• For values of the ratio in the range

, the fixed-NSDF protocol dominates the NAF
protocol for multiplexing gains , lying in the range

, beyond which they both have the same
DMT.

• Orthogonal Selection Decode and Forward (OSDF):
In this protocol, the source remains silent in the second
phase. As in the case of the NSDF protocol, there are two
variants of this protocol, fixed and variable. Under the vari-

able-OSDF protocol, we allow and to vary with in
order to compute the best DMT. We determine the DMT
for both the fixed and variable-OSDF protocols.
The DMT of the variable-OSDF protocol, for the case of
two relays, improves on the tradeoff of the SAF protocol
[21] for . The DMT of the variable-NSDF protocol
is, however, better than the DMT of the variable-OSDF
protocol for all and any number of relays.

For both NSDF and OSDF protocols we construct simply de-
scribable codes based on cyclic division algebras.

All the OAF, NSDF, and OSDF protocols considered in this
paper are static protocols. In Figs. 3 and 4, we show the optimal
DMT of the OAF, NSDF, and OSDF protocols for the case of
one and two relays, respectively. Fig. 5 shows the optimal DMT
of all the DF protocols, for the case of single relay. In the figures,
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Fig. 5. Optimal DMT for single relay DF protocols.

we also show the DMT of the NAF and SAF protocols for the
purpose of comparison. Note that the NAF and SAF protocols
have the same DMT in the case of a single relay.

As our final result, we present a code that achieves the DMT
of the NAF protocol considered by Azarian et al. [1]. This con-
struction was first presented in [8].

G. Organization of the Paper

In Section II, we discuss the class of OAF protocols and com-
pute their DMT. Section III contains the description and DMT
analysis of the NSDF protocols. We present the DMT of the
OSDF protocols in Section IV. We also provide explicit con-
structions of DMT optimal codes for the OAF, NSDF, and OSDF
protocols, based on elementary number theory and cyclic divi-
sion algebras, in the corresponding sections. Also, a code con-
struction which is DMT optimal for the NAF protocol is given
in Section V. In Section VI, we present the numerical results on
the outage probabilities of the proposed protocols and also the
performance of the explicit code proposed for the OAF protocol.
Finally, we give concluding remarks in Section VII.

Notation: The norm of a vector and the Frobenius norm of a
matrix are denoted by and , respectively. The symbol

denotes the determinant of a matrix as well as the modulus
of a complex scalar.

II. THE ORTHOGONAL AMPLIFY AND FORWARD PROTOCOL

Under this protocol, the source transmits a signal to the re-
lays and to the destination for channel uses. Over the
next channel uses, each relay applies a linear transforma-
tion to the received signal and simultaneously transmits it to
the destination, while the source remains silent. Tha main aim
of this section is to prove the following theorem.

Theorem 1: The DMT of the OAF protocol when the number
of relays is is given by

.
(19)

Remark: The DMT of the OAF protocol is obtained by
choosing when and when

. The case corresponds to noncooperation,

i.e., the source continuously transmits to the destination while
the relays remain silent. While this choice of parameters
is the outcome of an optimization procedure we now provide
a heuristic explanation as to why noncooperation wins over
cooperation for .

Consider the noncooperation case when the rate and
the relays transmit to the destination for a fraction of channel
uses where . If , the source–destination link
will be in outage with probability . If , i.e., , then
it can be shown that the multiple-input single-output (MISO)
channel linking the relays to the sink will be in outage for
any . On the other hand, any channel uses allocated to the
relay–destination link represent channel uses taken away from
the source–destination link. It is not surprising therefore that
noncooperation wins over cooperation in the regime .

Outline of Proof of Theorem 1: The proof will proceed as
follows.

• The theorem considers a class of OAF protocols where
each protocol corresponds to a distinct choice of the pa-
rameters and relay matrices . For every such
protocol we identify its induced channel matrix.

• We then in Lemma 3 obtain an upper bound to the outage
exponent of each protocol that belongs to this class.
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The upper bound depends only on the parameters and
not on the relay matrices . We show that the choice

for and for , achieves
the largest upper bound among the class of all OAF proto-
cols. This largest upper bound equals given by The-
orem 1.

• An interesting feature of the outage analysis presented
here is that it results in a suggested specific protocol that
achieves the largest upper bound on the outage exponent
for . This specific protocol is then identified and its
outage exponent is computed in Lemma 4. The outage ex-
ponent of this specific protocol along with noncooperation
for , is referred to as the outage exponent of
the OAF protocol. This is summarized in Lemma 5.

• The proof is completed by identifying a code whose SNR
exponent equals the outage exponent of the
OAF protocol, thereby establishing the DMT given
in the statement of the theorem.

A. OAF Channel Model

Based on the above signaling protocol, we have the following
model for the received signal:

(20)

(21)

(22)

where
• is the signal vector;
• is the vector received at the destination;
• is the signal received by the th relay;
• are matrices that represent the linear trans-

formation taking place at the relay nodes;
• and are the various channel fading coefficients;
• and the vectors and represent the addi-

tive noise seen by the receivers located at the relay nodes
and destination respectively.

1) Induced Channel Model: The received signal can be
written as

(23)

where

(24)

and2

(25)

2Strictly speaking, the channel matrix � notation should have indicated a
dependence on the protocol parameters ��� �� �� ��, but we have suppressed
this for notational simplicity.

This represents the induced MIMO channel model for the
OAF protocol. The covariance matrices of noise and signal
vector are given, respectively, by

(26)

and
(27)

where denote the variances of the corresponding noise
vectors variables. We have assumed that the variance of the
noise added at the destination in the first and the second phase
of the protocol to be the same, i.e., . We im-
pose the energy constraint

(28)

where denotes the average energy available for transmission
of a source symbol. We define

(29)

as the average received SNR at the destination. We assume the
ratio of the noise variances and to be a constant inde-
pendent of . The average energy of the signal transmitted by
the th relay is bounded above (from (28)) by

(30)

where is the squared Frobenius norm of the relay matrices
, i.e.,

(31)

If we impose the constraint that the average energy transmitted
by a relay satisfy

(32)

i.e.,

(33)

then this constraint can be met with probability one by choosing
to be a suitably large constant.

B. Upper Bounds on the Outage Exponent of OAF Protocols

We first state a useful lemma concerning nonnegative definite
matrices.

Lemma 2: Let be as defined above. Let

(34)
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Then

(35)

where
Proof: Please see Appendix A.

Next, we establish upper bounds on the outage exponent of
OAF protocols.

Lemma 3 (Upper-bounds on outage exponent of OAF pro-
tocols): Consider the collection of OAF protocols described
above where each protocol corresponds to a distinct choice of
parameters , , and relay matrices as men-
tioned earlier. Then, for any choice of the transformation ma-
trices , the outage exponent of the corresponding protocol
satisfies the upper bounds given below.

If , then

.
(36)

If

.

(37)

For , the least restrictive upper bound results from
choosing . For , the least restrictive
upper bound results from choosing . These statements
taken together lead to the following upper bound on the outage
exponent:

(38)

Proof: We shall use the induced MIMO channel model (23)
to find the upper bound on the outage exponent. The probability
of outage, for the channel in (23), is given by

(39)
where is the mutual information between and

, conditioned on the knowledge of at the receiver. The input
distribution can be assumed to be circularly symmetric Gaussian
with covariance matrix , without loss of optimality. Then the
mutual information is given by

(40)

Substituting the above expression in (39) we get

(41)

Since our interest is only in the outage exponent

(42)

by arguing as in [23], we can show that insofar as computation
of is concerned we may replace by . As a result
we have

(43)
Whenever such situations are encountered in the sequel, we
shall simply say that in the scale of interest we may replace
by . Let

(44)

so that we have

(45)

Since is the negative exponent of , to ob-
tain an upper bound on we upper-bound the determinant
of . Substituting for (see (24)) and (see (26)) in (44) we
get

(46)

where , , and is as

defined in Lemma 2. Using the relation we get

(47)

Upon row reduction of , we obtain

(48)

In order to upper-bound the determinant of we upper-bound
each of the determinants in the above expression. The matrix

is positive–definite, with all the eigenvalues greater than or
equal to due to the fact that

(49)

is nonnegative–definite. Hence, we get

(50)

or

(51)

Also

(52)

By applying Lemma 2, we have
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(53)

Substituting (51) and (53) in (48), we get

(54)

Since , , , and are constants, in the scale of in-
terest we get

(55)

As in [1], we define

(56)

For , let us set

(57)

(58)

and

(59)

This gives us

(60)

Substituting the above expression in (45) we have

(61)

where the integration is computed over the region

(62)

By applying Varadhan’s lemma [25] we have

(63)

where the infimum is computed over the region

(64)

It is clear that it is enough to consider . Hereafter, we
will consider and to lie in the range and

. Therefore, we can set to be in the solution of the
above optimization problem to get

(65)

By solving the above optimization problem, we get the state-
ment of the lemma. Please see Appendix B for the details.

C. Specific Protocol Achieving the Outage Exponent Upper
Bound

Within the class of OAF protocols, there are different proto-
cols corresponding to various choices of , , and . As
seen in Section II-C, for a given number of relays, the
upper bound on is maximized when . In
deriving an upper bound on the outage exponent of OAF proto-
cols we used the inequality

(66)

Equality will occur in (66) if

for all (67)

i.e., if the row spaces of the matrices are pairwise or-
thogonal. The arguments presented above serve as a motivation
for the particular choice of the matrices outlined next.
With this specific choice of , satisfying the constraints in
(67), we can achieve the upper bound on the outage exponent
given in Lemma 3.

Lemma 4: Consider a specific OAF protocol, as described
above, with parameters and . Choose the

matrices as follows:

elsewhere
(68)

i.e., the th entry of is equal to and all remaining
entries are . The outage exponent of this specific protocol is
given by

(69)

Proof: With the above choice of we get

. . . (70)

By substituting for in (48), and setting and
, we get

. . .
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(71)

As in Lemma 3, the outage probability is given by

(72)

Without loss of optimality, we can consider and to lie in
the range . Then we have

(73)

By solving the optimization problem, we get

(74)

The outage exponent of this protocol is equal to the largest
upper bound of the class of OAF protocols for . Now when
the source transmits continuously to the destination, with no
relay participating we obtain an outage exponent of , which
achieves the largest upper bound of the class of OAF protocols
for (see Lemma 3, equation (38)). The combination of the
specific protocol discussed above along with noncooperation for

, is hereafter referred to as the OAF protocol. Thus, we
have the following lemma.

Lemma 5: The outage exponent of the OAF protocol is given
by

.
(75)

Since , the smallest value of delay parameter
satisfying the condition corresponds

to the choice . Hence, the above protocol
has minimum possible delay required to achieve the best outage
exponent.

Example 1: Let the number of relays be two. Therefore,
. We choose , and

(76)

For these parameters, the outage exponent of the OAF protocol
is

.
(77)

and is shown in Fig. 4.

Fig. 6. OAF protocol with � � � relays.

Fig. 6 shows the frame structure of the optimal OAF protocol
described above for the case of relays. The structure of the
matrix selected gives rise to the following sequence of trans-
missions. The source transmits a signal for the first channel
uses. In the channel use, relay
transmits the signal it received from the source in the th
channel use.

Proof of Theorem 1: In the previous subsection we com-
puted the outage exponent of the OAF protocol (see
Lemma 5). We now provide an explicit construction of a DMT
optimal code for the OAF protocol, i.e., a code whose SNR
exponent equals the outage exponent given by
Lemma 5.

D. DMT Optimal Code for the OAF Protocol

The code construction is based on elementary number theory.
Since any protocol is identified by its induced channel, it is
enough to construct a code which achieves the outage exponent
of the induced channel. The induced channel model for the OAF
protocol is given by

(78)

where

(79)

and is the codeword vector transmitted by the source,
is the received vector at the destination, and is the noise

vector which is not white. is a scalar chosen to ensure that

(80)

Remark: Typically, the use of a DMT-optimal code results in
time expansion, i.e., the vector in

(81)

is replaced by a code matrix associated with the equa-
tion

(82)

However, it turns out that in the case of OAF protocol consid-
ered here, no time expansion is necessary, i.e., it is possible to
construct a DMT optimal code whose time expansion parameter

equals one.
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Fig. 7. Structure of field extension.

Now if there are relays, the best OAF protocol is ob-
tained by choosing and the matrices as
given by Lemma 4. The induced channel model then becomes

...
. . .

(83)

where is the vector transmitted by the source
and is the received vector of length . It can be
shown that without loss of optimality, the noise vector can be
assumed to be white in the scale of interest. We now drop the
symbols of the received vector (which can only worsen
the performance of the code) and work with the following row
deleted induced channel matrix:

. . .
(84)

It can be shown that in the scale of interest the channel is
equivalent to a parallel channel and hence it is sufficient to con-
struct a code which achieves the outage exponent of a parallel
channel.

a) Code Construction: Let be a degree- cyclic Galois
extension field of , where .

is the set of all rational numbers. Let be the generator of the
cyclic Galois group . Let and denote the ring
of algebraic integers in and , respectively. It is known that

. Let be an integral basis for
(see Fig. 7).

For even, let denote the -QAM constellation
given by

odd (85)

and

(86)

Now, the code vector is given by

where (87)

Interpreting the above code for OAF protocol, the source trans-
mits the signal in the first channel uses. In the next

channel uses relay , transmits a distinct
symbol received from the source in the th channel use, such
that no two relays transmit simultaneously (see Fig. 6).

Lemma 6: The SNR exponent of the above code for the OAF
protocol is

(88)

where is the multiplexing gain of the code.
Proof: We show that the chosen code is an optimal code

for the parallel channel since the induced channel model for the
OAF protocol is equivalent to a parallel channel in the scale
of interest. Let be the target data rate of the
induced parallel channel. To support a data rate we need

. The energy requirement forces . Now,
the product of the squared norms of the normalized difference
code matrices (obtained by scaling the code vectors with ) is
given by

(89)

Therefore, from [19, Theorem 5.1], the code is DMT optimal for
the parallel channel, i.e, the SNR exponent of the code equals
the outage exponent of the parallel channel. It can be shown that
the outage exponent of the parallel channel is (see [19])

(90)

Now since one use of the induced parallel channel corresponds
to uses of the two-hop network, we have

. By substituting for in (90), we obtain a lower bound on
the of the code for the OAF protocol. The lower bound
occurs because dropping some symbols from the received vector
could conceivably increase the probability of error. Therefore

(91)

The above bound equals the of the OAF protocol for
. For , the source will transmit continuously to

the destination and the relays will not participate. In this case,
transmitting uncoded QAM of size achieves
(see [19]).

Since we have identified a code whose SNR exponent
equals the outage exponent of the OAF protocol, we can refer
to given by Lemma 5 as the DMT of the OAF
protocol. This concludes the proof of Theorem 1.

Remarks: We make the following remarks on the class of
OAF protocols and the proposed DMT optimal code.

1) In the construction of DMT optimal code for the OAF pro-
tocol, it is enough if is an algebraic Galois extension (not
necessarily cyclic) of of degree and is as defined
in (87). In this case, would be re-
placed by the appropriate conjugates of .
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2) Among the class of OAF protocols, the best DMT
is achieved when , for in the range

. Since and are relatively
prime, the proposed code has the minimum possible delay
of with the parameters and .

3) For and , the DMT of the OAF protocol,
with the choice of mentioned in Lemma 4 coincides
with the DMT of the NAF protocol [1].

4) When each node in the system has only one transmit and
one receive antenna, the DMT optimal code for the NAF
protocol proposed in [20] has delay which is larger
than the delay incurred by our construction of DMT
optimal code for the OAF protocol introduced here, while
both NAF and OAF have the same DMT.

III. THE NONORTHOGONAL SELECTION DECODE AND

FORWARD PROTOCOL

In this section, we consider an NSDF protocol in which the
source transmits a signal to the destination and the relays for
channel uses in the first phase. All the relays, which are not in
outage, 3 will decode the source message. In the second phase,
the relays will separately encode and transmit a vector of length
. The source continues to transmit to the destination in the

second phase.
We only consider the case when . If and ,

all the relays are in outage and partly for this reason we restrict
our analysis to . To compute the best possible DMT, we
allow to vary with the multiplexing gain and choose the
pair that maximizes the outage exponent for a given . Since

is fixed, this is equivalent to making an optimal
choice of the parameter . This version of the protocol
will be called the variable-NSDF protocol. We also compute the
DMT of the fixed-NSDF protocol, wherein the ratio is
fixed for all .

A. DMT of NSDF Protocol

Theorem 7: The DMT of the variable-NSDF protocol is given
by

(92)

where .
For a given multiplexing gain , the optimal value of is

given by

(93)

For a fixed choice that is independent of , the DMT
of the fixed-NSDF protocol is given by

(94)

3We say that a relay is not in outage if the corresponding source–relay channel
is not in outage.

if , and

(95)
if .

Proof: The proof will proceed as follows. We determine
for a given value of with , the expression for
the outage exponent of the fixed NSDF protocol. We use this
expression to optimally choose for a given multiplexing
gain , to obtain the outage exponent of the variable NSDF pro-
tocol. The optimization is carried out in Appendix C. We then
show how the ST code constructed in [6] for the point–point
MIMO channel, can be tailored to achieve the outage exponent
of the fixed and variable NSDF protocol, thereby establishing
their DMT given by the above theorem.

Let of size and of size be the signals trans-
mitted by the source in the first and second phase, respectively.
The relays that are not in outage in the first phase shall partici-
pate in the cooperative protocol in the second phase. Let
relays, where participate in the second phase and
let , each of size be the signal transmitted by the
relays simultaneously.

Let denote the event that precisely relays are not in
outage and hence participate in the cooperative (second) phase.
The events are disjoint and their probabilities

sum up to . There are totally ways by which

relays participate in the cooperation. But as we shall see later,
the outage exponent of the induced channel when relays
participate is the same irrespective of which set of relays

participate and also the number can be ignored in the

scale of interest. Hence, we shall denote to be
the event that the relays are not in outage.

1) Outage Probability Conditioned on : Consider the case
when the event , , has occurred. The case
will be dealt with separately. Let the signals received by the
destination in the two phases be and , where

(96)

and

(97)

with , denoting the noise added at the destination in the
respective phases. We impose an energy constraint by choosing

to be the average energy available for transmission of a symbol
at either the source or a relay. Let be the variance of the noise
added at the destination. Let be the average received
SNR at the destination.

The channel model for the NSDF protocol can be written as

(98)

Authorized licensed use limited to: Eurecom. Downloaded on June 18, 2009 at 03:38 from IEEE Xplore.  Restrictions apply.



ELIA et al.: D-MG TRADEOFF AND OPTIMAL CODES FOR A CLASS OF AF AND DF COOPERATIVE COMMUNICATION PROTOCOLS 3175

where
• is the compound vector formed by concatenating the

transmissions of the source and the participating relays

(99)

• is the signal received at the destination

(100)

• is the induced MIMO channel model

(101)

• is the additive white Gaussian (AWG) noise seen at the
destination

(102)

The probability of outage, for the channel in (98), is given by

(103)
where is mutual information between and

, conditioned on the knowledge of at the receiver. The input
distribution can be assumed to be circularly symmetric Gaussian
with covariance matrix , without loss of optimality

(104)

Arguing as in case of the OAF protocol, in the scale of interest,
we have

(105)

Let,

(106)

(107)

and

(108)

Then

(109)

Substituting (109) in (105) we get the outage exponent as

(110)

It is clear that it is enough to consider . Hence,
the above infimum must be calculated over the region

(111)

For , we set to obtain the infimum and
hence . Therefore, it is enough to consider .
We consider two separate cases to evaluate . Note that
our version of the NSDF protocol restricts attention to the case

.
Case I: : We get

and (112)

Substituting in (110) we get

(113)

Case II: : We have

(114)

As in the case of the OAF protocol, we solve the optimization
problem to get

(115)

Now, we handle the case when event occurs, i.e., .
The induced MIMO channel model in this case is given by

(116)

The probability of outage of the above channel is given by

(117)

2) Probability of the Set of Participating Relays: In this sub-
section, we will compute the probability of the event . The
probability of is the product of probabilities of two events

relays are in outage

relays are not in outage (118)

We shall evaluate the probabilities of the two events mentioned
above separately. Also, we say that a relay is participating in the
second phase if the corresponding source–relay channel is not
in outage.

The signal received by the th relay , where , in
the first phase is given by

(119)
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where is the noise vector. The maximum mutual information
between and , conditioned on the knowledge of at the
relay, is

(120)

Now, the probability that is in outage is

is in outage

(121)

where

.
(122)

Since the fading coefficients corresponding to different
source–relay channels are independent of each other, we have

relays are in outage

The probability of a relay participating in the second phase
will be determined separately for and . When

relays participate

a relay is in outage

(123)

When , the probability that a particular relay participates
is given by

participates in second phase

(124)

Therefore, when ,

relays participate in second phase
(125)

Hence, when , all the relays are in outage with prob-
ability .

Consolidating the above facts, we get

(126)

3) Outage Probability of the NSDF Protocol: The proba-
bility of outage of the NSDF protocol can be calculated as fol-
lows:

in outage (127)

Let . It follows from (126) that for
no relay will participate in the second phase and the

channel will be as shown in (116). Hence, from (117), we can
see that

(128)

For , by substituting (115) and (126) in (127), we
get

(129)

By solving the optimization problem, we get the outage ex-
ponent of NSDF protocol that equals in Theorem
7. Please see Appendix C for the details.

B. DMT Optimal Codes for NSDF Protocol

In this subsection, we show how the ST constructed in [6] for
the point–point MIMO channel, can be tailored to achieve the
outage exponent of the NSDF protocol. In order to do so, we use
an important property that codes in [6] possess. These codes are
approximately universal, i.e., they achieve the outage exponent
of a MIMO channel irrespective of the statistical characteriza-
tion of the channel. Code construction in [6] is based on cyclic
division algebras (CDA) and for a primer on these algebraic ob-
jects see Appendix D. Also, Appendix E provides a brief outline
of the code construction in [6].

The induced channel model for the NSDF protocol is given
by

(130)

where

(131)

is the induced channel matrix when relays are participating
in the cooperation phase of the protocol and is the noise
matrix added at the destination. The matrix is a code matrix
of size , transmitted by the source and the relays.
However, as we shall see now, the code matrices for every ,
is obtained from the same matrix of size .
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Now, for a fixed , where and are relatively prime, we
outline the DMT optimal code when there are relays. 4

a) Distributed Code for NSDF Protocol: Consider a
approximately universal code as constructed in [6], whose code
matrices we refer to as . We set . We allocate the
set of first rows and next rows of to the source. Each relay
is allocated a distinct set of rows of , different from those
allocated to the source.

• In the first phase, the source transmits the first set of rows
of , one by one for channel uses.

• At the end of the first phase, the th relay , ,
if not in outage, will decode and transmit rows of
allocated to it for channel uses. The relays will be able
to decode even though the source transmitted only
rows of . This is due to the fact that is approximately
universal. This will be shown in the next paragraph.

• In the second phase, when the relays are transmitting the
source also transmits the set of rows allocated to it.

The total delay of the code will equal channel uses.
We show that such a code will achieve the outage exponent of
the NSDF protocol by an example and then the general case is
straightforward.

b) Proof of DMT Optimality of the Code: Let
. Then we choose to be the code matrices of a

ST code as constructed in [6]. In the first phase, the source
transmits the first two rows of and in the second phase, it
transmits the third row of . The relays and are allocated
fourth and fifth rows of , respectively. A code achieves outage
exponent of the NSDF protocol, if it achieves outage exponent
of the induced channel matrix irrespective of the number
of relays participating in the cooperation, i.e., the code is DMT
optimal for . Consider the case , i.e., when
relay is in outage and is not in outage. Then the relay
should be able to decode which we shall explain in a short
while now. Now the induced channel in this case is
given by (see (131))

(132)

We can write the induced channel model as

(133)

(134)

where an extra column of zeros has been added to induced
channel . However, it can be shown that the outage exponent
of and are the same. Since the code is approximately
universal, the SNR exponent of the code equals the outage
exponent of and hence that of . Hence, the code is DMT
optimal for the channel . In a similar manner it can be
shown that the code is DMT optimal for the induced channel

and also DMT optimal for the source–relay
channel so that when the relay is not in outage it should be
able to decode . Now since the code is DMT optimal for each
one of the induced channels it is DMT optimal for the NSDF

4We are considering only rational values of � here although, while computing
the outage exponent, � was allowed to take on irrational values too.

protocol. Proof for general can be obtained along
similar lines to those of the above example and we omit it here.

By constructing a DMT optimal code for each value of the
ratio , we can construct DMT optimal codes for the vari-
able-NSDF protocol and this concludes the proof of Theorem 7.

Remarks: We mention the salient features of the results in
this section below.

• The variable-NSDF protocol is shown to improve on the
DMT of the best previously known static protocol when
the number of relays is greater than two. In the case of
single relay, the variable NSDF protocol has better DMT
compared to E-SDF protocol, for .

• The DMT of the variable-NSDF protocol for the case of
two relays is better than the tradeoff of the SAF protocol
[21] for (see Fig. 4).

• For in the range , the fixed-NSDF protocol
has a better DMT than that of the NAF protocol for any
number of relays.

• For , the fixed-NSDF protocol and the NAF protocol
have the same DMT.

• When , the DMT of the fixed-NSDF pro-
tocol coincides with that of the NAF protocol. However,
the DMT optimal code for the fixed-NSDF protocol has a
delay , where is the total number of re-
lays, which is considerably shorter than the delay ,
if , of the DMT optimal codes for the NAF protocol
constructed in [20].

• Interestingly, in the case of a single relay, the ratio ,
which is optimal for multiplexing gain in the range

, turns out to be the Golden number, .

IV. THE ORTHOGONAL SELECTION DECODE-AND-FORWARD

PROTOCOL

In this section, we consider the orthogonal selection decode-
and-forward (OSDF) protocol. The OSDF protocol is the same
as the NSDF protocol, except that the source remains silent in
the second phase.

We state the DMT of the variable-OSDF and fixed-OSDF
protocol, but we omit the proof since the DMT can be obtained
along similar lines to the derivation of the DMT for the NSDF
protocol. Also, an approximately universal CDA code of size

, where is the number of
relays, will be DMT optimal for the OSDF protocol. The trans-
mission of various rows of the code matrices by the source re-
lays will be on similar lines to that mentioned in Section III-B
for the NSDF protocol.

A. DMT of OSDF Protocol

Theorem 8: The DMT of the variable-OSDF protocol is given
by

(135)

For a given rate , the optimal value of is given by

(136)
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Fig. 8. Outage probability of amplify-and-forward protocols with one relay. Rate = 4 bits per channel use.

For a fixed choice that is independent of , the DMT
of the fixed-OSDF protocol is given by

(137)

If

.
(138)

if .

V. THE NONORTHOGONAL AMPLIFY-AND-FORWARD

PROTOCOL

In this section, we construct a code that is DMT optimal
for the nonorthogonal amplify-and-forward (NAF) protocol. For
the sake of completeness, we will reproduce here the description
of the NAF protocol. The DMT of the protocol was first com-
puted in [1].

Under this protocol, the source transmits at each time in-
stant, and the relays take turns in transmitting an amplified ver-
sion of a previously received signal. If the number of relays is

, the set of equations describing a -length frame
are (see [1])

odd

even
(139)

where is the amplification factor at relay , is the signal
transmitted at time instant , is the signal received at the des-
tination at time , and is the noise added at the destination at
time . is the noise added at the relay in this frame.

Theorem 9: [1, Theorem 4] The DMT of the NAF protocol
is given by

(140)

A. Explicit DMT Optimal Codes for NAF Protocol

We will present an explicit construction, based on CDA,
which achieves the DMT of the NAF protocol.

Consider a DMT optimal CDA ST code. In
accordance with the NAF protocol in [1], let the source contin-
uously transmit the vector , coming from
a row-by-row vectorization of the code. Each intermediate relay

, , forwards at time
what it received at time where

.

Theorem 10: The above code achieves the DMT of the NAF
protocol.

Proof: For the single relay case, we use the equivalent rep-
resentation of the channel for the NAF protocol in matrix form

Upon vectorizing the above channel, we can see that the noise
vector is white in the scale of interest. Hence, the DMT of the
above channel is met by the approximately universal CDA
code.

Proceeding as in the single-relay case, we can show that the
DMT of the NAF protocol is achieved by the corresponding
approximately universal CDA code.

The above code for the NAF protocol was first presented in
[8]. Around the same time, in [20], the authors constructed DMT
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Fig. 9. Performance of OAF code with one relay.

Fig. 10. Outage probability of decode-and-forward protocols with one relay, Rate = 4 bits per channel use.

optimal codes for the NAF protocol which have shorter delays
than the codes presented here.

VI. NUMERICAL RESULTS

In this section, we present numerical results on the perfor-
mance of the protocols discussed in this paper. We consider the
two-hop network with one relay, . (see Fig. 1).

Fig. 8 compares the outage probabilities of different AF pro-
tocols with rate 4 bits per channel use. The OAF protocol with

has a better performance when compared to the
OAF protocol of [5] (referred as LTW-AF in the figure) wherein

is equal to . However, while both the NAF and the OAF pro-
tocol have the same DMT, the NAF protocol has a slightly better
performance by 1 dB compared to the OAF protocol. Fig. 9 plots

the performance of the number theory based OAF code pro-
posed in this paper, when the input for the channel is drawn from
4- and 16-QAM signal constellations. Fig. 10 plots the outage
probabilities of NSDF and OSDF protocol with single relay. The
NSDF protocol with unequal time durations ( ) per-
forms marginally better than that with equal time durations.

VII. CONCLUSION

In this paper, we have considered two-phase protocols for
cooperative communication under two broad categories: am-
plify-and-forward (AF) and decode-and-forward (DF). In all of
the protocols considered, we permitted the time durations of
broadcast and cooperative phases to be unequal and also vary
with the multiplexing gain and optimized them for obtaining
the best DMT.
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Fig. 11. Flowchart describing the computation of upper bound on � ��� of OAF protocol with parameters ��� ��.

We first studied a class of orthogonal AF (OAF) protocols and
showed that a specific OAF protocol has same DMT as that of
the nonorthogonal amplify-and-forward (NAF) protocol, while
incurring lesser delay. A simple minimum-delay code based on
elementary number theory was constructed that is DMT optimal
for this specific OAF protocol. Then we studied nonorthogonal
and orthogonal selection decode-and-forward protocols (NSDF
and OSDF) and determined their DMT. The variable NSDF pro-
tocol, wherein the time durations of the broadcast phase and
the cooperative phase is permitted to vary with the multiplexing
gain, is shown to improve upon the DMT of the best previously
known static protocol when the number of relays is greater than
two. DMT optimal codes based on cyclic division algebras were
constructed for both NSDF and OSDF protocols.

APPENDIX A
PROOF OF LEMMA 2

Proof: Let . Then . We have

(141)

Let . Hence

(142)

By applying the Cauchy–Schwarz inequality, we get

(143)

With this, we get the bound stated in the lemma.

APPENDIX B
SOLUTION TO THE OPTIMIZATION PROBLEM FOR THE

OAF PROTOCOL

We need to solve

(144)

We separately consider different ranges of (see flowchart in
Fig. 11).

Case A : Since , is negative. Hence,
the infimum is obtained by choosing and

(145)

But, by definition, cannot be negative. Therefore

for (146)
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Case B : As shown in Fig. 11, this case further
breaks up into two cases.

Case B.I : Consider the inequality

(147)

which leads to

(148)

Therefore, by substituting in (144), we get

(149)

Case B.II : Noting that one solution to the
optimization problem in (144) is

(150)

we consider the perturbations

(151)

(152)

where is a small positive number. In this case

(153)

Now, we need to consider two separate cases depending on the
ratio .

Case B.II.a : In this case, it follows that

(154)

We can thus set in (153) to obtain the infimum. Hence

(155)

Case B.II.b : In this case, we choose as large
as possible under the constraints and . The condi-
tion

(156)

The condition implies

(157)

Hence, is chosen to meet one of the upper bounds in (156) or
(157) depending on . By equating the two upper bounds, we
get

(158)

So, we need to consider two different ranges of .
Case B.II.b.i : Here the largest possible value

of is given by

(159)

Then

(160)

Case B.II.b.ii : Here the largest possible value
of is given by

(161)

Then

(162)

Selecting the Best Parameter Pair for Given : The
above discussion has provided upper bounds on the outage ex-
ponent for a given value of . Our next step is to identify
for a given value of , , the parameters that will
result in the least restrictive upper bound on outage exponent.

• Cases A, B.I, and B.II.a tell us that for

(163)

The uniformly least restrictive upper bound (over all pos-
sible choices of with ) results from choosing

to equal leading to the upper bound

.
(164)

• Similarly, Cases A, B.I, and B.II.b tell us that for

.

(165)
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Fig. 12. The two competing straight-line bounds on the DMT of the OAF pro-
tocol. The lower straight line connecting ��� �� to ��� �� corresponds to nonco-
operation.

The uniformly least restrictive upper bound (over all pos-
sible choices of with ) results from choosing

to equal leading to the upper bound

(166)

It remains to determine for a given value of , whether the
least restrictive bound results from choosing or else,

. From the plot in Fig. 12 it can be verified that the least
restrictive upper bounds results from choosing for

and for leading to the final upper
bound

(167)

The proof of Lemma 3 is now complete.

APPENDIX C
SOLUTION TO THE OPTIMIZATION PROBLEM FOR THE

NSDF PROTOCOL

In order to obtain the outage exponent of the fixed NSDF
protocol we need to solve the following optimization problem
for , since for , :

(168)

For , let

(169)

and

(170)

where is given by (see (115))

(171)
Therefore

(172)

Substituting the value of in (170) and using the fact
that we can see that the minimum occurs when .
Hence we have

(173)

Depending on the choice of the ratio and the multiplexing
gain , either or will determine the actual .
It can be shown that there is a critical value of , which we shall
denote by , below which , i.e.,

(174)

In order to compute , we compare the curves corresponding
to and . We can see that at

(175)

By substituting in the above equation, we get

(176)

Hence

(177)

Therefore, when , we get of the fixed NSDF
protocol as

(178)

When , both and determine the for
different ranges of . We can check that the point of intersection

of and , is given by

(179)

and, hence, when , we get of the fixed NSDF
protocol as

.
(180)
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Hence, we have computed the outage exponent for the
fixed-NSDF protocol.

Now, to get the best possible in case of the variable-
NSDF protocol, we vary with the multiplexing gain , i.e., we
choose the value of which maximizes the diversity at any given
multiplexing gain. By comparing the outage exponents in (178)
and (180), it is clear that we must choose for .
For , we need to track the point of intersection of
and . This point would correspond to maximum diversity
at a certain . At the point of intersection of and we
have

(181)

By substituting in (179) and (181), and by eliminating
from both the equations, we get

(182)

Thus, we get the of variable NSDF protocol as

(183)

where , with the optimal value of given
by

(184)

APPENDIX D
PRIMER ON SPACE–TIME (ST) CODES FROM CYCLIC DIVISION

ALGEBRAS (CDAS)

1) Division Algebras: Division algebras are rings with
identity in which every nonzero element has a multiplicative
inverse. The center of any division algebra , i.e., the subset
comprising of all elements in that commute with every
element of , is a field. The division algebra is a vector space
over the center of dimension for some integer . A field
such that and such that no subfield of contains

is called a maximal subfield of (Fig. 13). Every division
algebra is also a vector space over a maximal subfield and the
dimension of this vector space is the same for all maximal
subfields and equal to . This common dimension is known
as the index of the division algebra.

2) Cyclic Division Algebras: Our interest is in CDA, i.e.,
division algebras in which the center and a maximum subfield

are such that is a finite cyclic Galois extension. CDAs
have a simple characterization that aids in their construction,
see [18, Proposition 11], or [4, Theorem 1].

Let be number fields, with a finite, cyclic Galois exten-
sion of of degree . Let denote the generator of the Galois
group . Let be an indeterminate satisfying

and (185)

Fig. 13. Structure of a division algebra.

for some non-norm element , by which we mean some
element having the property that the smallest positive integer

for which is the relative norm of some element
in , is . Then, a CDA with index , center
and maximal subfield is the set of all elements of the form

(186)

Moreover, it is known that every CDA has this structure. It can
be verified that is a right vector space (i.e., scalars multiply
vectors from the right) over the maximal subfield .

3) ST Codes From CDAs: An ST code can be associated
to by selecting the set of matrices corresponding to the matrix
representation of elements of a finite subset of . Note that
since these matrices are all square matrices, the resultant ST
code necessarily has .

The matrix corresponding to an element corresponds
to left multiplication by the element in the division algebra.
Let denote this operation , defined by

(187)

It can be verified that is a -linear transformation of . From
(186), a natural choice of basis for the right-vector space
over is . A typical element in the divi-
sion algebra is , where the

. By considering the effect of multiplying ,
one can show that the -linear transformation as-

sociated to the element under this basis has the matrix repre-
sentation

...
...

...
. . .

...
(188)

A set of such matrices, obtained by choosing a finite subset of
elements in constitutes the CDA-based ST code . In [6], the
authors have constructed CDA-based ST code for all values of .
For all the codes constructed in [6], the underlying constellation
is quadrature amplitude modulation (QAM) and the center of the
division algebra is .

APPENDIX E
CONSTRUCTION OF APPROXIMATELY UNIVERSAL CODES

Consider a CDA having center and maximum sub-
field that is a degree- cyclic Galois extension of . We
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Fig. 14. Structure of division algebra.

set in the case of NSDF protocol. Let be the gen-
erator of the cyclic Galois group . Let and
denote the ring of algebraic integers in and , respectively. It
is known that . Let be an integral basis
for . Let denote the associated CDA. (See
Fig. 14.)

For even, let denote the -QAM constellation
given by

odd (189)

and

(190)

Consider the ST code comprising of matrices associated
to all the elements in the CDA D. Let denote the normalized
code

(191)

where is chosen to ensure that

for all (192)

The transmitted code matrix, denoted by , will be of the
form

...
...

...
. . .

...

(193)

The code as constructed above is approximately universal for
any MIMO channel with transmit antennas and any number
of receive antennas.
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