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ABSTRACT

A multiple fundamental frequency estimator is a key buiddblock
in music transcription and indexing operations. Howevefs-s
tems trying to perform this task tend to be very complex [1}- |
deed, music transcription requires an analysis accourfitingoth

physical and psycho-acoustical matters. In this work, we- pr

pose a physically-motivated audio signal analysis folldviby an
auditory-based selection. The audio signal model allowsfbet-
ter time/frequency resolution tradeoff, while the auditdistance
discards the redundant/non-relevant information. No rpiror-
mation on the musical instrument, musical genre, and/orimamx

polyphony are needed. Simulations show that the proposed te

nigue achieves good transcription results for a varietytrofig and

pitch perception [2, 3]. The majority of these approachesis of a
model of the peripheral auditory system followed by ‘somi&lpre-
trival scheme. Typically, the auditory block (front-end)domposed
of a cascade of an auditory filterbank (modeling the moverént
the basilar membrane of the internal human ear) and a melessy-
transform (that models the hair cell transduction).

On the other hand, from a signal-processing point of vieeessing
the high-level information contained in audio signals imxptex and
requires sophisticated tools. Many previous studies hauetgd to
three major features that summarize the spectral infoomaton-
tained in an audio signal at a given time: the pitch, the dyinam
and the timbre. Theitch is related to the perception of the fun-
damental frequency of the sound and indicates how ‘highlaw™

a note sounds. Theynamics refers to the amplitude (and the en-

wind instruments. The proposed scheme is also shown to be "&rgy) of the wave and indicates how ‘loud’ or ‘soft’ a note Ene

bust in the presence of noise, percussive sounds and inanteal
Signal-to-Interference Ratio (SIR) situations.

timbre corresponds to the harmonic series in the frequency domain
and characterizes the resonance in the body of the insttuiianh

I ndex Terms— music transcription, pitch recognition, frequency-of these features is important for the note detection anogretion

selective, amplitude modulation, perceptual model

1. INTRODUCTION

Transcription of music refers to the process of convertingi@a
signals (of performed music) into symbolic representatitbrmu-
sic scores. Conventionally, music transcriptions aretemiby well
trained experts (most probably experienced musicianshwk an
expensive and time-consuming procedure. In addition tatifzéght
application itself, automatic transcription has a widegenof poten-
tial applications including automatic music analysis, rmusanip-
ulation (e.g. changing the timbre) and music informatiotnieeal
(both in building music databases and in transcribing theryin-
put).

The automatic transcription of real-world music is an extety
challenging task. Indeed, the transcription operatioruireg an
analysis accounting for both physical and psycho-acaalsisues:
the process has to consider the relationship between thred sasi

task. Moreover, as music transcription aims botluetect the ‘ po-
sition’ and torecognize the ‘content’ of the musical event (musi-
cal notes and effects such as vibrato, glissando, etc.prteessing
needs both good temporal and frequency resolutions.

Typically, a pitch (FO) retrieval system contains two birityl

blocks: salience evaluation and pitch selection. Thesekbloould
be organized in a successive, joint, or cyclic manner [1].
The first stage of pitch retrieval is the evaluation of théesale, or
strength, function at the different candidate periods s§itally, the
salience is inferred as a weighted sum of the harmonic perfea
given pitch candidate, i.e.,

P

SU(r) = g(r,p)Y (fr.0) @)

p=1

where f,, = pfs/7 is the frequency of the'" harmonic of the
pitch candidate (fs is the sampling frequency) (f) may repre-
sent the power [4], amplitude [1] or wavelet [5] spectrumhef input

physical phenomena and the sound perception of the human ear aydio signaly(n). P denotes the number of considered harmonics.
On one hand, the hearing system performs very well in complexhe functiong (r, p) defines the weight of the’” partial of the pe-

sound mixtures. Humans are able to hear the pitches of severgod 7 in the sum. Several approaches are proposed to set these key

co-occurring sounds and human musicians are the best nasic t parameters using prior informatioon about musical insemijl, 6],

scribers for the time being. This fact inspires auditory inated

approaches which are built upon computational models ofamm
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spectral smoothing considerations [7], or based on psydusic
theory [3]. In the present paper, we propose the Quasi-Bierig-
nal Extraction (QPSE) technique [9] to evaluate the satiefunic-
tion. The QPSE can be interpreted as a sum of scaled, tradslatl
“modulated harmonic atoms. However, contrary to the clagsimic
decomposition approaches (STFT, WT), the dictionary isfired:
the atoms are adapted taking into consideration the steicfuthe



received signal [8]. The proposed technique is shown to liatde
for the analysis of several string and wind instruments aadls$ to
good monophonic transcription accuracy [10].

The second stage in a pitch retrieval system is note sefeclibis
can be performed by peak-picking in the salience domainNitjre
sophisticated engine such as genetic search [11] and {mkesing
[12] algorithms were proposed to look for the most probaldten
combination. In this paper, we propose using a psychoaicodist
tance (introduced by S. Van de Par et al. in [13]) to rank afecse
the musical notes present in the mixture. Information onntiae-
imal note humber and/or allowed octaves could help incré¢ase
transcription accuracy, but are not necessary.

wherea(n), andy(n) represents respectively the amplitude and fre-
quency modulating signal(n) = >_  a, cos (2mpfon + @) is a
periodic signal with a period = LO

A major limitation of the proposed model is that it allows fioo
spectral variation throughout the note duration, but omhpEtude
and (synchronized) frequency modulation. Such a modelnassu
that at any time instant the instantaneous amplitudes atpién-
cies of the various harmonics of the periodic waveform ampor-
tional. The problem with such a model though is that, in tgali
periodic signals produced by musical instruments (e.mginstru-
ments) have harmonic components that decay at differerdspe
Typically, higher harmonics decay faster than lower haricgnin

Figure 1 shows the block diagram of the proposed scheme. Th@], we have introduced a frequency-selective attennatiallevi-

two building block are presented respectively in Sectiorzn@ 3.
Simulation results are shown in Section 4. Finally, a dismrsand
concluding remarks are provided in Section 5.
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2. QUASI-PERIODIC SIGNAL EXTRACTION

Due to space limitation, this section provides only a briereiew
of the quasi-periodic signal model and the related exwacslgo-
rithm. The interested reader is referred to [9, Ch.2] ang fd0an
exhaustive description and better coverage.

To understand the proposed model, let us first consider tisaidal
model. This model represents the signal as a sum of diséne¢e t
varying sinusoids or partials:

s(n) =) _ ap(n) cos 2mpnfo + 2mpy(n)) @

wherep, (n) characterizes the evolution of the instantaneous phasg

around the** harmonic, and can be assumed to be slowly time vary
ing. We assume that all harmonic amplitudes evolve promaately

in time, and that the instantaneous frequency of each hacmen
proportional to the harmonic index, i.e.,

{

Under these assumptions, one can show that the audio ssgnal-
eled as the superposition of harmonic components with aagjkn-
plitude modulation and global time-warping:

> + <I>p>

a(n) Z ap Cos (27rpfo <n +
4)

)

ap(n) = ap a(n)

2mpp(n) = 2mp p(n) + Pp. 3

®(n)

fo

s(n)

p(n)
fo

a(n) 0 (n +

ate this side-effect, and this in a time-varying fashionetfbect the
time-varying amplitude, i.e.,

wherea, (q) = an,1.q" + - + ano + - + an,rq” " is a sym-
metric zero-phase FIR filteRL + 1 is the amplitude modulating
filter length, and; ™! is the time delay operator. The two extreme
filter lengths correspond to the flat modulation model as )n(f@r

L = 0), and the bayesian harmonic model in [15](fo= c0).

The assumptions of global amplitude and frequency modulati
were introduced to have a parsimonious signal representatn-
deed, the higher the number of parameters per second degdtie
signal, the noisier the parameter estimates, and consytiemre-
constructed signal. Introducing an amplitude modulatigga per
harmonic (as in [15]) would allow significant degrees of &em in
describing the signal, but would lead to a high parameter (ihie
average number of parameters that appear in the descrigtiame
second of the signal). An intermediate parameter rate casbbe
tained by filtering the periodic signal with the short FIR€ilt, (¢)
that can introduce frequency-selective attenuation, laisdrt a time-
varying fashion to reflect the time-varying amplitude.

Audio signal extraction is performed by adjusting the degref
freedom (ina,(q), v(n), andé(n)) such that the assumed model
best matches the received signal (in the least-squares)sefke
degrees of freedom are estimated in a cyclic fashion [9]. Iipg
the proposed technique to music signal analysis seemsahator
deed, the proposed model is related to the physics of howdsoun
are produced in stringed and wind instruments [9]. And theeho
parameters are tightly related to the three basic featuresusic
sounds: pitch¢(n)), dynamics ¢.(g)), and timbre @(n)). Simu-
dtions show that the proposed scheme is suitable for tHgsiaaf
‘several string and wind instruments, and performs good pioomic
transcription accuracy [10].

Music transcription needs both good temporal and frequency
resolutions (to botldetect the ‘position’ andrecognize the ‘ content’
of a musical event). Compared to the classic frame-by-fraased
approaches, the quasi-periodic signal modeling perforatiebres-
olution tradeoff (by exploiting the temporal structure b&tmusical
signal). Indeed, the global amplitude modulation modebégthe
joint extraction of the different partials, while allowirfgr slow L
decay modes. This fact enhances both note detection arghitioa
accuracy (intuitively, the QPSE tries to estimate simdtarsly the
spectral structure in both time and frequency directiolmsaddition,
valuable information could be carried out by analyzing vidlially
the different parameters:

»(n)
fo

s(n) =an(q) @ <n + (5)

¢ a,(q): high temporal resolution transcription.



e ¢(n): detection of several musical effect, e.g., vibrato, glis-is computed using the input audio signéh). The distance is cal-

sando, etc...

ibrated such thaD = 1 represents the threshold of detectability,

e 4(n) : accurate musical note selection (as detailed in the next®-

section).

3. MUSICAL NOTE SELECTION

The first building (front-end) block in music transcriptiamd in-

dexing operations is the decomposition of music signals ar-

monically related components. The QPSE tries to simultasigo
estimate the spectral structure in both time and frequeiregtibns.

This fact leads to a better time/frequency resolution toéfdend

partially alleviates common partials extraction. Contriar the fre-

quency domain approaches, no explicit constraint on thebenrof

harmonics is done (implicitly, it is constrained by the odtetween
the fundamental and sampling frequencies).

Based on the previous decomposition, the salience functonbe
evaluated at the different period candidates as

§%(n)

" )

wheres, (n) = an(q) A(n + M) is the extracted quasi-periodic

Si(r) (6)

0

signal assuming a basic perieglandy(n) denotes the input audio
signal. Note that the proposed function satisfies Si(r) < 1, and
it do not contain a myriad of parameters that should be |eafhe
or set [6] (as in (1)). Moreover, the QPSE enables joint exiwa of
the different partials while imposing a kind of spectral sittmess
(over time axis) that has been shown to be valuable to inergas-
scription accuracy [1, 7].

For monophonic music transcription, the note selectionlman
performed simply by picking the lowest maximum of the saten
function [10] (the choice of the lowest period solves theawvetin-
determinacy). In a polyphonic context, the QPSE (althotigklps)
is not able to solve alone the common partials and octavegnudeée
nacy problems. In this paper, we propose first to select thegse
corresponding to the salience function local maxima (aeral
candidates), then to use the distortion detectabilityadist (intro-
duced in [13]) to discard the ‘ghost notes’ and perform aatinote
selection. The distortion detectability defines a percaptuelevant
norm on the harmonic signal subspace spanned by:

{ D(y,3-) > 1 ther'" candidate is detectable ©)

D(y,3,) <1 ther'" candidate is a ghost note

This calibration leads to a simple decision scheme, witheexino a
priori adjusted thresholds (that may depend on unknownnpeter
such as SNR, instrument class, number of notes, etc). Reasrk
that according to (8), even if the individual tonal compaseof a
given signal are masked, their combination may still be ctatge,
which matches the auditory spectral integration resufisaddition
to its auditory relevance, the computational load of theppsed dis-
tance remains reasonable since the masking threshold eatisrio
be computed once (per frame). Moreover, as the auditorysharel
narrow at low frequencies and wide at high frequencies, taskm
ing model discards further high-order harmonics (simplgause
many components will fall in one auditory filter band). Treads to
improvements in performance of the algorithm, since higirder
harmonics are generally less reliable due to their low gneam-
tent (low SNR) and the effect of nonharmonicity (in stringestru-
ments). To enhance this fact, it was found that adding adifichite
noise (SNR=10 dB) to the input signal while computing the knas
ing curve, or simply raising the masking curve by a givendeetas
benifical.

4. EXPERIMENTAL RESULTS

Using the previously described building blocks, a simpéascrip-
tion scheme was built. First, the QPSE was performed for the d
ferent possible notes periods at th¥, 2"¢ and3"¢ octaves; and
the local maxima of the salience function (as defined in (&)ew
selected. Then, the note selection was performed baseceateth
tectability distance. A simplified auditory masking modefl. (14])
was used. This model is shown to be effective for musical kéae-
tion [14]. The implementation of the masking model was grasly
provided by Steven van de Par from Philips Research Lalieato
Specifically, this measure is used to:

¢ solve the octave indeterminacy.
e discard ghost notes.

e recover the notes that do not belong the search set.

The system does not make any assumption on the number ofsound
in the mixture, and no-estimation of the number of concurren
sounds is required. No information about the instrumenéciar
where (. %.) denotes the modulo operator, agd(n) is the - timber was assumed.
periodic signal sharing the same energy (salience) andc-basi  The scheme has been tested using the piano recordings of the
waveform with 3, (n), but compensated for global amplitude and RwC (Real World Computing) musical instrument sound databa
phase modulations. [16]. For each recording, the database includes a refeidtakfile
The auditory model was designed to predict the masked thi@sh \yhich contains a manual annotation of the note events indesaic
for sinusoidal distortions. The model accounts for the spectral and recordings. The test data consists of random mixture of/iddal
temporal integration in auditory masking. As showed in [#8F  note recordings. The recordings (initially recordedi4tl00 kHz)
distortion detectability distance can be expressed as are downsampled t82.050 kHz. The maximum number of itera-
tions (in the QPSE cyclic parameters estimation) was fixed fthe
order of the amplitude modulating filter was seffte= 4. No global
phase modulation was considered.

A standard error metric was used for evaluation [11]: a fecal
where|S-(f)|? denotes the power spectrum of the siggaln), measure (percentage of original notes that were transt)ribed a
anduj(f) represents the frequency dependent masking curve whicprecision measure (percentage of transcribed notes thatpuesent

5:(n) = 13116 (n %),

@)

; 5P
D(y,5) =3 =% ®)
()



on the original stream). The rates are defined as:

#£correct notes
#treference notes
#£correct notes
#transcribed notes

recall
precision

where# denotes the cardinality operator.

(1]

(2]

We have compared the proposed selection scheme to a decision
scheme based on the sum of either the harmonic power or ampli-[ |

tudes. In each case, the detectability thresholds were afigriuned
in a way to achieve good recall vs. precision tradeoff. Buanto-
matic learning was performed. Figure 2 illustates the tepson
results function of the number of concurrent soungpdglyphony).
The polyphony number is assumed to be unknown.

apsy
= pwr
aamp

o psy

precision
5
H

0 amp)

3 1

z 2
# polyphony # polyphony

[4]

[5]

(6]

[7]

Fig. 2. The recall and precision measures as a function of the numbe [8]

of concurrent sounds#polyphony) using (respectively from right
to left) the psycho-acoustic (psy), the power spectrum Y@nd the
amplitude spectrum (amp) based measures.

The graph shows that the three schemes achieve good tratitscri
accuracy. We remark also that the psycho-acoustic distaunper-
forms the two other selection schemes; which is quite nigeesit
is considerably simpler to set and to control.

9]

We have also tested the scheme with various musical instrisme (10]

(guitar, sitar and flute). The data was graciously provideditony
Schutz from Eurecom. Although the database was not largegtno
to have consistent statistical results, the proposed seHeats to
comparable performance (or even better). The result wascesgp
since these instruments produce less nonharmonicity tefteon-
pared to the piano). We have also experienced the robusthéss
proposed scheme in the presence of noise, percussive sauthds
unbalanced Signal-to-Interference Ratio (SIR) situation

5. CONCLUDING REMARKS

This paper describes a method for transcribing realistity-po
phonic audio. The analysis accounts for both physical apdhus
acoustical issues. Indeed based on a physically-motivatetio
model, the QPSE algorithm estimates the spectral structutiee
musical note in both the time and frequency directions; iteatb
a better time/frequency resolution tradeoff. Based on #kaetion
SNR, an initial set of note candidates is selected. A pevcdipt
motivated distance is then used to discard the ghost caredidblo
prior information on the musical instrument, musical gemméand

maximum polyphony are needed. Simulations show that the pr

posed scheme achieves good transcription results for atyaof
string and wind instruments. The proposed technique issdisan

(11]

(12]

(13]

(14]
(15]

Y16]

to be robust in the presence of noise, percussive soundsmand i

unbalanced Signal-to-Interference Ratio (SIR) situation
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