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ABSTRACT
It is known that linear minimum mean square error zero-
forcing (MMSE-ZF) equalization can achieve full joint
multipath-Doppler diversity offered by doubly selective
channels [1] when appropriate precoding is applied at the
transmitter. However, brute force implementation MMSE-
ZF equalizer involves a matrix inversion operation that re-
sults in significant computational burden. In order to allevi-
ate this problem, first an iterative implementation of MMSE-
ZF equalizer based on polynomial expansion (PE) approxi-
mation is proposed. Then, the structure of a matrix involved
in this approximation is exploited to reduce the computa-
tional complexity of the PE approximation. Simulation re-
sults are provided to show that while this approach reduces
the computational complexity compared to the brute-force
implementation of the MMSE-ZF equalizer, it does not ef-
fect the diversity order.

1. INTRODUCTION

Practical wireless communication channels are prone to sig-
nal fading due to the presence of multiple signal paths (time
dispersive channel) , time-varying nature of the channel (fre-
quency dispersive channel) or both (time-frequency disper-
sive or the so called, doubly dispersive channel). How-
ever, its is possible for the receiver to employ equalization
techniques that optimally exploit the inherent diversity in
these channels as a convenient counter-measure against fad-
ing. For instance, the frequency selectivity of time disper-
sive channels provide multipath diversity due to the presence
of multiple independently fading components in the channel.
In block transmission systems, when the channel coherence
time is shorter than the transmit block length, temporal vari-
ations of the channel provides Doppler diversity [2] which
can be exploited by the receiver. Doubly selective chan-
nels offer joint multipath-Doppler diversity that can be har-
nessed by suitable equalization techniques and proper pre-
coding. In [3], the authors used the Complex-Exponential
Basis Expansion Model (CE-BEM) [4] withQ+1 basis func-
tions to model the doubly selective channel of memoryL and
showed that by employing linear precoded block transmis-
sion, the maximum diversity in the channel is upper bounded
by (Q + 1)(L + 1) and can be achieved when maximum-
likelihood equalization (MLE) is used at the receiver. How-
ever, MLE incurs a huge computational complexity there-
fore the diversity order achieved by linear equalization (LE)
which is a low-complexity albeit sub-optimal alternative to
optimal maximum-likelihood equalization (MLE) was inves-
tigated in [5] [6] [1]. It is now known that linear mini-
mum mean squared error zero forcing (MMSE-ZF) receivers

achieve maximal diversity offered by time/frequency and
doubly selective channels. Recognizing the fact that the
structure of MMSE-ZF receivers can be exploited in order
to reduce the complexity of these full-diversity achievingre-
ceivers, low complexity linear equalizers were proposed in
[7] and [8] for frequency selective channels. Since the com-
putational complexity in the MMSE-ZF receiver is predom-
inantly due to the matrix inversion involved in building the
equalizer, we propose a reduced-complexity implementation
of the MMSE-ZF receiver based on polynomial expansion
(PE) approximation. PE approximation is not a new idea,
it was first proposed in [9] where, in order to avoid explicit
matrix inversion, the Cayley Hamilton theorem [10] was ap-
plied to express the matrix inverse as a finite sum of weighted
matrix polynomials. The weights themselves were chosen to
optimize a desired performance metric at the output of the
equalizer. In this paper, we adopt an approach where the
complexity reduction is achieved by first approximating the
MMSE-ZF receiver using PE approximation an then exploit-
ing the structure of a matrix involved in the PE approxima-
tion. In the sequel, we will explain our approach in more
detail and show that a decrease in the computational effort is
achieved with no loss on the diversity order of the resulting
approximated equalizer.

2. SIGNAL MODEL

In Fig. 1 we show the block diagram of the transmission
model. At the transmitter, complex data symbolss[i] are
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Parser Θ

s[k] x[k] y[k]
hi,l Equalizer

Figure 1: Block diagram of transmission model.

first parsed intoN -length blocks.Then-th symbol in the
k-th block is given by[s[k]]n = s[kN + n] with n ∈
[0, 1, ..., N − 1]. Each blocks[k] is precoded by aM × N
matrixΘ whereM ≥ N and the resultant blockx[k] is trans-
mitted over the block fading channel. We consider a channel
memory of orderL. It is well known that the temporal vari-
ation of the channel taps in doubly selective channels with a
finite Doppler spread can be captured by finite Fourier bases.
We therefore use CE-BEM [4] withQ + 1 basis functions to
model the time variation of each tap in a block duration. The
basis coefficients remain constant for the block duration but
are allowed to vary with every block. The time-varying chan-
nel for each block transmission is thus completely described
by theQ + 1 Fourier bases and(Q + 1)(L + 1) coefficients.



In generalQ is chosen such thatQ = 2⌈fmaxMTs⌉ where
1/Ts is the sampling frequency andfmax is the Doppler
spread of the channel. The coefficients themselves are as-
sumed to be zero-mean complex i.i.d Gaussian random vari-
ables. Usingi as the discrete time (sample) index, we can
represent thel-th tap of the channel in thek-th block

hi,l =

Q∑

q=0

hq(k, l)ej2πfqi,

l ∈ [0, L], fq = (q − Q/2)/M . The corresponding receive
signal is formed by collectingM samples at the receiver to
form y[k] = [y(kM + 0), y(kM + 1), . . . , y(kM + M −
1)]T . WhenM ≥ L, this block transmission system can be
represented in matrix-vector notation as [3]

y[k] = Hds[k; 0]Θs[k] + Hds[k; 1]Θs[k − 1] + v[k], (1)

where v[k] is a AWGN vector whose entries have zero-
mean and varianceσ2

v and is defined in the same way
as y[k]. Hds[k; 0] and Hds[k; 1] are M × M matrices
whose entries are given by[Hds[k; t]]r,s = h(kM+r,tM+r−s)

with t ∈ [0, 1], r, s ∈ [0, ..., M − 1]. Defining D[fq]
as a diagonal matrix whose diagonal entries are given by
[D[fq]]m,m = ej2πfqm, m ∈ [0, 1, ..., M − 1], and further
defining[Hq[k; t]]r,s = hq(k, tM + r − s) as Toeplitz ma-
trices formed of BEM coefficients, it is straightforward to
represent Eq. (1) as

y[k] =

1∑

t=0

Q∑

q=0

D[fq]Hq[k; t]Θs[k − t] + v[k], (2)

3. PRECODED TRANSMISSION IN DOUBLY
SELECTIVE CHANNELS

The precoding matrixΘ considered here is given by

Θ = FH

P+Q
T1 ⊗ T2.

where⊗ represents the Kronecker product of matrices,FP+Q

is a (P + Q)-point DFT matrix,T1 = [IP 0P×Q]T , T2 =
[IK 0K×L]T . P andK are chosen such thatM = (P +
Q)(K+L) andN = PK. This precoder was proposed in [3]
and was shown to enable diversity order of(Q + 1)(L + 1)
for ML receivers in doubly selective channels. When this
precoder is applied at the transmitter, the received signalcan
be represented as

y[k] = (FH

P+Q
⊗ IK+L)H[k]s[k] + v[k], (3)

whereH[k] is given by (see Sec. 7 for derivation).

H[k] =

Q∑

q=0

(JP+Q[q]T1) ⊗ (DK+L[fq]H̃q[k; 0]T2). (4)

In the following we will drop the block indexk in the inter-
est of simplifying notations. For this scheme, it was shown
in [1] that MMSE-ZF equalization collects full diversity of-
fered by the channel. In other words, the slope of the outage
probability curve of the MMSE-ZF receiver in the high-SNR
regime is(Q+1)(L+1). This being the case, it is of interest
to explore the possibility of lowering the complexity of such
a receiver since brute-force implementation of the MMSE-
ZF receiver involves the computation of the matrix inverse
(HHH)−1 which is computationally expensive.

4. POLYNOMIAL EXPANSION APPROXIMATION
FOR LE IN DOUBLY SELECTIVE CHANNELS

In order to reduce the above mentioned computational cost,
we propose here a reduced complexity implementation of the
MMSE-ZF equalizer for doubly selective channels. We start
with an alternative representation of the received signal in
Eq. (3)

y = HtvΘs + v,

whereHtv represents the channel matrix in the time-domain
and can in turn be represented as the sum of two matrices

Htv = Hκ + Hν,

Hκ =

Q∑

q=0

(DP+Q[fq(K + L)] ⊗ ejω̄q H̃q),

Hν = (DP+Q[fq(K + L)] ⊗ (DK+L[fq] − ejω̄q IK+L)H̃q).

ω̄q = ωq(K + L− 1)/2. Representing the received signal in
this form allows us to iteratively estimate the transmit symbol
vectors. The symbol estimate after them-th iteration is given
by

ŝ(m)
= (HκΘ)†(y − HνΘŝ(m−1)

). (5)

where the superscript† represents the Moore-Penrose
pseudo-inverse. From Eq. (5), we can derive the signal to
interference noise ratio (SINR) expression for then-th sym-
bol of the symbol estimatês(m) as

SINRn =
ρ[GsGH

s
]n,n

ρḡḡH + [GvGH

v
]n,n

, (6)

whereρ is the signal to noise ratio (SNR) andḡ is then-th
row of Gs without the element[G]n,n and

Gs = I + (−1)m((HκΘ)†HνΘ)m+1,

Gv = (

m∑

k=0

(−1)k((HκΘ)†HνΘ)k)(HκΘ)†.

Alternatively, it is possible to envisage a polynomial expan-
sion approximation for the MMSE-ZF receiver that mini-
mizes the mean squared error at the receiver. In this case,
the symbol vector estimate afterm iterations is given by

̂̂s
(m)

=

m∑

k=0

ΛkRkz. (7)

where

R = −(HκΘ)†HνΘ, z = (HκΘ)†y,

and the diagonal scale factor matricesΛk of order N are

estimated by plugging in the expression for̂̂s
(m)

in Eq. (7) in
the LMMSE criterion

Λ
opt

k = arg min
Λk:k∈{0,1,m}

E‖s − ̂̂s
(m)

‖2. (8)

Note that Eq. (5) corresponds to the special case of Eq. (8)
where the diagonal elements of allΛk are unity. Another
special case of Eq. (8) where the diagonal matricesΛk are



reduced to scalar weighting coefficientsλk are addressed
before (for instance in [9]). Letλn,k = [Λk]n,n and
λn = [λn,0, · · · , λn,m] then Eq. (8) can be solved by find-
ing the optimumλopt

n
separately for each transmit symbol

n ∈ {0, 1, · · · , N − 1} in the symbol vectors as

λopt

n
= argmin

λ

E|s[n] − λnq[n]|2. (9)

q[n] = [w0[n] w1[n] · · · wm[n]]T andwm[n] are elements
of wm = Rmz. Once theN vectors corresponding toλopt

n

are obtained the diagonal matricesΛk are formed and sub-
stituted in Eq. (7) to get the symbol estimate. The SINR at
the output of this equalizer is given by

SINRMMSE−PE

n =
ρ[GsG

H

s
]n,n

ρḡḡH + [GvG
H

v
]n,n

, (10)

whereḡ is now then-th row ofGs without the element[G]n,n

and

Gs =

m∑

k=0

ΛkRk(I + (HκΘ)†HνΘ),

Gv =

m∑

k=0

ΛkRk(HκΘ)†.

Since both Eq. (7) and Eq. (5) require the calculation of
the pseudo-inverse(HκΘ)† we now focus our attention to
reducing the complexity of the matrix inversion that needs to
be performed in order to obtain(HκΘ)†. Notice thatHκΘ

can be factored as shown in (12) where we replace the block-
circulant-with-Toeplitz-blocks (BCTB) matrix in (11) with a
block-circulant-with-circulant-blocks matrix (BCCB). i.e.,

HBCCB =

Q∑

q=0

(JP+Q[q] ⊗ ejω̄q Hc
q).

whereHc
q is a circulant matrix whose first column is the same

as the first column of̃Hq, This allows us to take advantage of
the fact thatHBCCB is diagonalizable as

D = (FH

P+Q
⊗ FH

K+L
)HBCCB(FP+Q ⊗ FK+L),

Now plugging this into (12) we have

HκΘ = (IP+Q ⊗ FK+L)DΘF .

whereΘF = (IP+Q ⊗ FH

K+L
)Θ which in turn leads us to

(HκΘ)† = (DΘF )†(IP+Q ⊗ FK+L)H . (13)

The problem of computing(HκΘ)† is thus reduced to the
problem of computing(DΘF )†. This can be accomplished
by formulating the problem of computing the pseudo-inverse
as that of finding theN×(M−N) matrixΞ that corresponds
to the solution of the minimization problem [7]

argmin
Ξ

Tr{(Θ†
F
D−1+ΞΘN ,F D−1)H(Θ†

F
D−1+ΞΘN ,F D−1)}

(14)

whereΘN ,F = N (ΘH), andN (.) denotes the null space
of a matrix. The solution to Eq. (14) allows us to compute
(DΘF )† as

Θ
†
F
D−1[I−D−H

ΘN ,F (ΘH

N ,F
D−1D−H

ΘN ,F )−1
Θ

H

N ,F
D−1]
(15)

which involves inversion of a matrix of dimensionM − N
in place of inversion of matrix of dimensionM in the brute-
force approach. Moreover,Θ†

F
is only dependent on the pre-

coding matrix hence it can also be precomputed and used
across blocks.

4.1 Optimization of transmission parameters

The reduction in computational complexity of(HκΘ)† using
Eq. (15) is related to the redundancy in the transmit block
(i.e., M − N ). One can therefore optimize the transmis-
sion parametersP, Q, K, L to reduce the computational com-
plexity of overall PE approximation of the MMSE-ZF equal-
izer. Such an optimization has to take into account the inter-
relations of the transmission parameters. For a fixedfmax

andTs, we know thatL is fixed butQ increases proportion-
ally to M due to the fact thatα = Q/M is fixed due to
the relationQ = 2⌈fmaxMTs⌉). This also implies that the
available diversity at the receiver increases withM

5. NUMERICAL RESULTS

In this section we provide simulation results to show that the
approximation for the MMSE-ZF equalizer proposed in the
paper does not entail any loss in terms of the diversity or-
der collected by the receiver. It is well accepted that the
slope of the outage probability curve in the high SNR regime
provides an accurate estimate of the diversity order of a re-
ceiver. The outage probability curve was plotted by comput-
ing the post-equalization SINR (SNR for the case of brute
for MMSE-ZF equalizer) for the symbol indexn correspond-
ing to ⌈N/2⌉ since it suffers the maximum inter-symbol-
interference within the block. Monte-Carlo simulations were
carried out for a fixed transmission rate for different SNR
points. For the brute-force implementation of the MMSE-ZF
receiver, the post-equalization SNR for an arbitrary symbol
indexn in the symbol blocks is given by

SNRn =
ρ

[(HHH)−1]n,n

,

whereH represents the equivalent doubly selective channel
after precoding andρ is the SNR. For the polynomial expan-
sion equalizers, the post-equalization SINR was computed
as given by Eq. (6) and Eq. (10). When the post-equalization
SINR was below the SNR required to support the fixed
transmission rate, the channel was declared to be in outage.
The slope of the outage probability curve thus obtained
provides an estimate of the diversity order. In addition to
this, we compare the slope of the receiver to that of the
matched filter bound (MFB) which is known to collect all
the available diversity in the channel.
Fig. 2 illustrates the evolution of the diversity order slope

achieved against the order of approximation in the polyno-
mial expansion equalizer in Eq. (5). It is seen that the slope
flattens out understandably at lower order approximations
due to large approximation errors but starts to stabilize at
about second order approximation of the equalizer.



HκΘ = (FH

P+Q
⊗ IK+L)

Q∑

q=0

(JP+Q[q] ⊗ ejω̄q Hq)(T1 ⊗ T2), (11)

HκΘ = (FH

P+Q
⊗ IK+L)

Q∑

q=0

(JP+Q[q] ⊗ ejω̄q Hc
q)(T1 ⊗ T2). (12)
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Figure 2:Evolution of diversity order for different iterations.
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Figure 3:Diversity order of LE approximated by PE.

Fig. 3 shows the comparison of the diversity order of
brute-force implementation of the MMSE-ZF equalizer for
doubly selective channels for the case ofQ = 2 andL = 1.
Observe that the slope of the outage probability curves for
both the implementations are the same. The polynomial
expansion equalizer has an SNR offset when compared to
the brute force implementation which is to be expected since
the equalizer is an approximation of the MMSE-ZF receiver
however, it succeeds in collecting full diversity offered
by the doubly selective channel at relatively low order of
approximation. The performance of PE approximation that
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Figure 4: Comparison of performance of the two PE approxima-
tions.

minimizes the MSE at the receiver Eq. (7) is shown in
Fig. 4. We see a significant enhancement in performance
for the first order approximation when compared to the PE
approximation in Eq. (5). However, for higher orders the the
difference in their performance appears negligible.

6. CONCLUSIONS

In this contribution we propose two approximations for the
MMSE-ZF equalizer for doubly selective channels. The pro-
posed equalizers are based on polynomial expansion approx-
imation and lead to a decrease in the computational com-
plexity of the equalizer when compared with the brute-force
implementation. Simulation results show that such an ap-
proximation does not incur a penalty in terms of the diversity
order achieved by the approximated equalizers.

7. APPENDIX

Due to the presence of the zero-padding matrixT2, it can be
easily shown that the inter-block-interference componentin
the received signal is zero, i.e.,Hq[k; 1]Θs[k − 1] = 0. As a
result, the received block in Eq. (1) can now be represented
as

y[k] =

Q∑

q=0

D[fq]Hq[k; 0]Θs[k] + v[k], (A1)

Using standard Kronecker product identities, one can show
that

Hq[k; 0]Θ = FH

P+Q
T1 ⊗ H̃q[k; 0]T2, (A2)



whereH̃q[k; 0] is aK + L × K + L Toeplitz matrix formed
by the firstK + L rows and columns ofHq[k; 0]. Eq. (A1)
can then be re-written as

y[k] =

Q∑

q=0

D[fq]
(

FH

P+Q
T1 ⊗ H̃q[k; 0]T2

)
s[k]+v[k], (A3)

Note that

D[fq] = DP+Q[fq(K + L)] ⊗ DK+L[fq], (A4)

The above equation representsD[fq] as Kronecker product of
time-variation over two scales.DP+Q[fq(K + L)] is a diag-
onal matrix of sizeP + Q that represents time-variation at a
coarse scale (complex-exponentialssampled at sub-sampling
interval of(K + L)Ts andDK+L[fq] is a diagonal matrix of
sizeK +L that represents the time-variation over a finer grid
corresponding to the sampling periodTs. Using Eq. (A4) and
standard matrix identities, we can decompose the received
signal as in Eq. (A6) whereJ[q] = J(q−Q/2) andJ is a circu-
lant matrix with[0, 1, 01×P+Q−2]

T as the first column. Since
the matrix(FH

P+Q
⊗ IK+L) has no effect on the diversity of

the doubly selective channel, for the analysis of the diversity
order of MMSE-ZF receiver, the effective channel matrix can
be represented as

H[k] =

Q∑

q=0

(JP+Q[q]T1) ⊗ (DK+L[fq]H̃q[k; 0]T2), (A7)

Fig. 5 provides an illustration of the structure of the equiv-
alent channel matrix due to precoding. HereH̄q represents
the product matrixDK+L[fq]H̃q[k; 0] for ease of illustration.
In particular, it is a block-Toeplitz matrix with constituent
blocks which are in turn formed by the product of a diag-
onal matrixDK+L[fq] and a Toeplitz matrix formed by the
corresponding BEM coefficients of theq-th basis function.
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y[k] =

Q∑

q=0

(
(DP+Q[fq(K + L)]FH

P+Q
T1) ⊗ (DK+L[fq]H̃q[k; 0]T2)

)
s[k] + v[k], (A5)

y[k] = (FH

P+Q
⊗ IK+L)

Q∑

q=0

(
(JP+Q[q]T1) ⊗ (DK+L[fq]H̃q[k; 0]T2)

)
s[k] + v[k], (A6)


