
Hierarchical Codes: A Flexible Trade-off for

Erasure Codes in Peer-to-Peer Storage Systems

Alessandro Duminuco (duminuco@eurecom.fr)
Ernst W. Biersack (biersack@eurecom.fr)

PREPRINT VERSION
The original publication is available at www.springerlink.com [1]

Abstract

Redundancy is the basic technique to provide reliability in storage
systems consisting of multiple components. A redundancy scheme de-
fines how the redundant data are produced and maintained. The simplest
redundancy scheme is replication, which however suffers from storage in-
efficiency. Another approach is erasure coding, which provides the same
level of reliability as replication using a significantly smaller amount of
storage.

When redundant data are lost, they need to be replaced. While re-
placing replicated data consists in a simple copy, it becomes a complex
operation with erasure codes: new data are produced performing a coding
over some other available data. The amount of data to be read and coded
is d times larger than the amount of data produced, where d, called repair
degree, is larger than 1 and depends on the structure of the code. This
implies that coding has a larger computational and I/O cost, which, for
distributed storage systems, translates into increased network traffic.

Participants of Peer-to-Peer systems often have ample storage and
CPU power, but their network bandwidth may be limited. For these
reasons existing coding techniques are not suitable for P2P storage.

This work explores the design space between replication and the exist-
ing erasure codes. We propose and evaluate a new class of erasure codes,
called Hierarchical Codes, which allows to reduce the network traffic due
to maintenance without losing the benefits given by traditional erasure
codes.

1 Introduction

P2P(Peer-to-Peer) systems have received a lot of attention in recent years. In
particular, the research community has shown an increasing interest in the use of
P2P systems for file storage [3, 5, 9, 15]. This application can be very attractive
for two main reasons: (i) centralized solutions are expensive (ii) common PCs
are equipped with high-capacity local disks, that are often underutilized.

1

The main challenge in designing storage systems is to guarantee the per-
sistence of the stored data. This is non-trivial because storage devices are not
totally reliable: they may face failures, data corruption or accidental data losses.
The proposed solutions move in two complementary directions: increasing the
device reliability and adding redundancy to data.

In a peer-based approach, the first direction is not feasible since existing
hardware is used and a proper redundancy scheme is the only tool in the hands
of the system designer.

The simplest approach to redundancy is replication. The drawback of such
scheme is its inefficiency in terms of storage. Another approach is erasure coding,
which is able to provide the same level of reliability with much lower storage
requirements [13, 16]. The price to pay for this is a higher maintenance cost as
we explain below.

When data are lost, a maintenance operation, called repair, is needed to
replace them. The replacement of replicated data is trivial and consists in
making a copy. For erasure codes, instead, every bit of new data is the result of
a coding operation over several other bits of data. This introduces additional
computational cost, to perform the coding, and additional I/O cost needed
to retrieve the bits to be coded, which in distributed systems translates into
network traffic.

Traditional storage systems can easily handle this additional costs. RAID
systems, for example, need a very small amount of repair operations and in any
case they are equipped with dedicated processing and network resources, which
are dimensioned according to their needs.

In a P2P storage system, the number of repairs can be very high and, while
such a system can rely on large storage and processing resources provided by
participating peers, the system must cope with limited network resources. This
makes coding unattractive for P2P storage, since it has been conceived with a
different cost model in mind.

The coding schemes proposed in literature strive to increase the storage ef-
ficiency while ignoring the other costs. We propose a new class of codes, called
Hierarchical Codes, which introduce a flexible trade-off between replication and
traditional erasure codes, reducing the maintenance cost without scarifying stor-
age efficiency.

In section 3.1 we formalize the efficiency metrics used and in section 3.2
we perform a cost analysis for the main existing redundancy schemes and in
particular for linear erasure codes. In section 4 we present Hierarchical Codes.
Finally, in section 5 we evaluate Hierarchical Codes by means of experiments.

2 Related Works

Various redundancy schemes for P2P storage systems have been studied. Many
papers focus on the the comparison between replication and coding. In [16] it is
shown how, given the same amount of storage space, erasure codes can give big
improvements in terms of data durability as compared to replication. Rodriguez

2

[13] also compares erasure codes and replication taking into account the peer
behavior and the maintenance process and arrives to the conclusion that in some
cases the advantage of coding may be not worth its disadvantages. Rodriguez
is also the first one to point out that the repair cost required by coding may
be prohibitive in peer-to-peer environments. He then proposes a hybrid scheme
that uses both, coding and replication. However, this scheme increases the
complexity and loses most of the storage efficiency offered by coding. This point
has been well explained by Dimakis [6], who proposes a new class of codes, called
Regenerating Codes, which are able to reduce the repair traffic while consuming
slightly more storage space. Also, the cost of computation may be significant
[7]. Our work is inspired by the existing solutions and proposes an alternative
solution, called Hierarchical Codes, which does not sacrifice the storage efficiency
and does not increase the computation requirements with respect of traditional
erasure codes. Both codes, Regenerating codes and Hierarchical Codes, adopt
some of the concepts and the tools presented in the early literature about Linear
Network Coding [4, 10].

As we will show in details in section 4, the core idea of Hierarchical Codes
is to allow encoded blocks to be a linear combination of a limited number of
original fragments. This is, to some extent, similar to LDPC (Low Density
Parity Checks) family codes1. In this family of codes each encoded symbol is
produced performing the XOR operation on a number of original symbols, which
in average is much smaller than their total number. In spite of this similarity,
there are profound differences between LDPC and Hierarchical Codes. The most
important difference is that LDPC codes are conceived for data transmission
on lossy channels and for this reason they do not contemplate the concept of
repair, which is essential in distributed storage systems. This means that they
do not provide a way to produce a new encoded block using other encoded
blocks preserving the same level of reliability of the code, while this is the main
concern of Hierarchical Codes.

3 Redundancy schemes for P2P storage

3.1 Efficiency Metrics

The measure of the efficiency consists in comparing the benefits provided with
the costs required.

In the domain of redundant storage, the benefit is the reliability of the
data storage in spite of failures of the storage components. In the P2P storage
systems, failures are represented by temporary disconnections, abandons, device
errors etc. The ability of a redundancy scheme to be resilient to such failures is
usually measured as the probability of a correct reconstruction of a stored object.
Note that this measure is not absolute, but it is conditioned by the peer behavior:
one of the most important factors is the probability of having concurrent failures.

1There are several codes derived from LDPC codes, such as Tornado-Codes, LT-Codes etc.,
see [11] for a brief survey.

3

For this reason, the reliability of a redundancy scheme is measured as the number
of concurrent losses that it can sustain without compromising the data. More
formally, one can express this property as the probability of data loss (failure)
given that l concurrent losses occurred: P (failure|l).

The description of the costs is more complex. To perform a complete analy-
sis, we need to consider separately the two main activities involved in a storage
system:

Storage The core activity of a storage system consists in the initial insertion
of the data along with their redundancy. The cost of the redundancy scheme,
in this phase, is merely the absolute amount of storage space consumed. To
abstract from the amount of data, it is measured as the ratio between the size
of the stored data |S| and the size of the original data |O|. This cost can be
referred to as Redundancy Factor and denoted as β = |S|/|O|.

Maintenance During the lifetime of a P2P storage system, permanent failures
occur. Whenever this happens part of the redundant data is lost and the chances
of losing the original data increase. If nothing is done to compensate these
losses, sooner or later the durability will be not guaranteed anymore. The
maintenance consists in refurbishing the redundant data when they are lost.
This operation is performed reading the available data blocks and producing
a new one. The reading operation has a cost, which in a distributed storage
system translates into network traffic, whose volume depends on the redundancy
scheme adopted but also on lots of other factors, such as the peer behavior, the
repair policy, the coordination algorithms etc. To evaluate only the contribution
of the redundancy scheme, we measure the amount of data read with respect
of the amount of new redundant data created. In other words, once the system
has decided that a new encoded bit needs to be created, we measure how many
available bits the scheme has to read. This cost can be referred to as Repair
Degree and denoted as d.

3.2 Efficiency Analysis

In this section we describe some of the most representative examples of redun-
dancy schemes and illustrate their efficiency in terms of the metrics described
in the previous section.

Replication Replication is the most straightforward way to add redundancy.
Its basic version consists in creating multiple copies of the object to store. The
analysis of such a scheme is very simple. Let us assume that R replicas of
the original object are stored on different peers. The number of losses that the
system can support is R−1. In a formal way the probability of losing the object
conditioned by the probability of having a given number of concurrent losses is:

P (failure|l) =
{

0 l < R
1 l = R

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24

P
(f

ai
lu

re
|lo

ss
es

)

Number of Losses

block replication
erasure coding

Figure 1: Block replication scheme compared to erasure codes with k = 8 and
R = 3. P (failure|l) as function of the number of concurrent losses l.

The redundancy factor is β=R, while the repair degree is d=1, since the
reconstruction of a new element corresponds to a simple copy of one replica.

Block Replication In a P2P system, a key strategy to make data survive
failures is to spread them across different locations, exploiting the diversity of
peers. For this reason there is a more complex way to do replication.

Consider an object O and split it in k fragments, then create R replicas
for every fragment and place every single replica on a different peer. Now the
number of peers involved is k × R, the redundancy factor is still β=R and the
repair degree is still d=1. The analysis of the reliability of this scheme is more
complex, since there is not a single number that says how many peers we can lose
without compromising the object as the survival of the object depends on which
particular peers fail. In a very fortunate case we can lose all the redundancy,
i.e. k × (R − 1) blocks, and still be able to retrieve the original object, in the
opposite case if all the replicas of a single block disappear, the object is lost
when as few as R blocks are lost. The probabilistic expression of the reliability
is very helpful in this case. Exploring exhaustively all the possible combinations
of losses for the case k=8 and R=3, we obtain the solid curve in Fig. 1.

Erasure Codes A generic erasure (k,h)-code can be described as follows.
Consider an object O and split it in k fragments, then process these fragments
producing k + h encoded blocks such that any k of them are sufficient to recon-
struct the original fragments. In a P2P storage system, each of this encoded
blocks is stored on a distinct peer. The number of losses that this scheme can
sustain is h, while the redundancy factor is β=(k + h)/k. If, for example, we
use k=8 and h=16 we will obtain β=3. This configuration is comparable with
the example proposed for block replication, since k and β are the same. The

5

starred curve in Fig. 1 shows that the reliability provided by coding is much
higher: it can sustain always until 16 losses, while replication is able to do that
only in a very small percentage of the cases. The price to pay for this increased
storage efficiency resides in the repair cost. As we will show in the next section,
the existing coding schemes (with the characteristics described) require a repair
degree of d=k.

As already mentioned, in P2P storage systems, a low repair degree d is
crucial. Today, the high repair degree is the reason why most of the P2P storage
systems use replication, preferring to pay an increased storage cost rather than
an increased communication cost.

We aim at developing a new class of codes, which find a place between
erasure codes and replication, offering a flexible trade-off in terms of storage
requirements, average repair degree, and reliability.

3.3 Efficiency of Linear Codes

In this section we detail the basic concepts behind the functioning of linear
codes, which are a specific implementation of erasure codes. We present also a
formal tool to analyze their reliability and repair cost. These concepts will be
used when we introduce our Hierarchical Codes.

The parity check can be considered as the simplest implementation of a (k,1)-
code: consider k bits and build an additional bit applying the XOR operator
to all the other bits. The XOR operation can be extended to all the bits in a
fragment. If we denote as fi the sequence of bits in the original fragments, and
with bi the sequence of bits in the encoded blocks, we can describe the parity
check as follows:

bi =
{

fi i <= k
f1 ⊗ f2 ⊗ · · · ⊗ fk i = k + 1

It is clear that any k encoded blocks are sufficient to build the missing one,
applying again the XOR operator.

The XOR operation can be interpreted as a linear combination of all the
original fragments in the domain of Galois Field2 with size 2, denoted as GF(2).
In this field there exists only one possible linear combination among all blocks
and this is the reason for which only one additional block can be built. In
erasure codes, a larger field size is used to be able to build h additional blocks.

Consider a Galois Field GF(2q), where the elements of such a field can be
expressed by q-bit words. This means that every original fragment and every
block can be interpreted as a sequence of words in GF(2q). Let us denote
as fi and bi the words belonging respectively to the ith fragment and the ith

encoded block. A linear code can be built using the following linear operations
2A Galois Field or Finite Field is an algebraic structure with a finite number of elements.

The main property of a Galois Field is that all the operations applied to its elements results
in an element within field itself.

6

in GF(2q):

bi =
{

fi i ≤ k∑k
j=1 ci,jfj k < i ≤ k + h, ci,j ∈ GF(2q)

(E1)

Assuming for simplicity that all the fragments are composed by a single
word, we can introduce the following vectors and matrices, all composed by
elements in GF(2q):

Fk,1 Vector of original fragments.
Bk+h,1 Vector of encoded blocks.
Ik,k Identity matrix.
Ch,k Coefficient matrix.

Using these matrices we can give an alternative expression of the code:

B =
[

I
C

]
F = C ′F

If the matrix C is such that any sub-matrix S built using k rows from C ′ is in-
vertible, then the original fragments can be always reconstructed by F=S−1BS ,
where BS is the k-long subvector of B, corresponding to the coefficients chosen
in S. If this property is satisfied, the code obtained is a (k,h)-code.

Many choices are possible for the coefficient matrix, and consequently there
exist multiple implementations of this class of codes. One of the most prominent
are Reed-Solomon codes [12], which define the matrix C as a h×k Vandermonde
matrix, i.e. ci,j=ji−1. For Reed-Solomon codes as well as for all the codes that
fix a specific coefficient matrix, the repair of a lost block requires first the recon-
struction of all the original fragments, which are then recombined accordingly
to the coefficient row that corresponds to the lost block. This explains why the
repair degree is d=k.

Another approach is to build the matrix C ′ choosing randomly the coeffi-
cients in the Galois Field3. This class of codes are called Random Linear Codes.
It is shown in [2] that a k × k random matrix S in GF(2q) is invertible with a
probability that depends only on the field size. By increasing the field size, this
probability can pushed arbitrarily close to 1. A common choice for the param-
eter q is q ≥ 16, in which case the probability can be considered to be 1 for all
practical purposes. This means that any k × k sub-matrix of C ′ is invertible
and that the property of a (k,h)-code is given.

The repair of a lost block could be done like in Reed-Solomon codes, i.e. first
reconstructing the original fragments and then combining them again. In this
case the repair degree would be again d=k. However, with random linear codes
we can do better: In fact the reconstruction of original fragments is not necessary

3Note that replacing the identity matrix with random coefficients transforms the code from
a systematic one to an unsystematic one.

7

and the result is indeed equivalent as to when the k encoded blocks are combined
directly using random coefficients.

One may be tempted, in this case, to use less than k blocks, reducing in this
way the repair degree. However, only a repair degree of d=k is able to preserve
the properties of the code. In particular for a repair degree of d < k, there will
be sets of k encoded blocks that are not sufficient to reconstruct the original k
fragments. This result can be derived from the literature about network coding
[10, 4] and its application to distributed storage systems [6]. We will reformulate
here some of the results in a slightly different but equivalent way, which will help
us in deriving Hierarchical Codes.

Let us introduce the concept of an Information Flow Graph, which represents
the evolution of the stored data across time. In particular, each node represents
a block of data at a specific point in time t. The time evolves in discrete steps
and every step corresponds to one or more losses and repairs. At the time
t = 0 the graph is populated only by k source nodes representing the k original
fragments denoted as F = f1, f2, . . . , fk. At time t = 1, the graph consists of
k + h nodes that represent the k + h encoded blocks initially inserted in the
storage system and denoted as B1 = b1,1, b2,1, . . . , bk+h,1. The graph at time
t = 1 is referred to as the code graph. At t > 1, the graph consists of additional
k+h nodes that represent the k+h encoded blocks present in the system at time
t, which are denoted as Bt = b1,t, . . . , bk+h,t. Connections between nodes are
only possible among nodes of consecutive time steps and are always oriented
from t to t − 1. The possible connections and their semantics in the storage
system are:

1. A generic node b1,1 at time step 1 is connected to one or more original
fragments, denoted as R(b1,1). These connections are determined by the
equations of the code used and for this reason the graph obtained is called
code graph. In particular R(b1,1) is the set of fragments linearly combined
to produce b1,1.

2. A generic block bi,t−1 in Bt−1 can be connected to the node bi,t. In this
case node bi,t must not be connected to any other nodes in Bt−1. This
means that the block bi has survived at time t− 1.

3. Alternatively, a generic block bi,t−1 is not connected to any node in the
following step. In this case node bi,t is connected to d nodes Bd

t−1 in Bt−1,
where bi,t−1 /∈ Bd

t−1. This means that block bi has been lost at time t− 1
and it has been repaired linearly combining the d blocks in Bd

t−1.

See the example in Fig. 2.
The Information Flow Graph we presented is a variant of the one proposed

in [6]. This allows us to formulate the following lemma, which derives from
Proposition 1 in [6]:

Lemma 1. A selection of k nodes Bk
t ⊆ Bt, is sufficient to reconstruct the

original fragments (with a probability that depends only on the size of the Galois

8

Figure 2: Example of one step of an Information Flow Graph. Blocks b2 and b3

have survived at time t− 1. Block b1 has been lost at time t− 1 and has been
repaired at time t combining the blocks b2 and b3.

Field in which the random coefficients are drawn), only if it is possible to find
k disjoint paths from the k nodes in Bk

t to the k source nodes in F .

The disjoint paths condition is obviously related to the choice of the repair
degree d. The following proposition holds:

Proposition 1. At any time t, any possible selection of k nodes Bk
t is suffi-

cient to reconstruct the original fragments only if the disjoint paths condition is
provided at time step t = 1 (by the code graph) and the repair degree is d ≥ k.

See the proof A.2 in the appendix . The Proposition 1 requires that the dis-
joint paths condition be provided by the code graph. In that case this condition
can be interpreted as the existence of a perfect matching between any selection
Bk

1 and the k source nodes in F . A Random linear code clearly provides this
condition, since by design any node in B1 is connected to all the source nodes
in F .

4 Hierarchical Codes

The previous section showed that for traditional linear erasure codes the repair
degree d cannot be smaller than k. Indeed, if d < k, there will be selections of
k encoded blocks that are not sufficient to reconstruct the original fragments.
From this point of view, the block replication scheme presented in section 3.2
can be considered as a limit case of a (k,(R-1)k)-code in which the repair degree
is chosen to be d = 1. In this case, only a small subset of all possible choices of k
encoded blocks (replicated fragments) is able to reconstruct the original object,
which may result in a lower reconstruction probability for a given number of
losses as we saw in Fig. 1.

Our intuition is that d = 1, which corresponds to block replication, and
d = k, which corresponds to a traditional erasure code, are two limit cases. We
believe that there is an interesting design space between these two limits that

9

(a) Hierarchical (2,1)-code (b) Hierarchical (4,3)-code

Figure 3: Samples of Code Graphs for Hierarchical Codes.

can be explored to find a better trade-off between storage efficiency and repair
degree.

The näıve approach of using d < k in random linear codes poses two main
difficulties: (i) there is no easy way to analyze the final reliability of the code,
as we did in block replication; (ii) there is no trivial policy for choosing the d
blocks (to be combined) that are able to prevent a degradation of the reliability
of the code through the maintenance process. Note that in block replication
there is such a way: replace a lost replica with a copy of an identical one.

We propose a new coding scheme to overcome these difficulties, which we
call Hierarchical Codes. A general instance of such a code can be generated
through its code graph built according to the following procedure:

1. Choose two parameters k0 and h0 and build a (k0, h0)-code using the
eq. E1 with the coefficients ci,j chosen randomly in GF (2q). If we set
k0=2 and h0=1 we obtain the code graph in Fig. 3(a).

The generated blocks constitute a group denoted as Gd0,1, where d0=k0 is
the degree used to generate the blocks and it is called combination degree.
In Fig. 3(a), d0=2.

2. Choose two parameters g1 and h1. Replicate the group structure Gd0,1 for
g1 times to obtain g1 groups denoted as Gd0,1 . . . Gd0,g1 . Then add other
h1 encoded blocks, obtained combining (with random coefficients) all the
existing g1k0 original fragments F . This corresponds to a combination
degree d1=g1k0=g1d0. If we set g1=2 and h1=1 we obtain the code graph

10

in Fig. 3(b).

All the blocks constitute a group denoted as Gd1,1, which corresponds to a
hierarchical (d1,H1)-code, where H1=g1h0+h1. The example in Fig. 3(b)
is a hierarchical (4, 3)-code.

3. The previous step can be repeated several times, adding levels to the
code. In the generic step s, choose two parameters gs and hs. Replicate
the structure of the group Gds−1,1 for gs times. Then add other hs en-
coded blocks, obtained combining all the existing original fragments, which
corresponds to a degree ds=gsds−1. All the blocks constitute a group de-
noted as Gds,1, which corresponds to a hierarchical (ds,Hs)-code, where
Hs = gsHs−1+hs.

The redundancy factor β of a generic hierarchical (k, h)-code does not change
with respect of a traditional erasure code: β = (k + h)/(k). The other metrics
are more complex.

Reliability The analysis of the reliability consists, as usual, in computing the
probabilities P (failure|l). These probabilities can be computed if we know what
sets of k encoded blocks are able to reconstruct the original fragments. Using
Lemma 1 applied to the code graph we can state the following:

Proposition 2. Consider Bk, a set of k blocks in the code graph of a hierar-
chical (k,h)-code.

If the nodes in Bk are chosen fulfilling the following condition:

|Gd,i ∩Bk| ≤ d ∀Gd,i belonging to the code (C2)

which means that in Bk there can be a maximum of d blocks chosen from any
group Gd,i,

Then the nodes in Bk are sufficient to reconstruct the original fragments.

See the proof A.3 in the appendix. In the hierarchical (4,3)-code in Fig. 3(b),
the condition (C2) means that no more than 2 blocks can be chosen from G2,1,
no more than 2 blocks can be chosen from G2,2 and no more than 4 blocks can
be chosen from G4,1

4 .
Using Proposition 2 we can compute the generic probability P (failure|l),

exploring all the possible configurations of the losses and check in each case if
there is still a possible choice of blocks that allows reconstruction, as explained
in appendix B.

Repair Degree In the case of Hierarchical Codes, as in the block replication,
there does not exist a single number that expresses the repair degree required. In
particular, the repair degree required changes accordingly to which block needs
to be repaired and which blocks are still alive. For each situation we would like

4This last constraint is unnecessary, since G4,1 represents in this case the whole code.

11

to know which is the right choice to prevent the code from degrading, i.e. to
preserve the guarantees provided by the code before maintenance, as described
in the previous paragraph.

We can use again the Lemma 1 to formulate:

Proposition 3. Consider an Information Flow Graph of a hierarchical code
at time step t. Consider a node b repaired at time step t. Denote as G(b) the
hierarchy of groups that contains b and as R(b) the set of nodes in Bt−1 that
have been combined to repair b.

If ∀t and ∀b, R(b) fulfills the following conditions:

|Gd,i ∩R(b)| ≤ d ∀Gd,i belonging to the code (C3)

and
∃ Gd,i ∈ G(b) : R(b) ⊆ Gd,i, |R(b)| = d (C4)

where, (i) condition (C3) means that in the set of blocks combined R(b) there can
be a maximum of d blocks chosen from any group Gd,i and (ii) condition (C4)
means that there must exist a group in the hierarchy G(b) that contains all the
combined blocks and that their quantity has to be equal to the combination degree
used in that group.

Then the code does not degrade, i.e. preserves the properties of the code
graph expressed in Proposition 2.

See the proof A.4 in the appendix. For the hierarchical (4,3)-code in Fig. 3(b),
this means that block b1 can be repaired in one of the following two ways:

1. Using other 2 blocks belonging to the same group G2,1, i.e. blocks b2 and
b3.

2. Using other 4 blocks belonging to the whole group G4,2, paying attention
not to pick more than two blocks from the group G2,2, for example blocks
b3, b7, b4, and b6.

When a repair is performed, according to the block that needs to be repaired,
multiple repair degrees are allowed. The repair degree that is actually used will
depend on the blocks that are available on the moment of the repair5.

Using the Proposition 3 and exploring all the possible combination of losses,
we can compute the probability P (d|l). The procedure to compute this probabil-
ity closely resembles the procedure to compute the failure probability P (failure|l)
explained in appendix B. P (d|l) indicates what is the probability that, if we
have l concurrent losses, the repair of a block, in the worst case, requires a
degree d. Note that worst case means that among the l blocks that we could
repair, we decided to repair the one that requires the highest repair degree.

Note that the worst case formulation of P (d|l) is quite pessimistic. In the
reality, the particular repair performed depends on the repair policy and its
repair degree can be lower than d.

5In the example of Fig. 3(b), if b1 needs to be repaired and either b2 or b3 is not available,
the repair degree must be d = 4.

12

We collected the results obtained for the hierarchical (4,3)-code in Fig. 3(b)
in the following table:

l (losses)
1 2 3

P (d = 2|l) 0.86 0.42 0
P (d = 4|l) 0.14 0.58 0.77

P (failure|l) 0 0 0.23

The first two rows show the repair degree probability, while the last row shows
P (failure|l). This last row represents the cases in which the original fragments
cannot be reconstructed. Note that these cases correspond also to the cases in
which there is at least one block that cannot be repaired. For these last cases,
thus, the failure probability replaces the probability P (d|l), since the repair
in the worst case cannot be performed. This is also the reason for which the
values in each column sum up to 1. The table covers up to 3 losses, because
for a higher number of losses it is clear that repairs are never possible and the
failure probability is 1.

In Fig. 4(a), the same probabilities are graphically represented for a hierar-
chical code (64,64)-code, built using 6 levels and setting k0=2, gs=2 and hs=1
for all the levels, except for the last level where h5=2. Every bar in the plot
corresponds to a column in the table, while the heights of the sections in a bar
represent the probabilities of repair degree or failure given the corresponding
number of losses.

This figure nicely shows the properties of Hierarchical Codes. They are able
to reduce the repair cost significantly: in a traditional (64,64)-code, the repair
degree is always 64, while in this hierarchical (64,64)-code, it varies from 2 to 64.
At a first look, the price to pay for this advantage seems to be reduced reliability;
indeed a traditional (64,64)-code does never fail for fewer than 64 losses, while
the hierarchical code may fail even for as low as 32 losses. However, by adjusting
the repair policy, as we will explain in next section, one can achieve the same
reliability.

We believe that Hierarchical Codes give a new possibility to system designers
to determine the right trade-off between costs and benefits with respect to the
characteristics of the environment in which the system is going to operate. Note
that different choices of the parameters {k0, gs, hs} produce different codes with
the same level of redundancy, but with a different trade-off between reliability
and repair degree.

In this sense, the configuration we proposed in Fig. 4(a) is just one of the
many instances of Hierarchical (64,64)-codes. For some environments other
choices of the parameters might be better. For example, if it is not acceptable
to have a non-zero failure probability for 32 losses, one can choose the alternative
configuration depicted in Fig. 4(b). This configuration is built in 4 levels, setting
k0=8, gs=2 and hs=4 for all the levels, except for the last level where h3=8.
The histogram in Fig. 4(b) shows how failures occur for higher values of losses
as compared to Fig. 4(a). However, there is a price to pay in terms of a higher

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

P
(*

|lo
ss

es
)

losses

2
4
8

16
32
64

failure

(a) First example.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

P
(*

|lo
ss

es
)

losses

8
16
32
64

failure

(b) Second example.

Figure 4: Examples of Hierarchical (64,64)-codes. P (d|l) and P(failure|l) as
function of the number of concurrent losses l.

14

repair cost: the repair degree varies from 8 to 64 and the region corresponding
to a repair degree of d = 64 is significantly larger.

In this paper we do not explore the tuning of the parameters, which we
leave as future work. However, we will show through experiments how different
parameter choices can impact the final cost.

5 Experiments

The experiments are carried out via an event-driven simulator, which simulates
a storage system for a set of peers whose behavior is described by availability
traces that are provided as input.

Our objective is to compare the reliability, the storage, and network com-
munication costs of traditional erasure codes and Hierarchical Codes.

In both cases we chose a (64,64)-code. In particular, the traditional code is a
Reed-Solomon code, while the Hierarchical Codes correspond to the two config-
urations presented in Fig. 4. This choice assures that the storage consumption
is the same in all the scenarios6.

The reliability provided depends on the repair policy adopted. We consider
a hybrid timer/threshold policy. It assumes the presence of an entity able to
monitor the availability of the participating peers and trigger a repair operation
according to the following rules:

1. When a peer A disconnects and the number of available peers n is smaller
or equal to TH: n ≤ TH → perform immediately the repair of the block
stored on peer A.

2. When a peer A disconnects and n > TH → wait for a time T and then if
A is still unavailable perform a repair of the block stored on A.

The timer T is used to distinguish between transient and permanent failures.
In the ideal case in which T is chosen as the maximum possible disconnection
time of a peer, whenever a disconnected peer does not reconnect within T , we are
sure that it has abandoned the system for ever. In the real world, disconnection
times may be bigger than T . In such a case, the blocks stored on a reconnecting
peer are discarded, because they have already been repaired7. This is a waste
of resources that suggests to increase T . However, when T is increased, a higher
number of peers is allowed to stay offline, in which case the set of online peers is
not able to reconstruct the original fragments or is not able to perform repairs.
To be quite insensitive to the choice of T , we introduced also the threshold,
which has to be such that availability is provided, i.e. reconstruction is always
possible.

6It is β=2, which means that every object consumes a space twice its size.
7For Hierarchical Codes, reintegration of this block is in some cases possible and would

increase significantly our efficiency. However, identifying such cases is not trivial and it is left
as future work.

15

In the case of Reed-Solomon codes, availability is provided if n ≥ k, which
requires that TH > k. We fix TH = k + a, which means that in the moment
of minimum availability, i.e. in the moment of maximum risk, the system can
still support a more losses. In the case of Hierarchical Codes, there is no fixed
threshold that guarantees availability. As shown in Fig. 4, the minimum number
of online fragments that provides availability depends on the particular losses
that occur in the system and varies, in the case of Fig. 4(a), from 64 to about
96. To be comparable with Reed-Solomon codes, our approach is the follow-
ing: whenever a loss occurs we recompute the probabilities P (failure|l), which
indicate the probability of failure if additional l losses would occur, taking into
account the specific losses that already have occurred. If we want that, in the
moment of maximum risk, the system can still support additional a losses, we
apply the following rule: a repair is performed whenever P (failure|a) > 0.

Two notable facts are that (i) the repair policy for Hierarchical Codes needs
to maintain a larger number of available blocks and tends to perform more
repairs; (ii) the guarantees in terms of availability in the case of Hierarchical
Codes are stronger: for Reed-Solomon codes, at the moment of maximum risk,
if additional a losses would occur, the object will be unavailable with probability
1, while in Hierarchical Codes, the object will be unavailable with a probability
that can be much smaller than 1.

In the experiments, we test different environments changing the stability
of peers, and we measure the number of block transfers needed to maintain
the code. We chose a = 10 and T to be three times bigger than the average
disconnection time. In any case, we performed other experiments that showed
that changing these parameters does not influence the results significantly.

5.1 Experiments with synthetic traces

In this set of experiments, the peer behavior is synthetically generated. In par-
ticular, every peer behaves according to a very simple Markovian model: a peer
is available for an exponentially distributed time ton, then upon disconnection
it can abandon the system with probability p or can stay temporarily offline
with probability 1 − p for an exponentially distributed time toff, after which it
comes back online.

We tested our hierarchical (64,64)-codes and Reed-Solomon (64,64)-code,
using different combinations of the three parameters. The results suggest that,
while p does not have a strong influence, ton and toff play an important role.
Note that the ratio up = ton/(ton + toff) represents the percentage of time that
a peer spends online, or alternatively the ratio of peers that on average are
online. It is clear that up has an influence on the number of repairs needed.
This influence is different in Reed-Solomon codes and in Hierarchical Codes,
since Hierarchical Codes need on average more peers to be online.

We run the simulation for 10000 time units, setting the disconnection time
ton = 10, the abandon probability p = 0.001 and selecting several values for toff
to test different values of the up ratio.

16

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

to
ta

l n
um

be
r

of
 r

ep
ai

rs

up ratio

Reed-Solomon
Hierarchical A
Hierarchical B

(a) Total number of repairs.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

to
ta

l n
um

be
r

of
 b

lo
ck

 tr
an

sf
er

s

up ratio

Reed-Solomon
Hierarchical A
Hierarchical B

(b) Total number of block transfers.

Figure 5: Cost of maintenance for Reed-Solomon and Hierarchical (64,64)-codes
as function of the up ratio up = ton/(ton + toff). a = 10, T = 3toff.

17

 0

 0.5

 1

 1.5

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tr
an

sf
er

 g
ai

n

up ratio

Reed-Solomon
Hierarchical A
Hierarchical B

Figure 6: Gain of Hierarchical (64,64)-codes in terms of number of block trans-
fers with respect of Reed-Solomon (64,64)-codes as function of the up ratio
up = ton/(ton + toff). a = 10, T = 3toff.

 0

 0.5

 1

 1.5

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tr
an

sf
er

 g
ai

n

up ratio

Reed-Solomon
Hierarchical

Figure 7: Gain of Hierarchical (32,32)-codes in terms of number of block trans-
fers with respect of Reed-Solomon (32,32)-codes as function of the up ratio
up = ton/(ton + toff). a = 5, T = 3toff.

18

As already mentioned, we evaluate Reed-Solomon codes and the two in-
stances of Hierarchical Codes shown in figure 4. Fig. 5 presents the results
obtained; we label with ‘Hierarchical A’ the results obtained for the hierarchical
code of Fig. 4(a) and with ‘Hierarchical B’ the results for the hierarchical code
of Fig. 4(b). In particular Fig. 5(a) shows the number of repairs needed by
the three redundancy schemes, while Fig. 5(b) shows the total amount of block
transfers executed for these repairs.

We see in Fig. 5(a) that, compared to Reed-Solomon codes, the hierarchical
code ‘A’ requires a much larger number of repairs, while the hierarchical code
‘B’ requires only a slightly larger number of repairs. This is expected since (1)
Hierarchical Codes need to be more reactive as they are more sensitive to losses
(2) The trade-off between reliability and repair cost of the hierarchical code in
Fig. 4(b) is much closer to Reed Solomon with respect to the one in Fig. 4(a),
(i.e. a non-zero failure probability occurs for a number of losses closer to 64 and
the repair degree is equal to 64 in a larger number of cases).

We also see that the number of repairs decreases when the up ratio increases.
This is due to the fact that a higher up ratio corresponds to a higher percentage
of peers on line, which in turn means fewer repairs.

The advantages of Hierarchical Codes are shown in Fig. 5(b), where the
actual communication costs introduced by the repairs is expressed in terms of
the number of blocks transferred. Both hierarchical codes, in spite of their
significantly higher number of repairs, generate in most of the cases much less
block transfers than the Reed-Solomon code. In other words Hierarchical Codes
require more repairs, but most of the repairs are quite cheap in terms of block
transfers, which reduces the global repair traffic.

To have better understanding of the gain achieved in terms of block transfers,
we show in Fig. 6 the ratio between the number of block transfers required by
Hierarchical Codes and the one required by Reed-Solomon codes. This picture
clearly shows the trade-off offered by the two different Hierarchical Codes. The
instance ’A’ appears to be more suitable for small values of up ratio, i.e. when
the nodes are more unstable, while for a more stable environment the reduction
in repair traffic is smaller and in some cases (namely for up = 0.7) it is even
higher than in Reed-Solomon codes. On the other hand, the hierarchical code
‘B’ produces a smaller gain for unstable environments (roughly 40% vs 20%),
while it reduces the repair traffic much more in stable environments. Also this
code always achieves a lower repair traffic than the Reed Solomon code (the
curve is always below 1).

In this section we presented in details the results obtained with Reed-Solomon
codes and Hierarchical Codes, in the case of k = 64 and h = 64. We performed
also experiments for different values of k and h and the results were consistent
with the ones we presented. To give an example we propose in Fig. 7 the gain
in terms of block transfers achieved by an instance of Hierarchical Codes8 over
Reed-Solomon Codes, where k = 32 and h = 32. The results follow the same

8This instance corresponds to the instance ‘A’ of Fig. 4(a), adapted to have k = 32 and
h = 32

19

trend as in Fig. 6, altough the gain of Hierarchical Codes is slightly reduced.
This is due to the fact that a repair in Reed-Solomon code with k = 32 requires
less transfers than in the case of k = 64 and consequently Hierarchical Codes
have less space to produce a reduction.

5.2 Experiments with real traces

To evaluate the codes for a wider set of operating conditions than the ones given
by the synthetic traces, we also use availability data of real distributed systems.
We use two different traces:

1. KAD traces: obtained crawling a KAD network. These traces [14]
characterize the availability of about 6500 peers in the KAD network,
sampling their status every 5 minutes for about 5 months.

2. PlanetLab traces: obtained monitoring the connectivity of PlanetLab
nodes. These traces [8] describe the availability status of 669 nodes, which
was obtained by means of pings sent every 15 minutes among all pairs of
PlanetLab nodes, starting from January 2004 for about 500 days.

The following table depicts the results for the two traces comparing the total
number of repairs and the total number of block transfers for the Reed-Solomon
and the two instances of Hierarchical Codes.

Repairs Transfers

PlanetLab
Reed-Solomon 472 30208
Hierarchical A 637 4624
Hierarchical B 487 6920

KAD
Reed-Solomon 765 48960
Hierarchical A 3888 39710
Hierarchical B 1072 20992

The results confirm the trend that we saw in the previous subsection: Hier-
archical Codes require a higher number of repairs but result in a lower amount
of blocks to be transferred. Once again we see the impact of the two different
configurations on the results.

6 Conclusion

We presented a new class of codes, called Hierarchical Codes, which offer a
flexible way of adding redundancy in distributed storage systems. Hierarchical
Codes combine the advantage of reduced repair traffic offered by replication
with the higher resilience against failures offered by coding. We believe that
Hierarchical Codes make coding a practical alternative to replication in P2P
storage systems.

20

Experiments validated our claims, showing that for a given level of avail-
ability, a higher number of repairs needed by Hierarchical Codes results in most
cases in a smaller amount of repair traffic.

Moreover, we saw that Hierarchical Codes with a given redundancy factor,
allow to trade-off in multiple ways reliability and repair cost. Future develop-
ments will focus on better understanding these trade-offs, which will allow to
determine the optimal configuration of the codes for a given environment.

Finally it would be interesting to compare Hierarchical Codes with Regen-
erating Codes. We already showed in [7] that Regenerating Codes are able to
reduce the repair traffic at the price of a higher computational cost, which can
become in some cases prohibitive. The next step, which we plan as future work,
is to compare these two classes of codes taking into accounts both communi-
cation and computation costs, deploying both of them in a real P2P storage
system.

acknowledgements The first author was partially supported by a PhD Schol-
arship from Microsoft Research.

A Proofs

A.1 Preliminary Proofs

Lemma 2. Consider an Information Flow Graph for a generic (k,h)-code at
time step T . Consider a selection of k blocks Bk

1 . Assume that there exists a
condition C on this selection that guarantees that the original fragments can be
reconstructed.

If for any time step t ≤ T , any selection of Bk
t that fulfills the condition C

can be perfectly matched with a selection of k blocks Bk
t−1 in time step t−1 that

in turn fulfills the condition C,
Then any selection Bk

T that fulfills the condition C allows the reconstruction
of the original fragments.

Proof. We proceed by steps:
step 1 Consider a selection Bk

1 that fulfills the condition C. By assumption
we know that the selection allows the reconstruction of the original fragments.
This means, thanks to Lemma 1, that nodes in Bk

1 have k distinct paths towards
the original fragments F .

step 2 Consider a selection Bk
2 that fulfills the condition C. By assumption

we know that the nodes in this selection can be perfectly matched with a selec-
tion Bk

1 that in turn fulfills the condition C. Thanks to previous step, we know
that nodes in Bk

1 have k distinct paths towards the original fragments F . This
means that we can concatenate the perfect matching between Bk

2 and Bk
1 and

the k distinct paths between Bk
1 and F , obtaining k distinct paths between Bk

2

and F.
The last step can be repeated until the time step T , where thanks to Lemma

1, the lemma is proved.

21

Lemma 3. Consider a code graph of a Hierarchical Code. Consider a group
Gds,i and denote as Fds,i the subset of original fragments that are connected with
nodes in this group Gds,i. Consider a selection of nodes Bk

1 and consider the
subset of this selection that belongs to the group considered: Ads,i = Bk

1 ∩Gds,i.
If |Ads,i| ≤ ds and ∀j : Gds−1,j

⊆ Gds,i, the nodes in Ads−1,j have already
been perfectly matched with |Ads−1,j | nodes in Fds−1,j,

Then it is possible to find a perfect matching between the nodes in Ads,i and
the nodes in Fds,i.

Proof. Consider the nodes in Ads,i that do not belong to the subgroups Gds−1,j ⊆
Gds,i and denote them as Â. Consider the fragments in Fds,i that have not been
matched with the nodes in the subgroups Gds−1,j ⊆ Gds,i and denote them as
F̂ . The nodes in Â are connected with all the nodes in Fds,i and can be thus all
matched with nodes in the subset F̂ , as long as |Â| ≤ |F̂ |. Since nodes in the
subgroups have already been matched, then |Ads,i| − |Â| = |Fds,i| − |F̂ |, where
|Fds,i| = ds. This implies that whenever |Ads,i| ≤ ds, |Â| ≤ |F̂ | and the perfect
matching is possible.

Lemma 4. Consider an Information Flow Graph of a hierarchical code at time
step t. Consider a selection Bk

t that fulfills the condition (C2). Assume that
a subset of α nodes Bα

t ⊂ Bk
t has already been perfectly matched with nodes in

the previous step Bα
t−1 that in turn fulfill the condition (C2). Consider a node

b ∈ Bk
t \Bα

t , i.e. that belongs to the selection but has not yet been matched.
If all the repairs in the graph are done fullfilling condition (C3) and condi-

tion (C4), and all the blocks bi ∈ Bα
t are such that |R(bi)| ≤ |R(b)|,

Then it is possible to augment Bα
t−1 with another node that is matched with

b, without violating the condition (C2) on the augmented set Bα+1
t−1

Proof. Let us use the following notation: Ad,i = Bα
t−1 ∩Gd,i and Rd,i = R(b) ∩

Gd,i. Assume that Gds,1 is the group in which condition (C3) is fulfilled. This
condition requires that |Rds,1| = |ds|. Note that all the nodes in Bα

t have a
repair degree d ≤ ds, which implies that all the nodes in Ads,i are necessary
matched with nodes in Bα

t ∩Gds,1
9. Since b ∈ Gds,1, thanks to condition (C2),

|Bα
t ∩Gds,1| < ds, which in turn implies |Ads,i| < |ds|.
Consider two alternative cases:
case 1: ∃j : 1 ≤ j ≤ gs, |Rds−1,j | > |Ads−1,j |: This means that there is a

subgroup of the group Gds,1 (that belongs to G(b)) that has at least one free
node that can be matched with the block b. Since |Rds−1,j | ≤ |ds−1|, this node
can be added without violating condition (C2) and the lemma is proved.

case 2: ∀j : 1 ≤ j ≤ gs, |Rds−1,j | ≤ |Ads−1,j |: This means that there are no
free nodes in the subgroups. This implies that:

∑gs

j=1 |Rds−1,j | ≤
∑gs

j=1 |Ads−1,j |.
Consider the nodes in Ads,1 that do not belong to the subgroups and denote
them as Â (they are among the hs additional nodes), then consider the nodes
in Rds,1 that do not belong to the subgroups and denote them as R̂. We can

9To be matched with a node bo outside Gds,1, the repair degree of bo must be bigger than
ds, which would violate the condition of the lemma.

22

write
∑gs

j=1 |Ads−1,j | = |Ads,i| − |Â| and
∑gs

j=1 |Rds−1,j | = |Rds,i| − |R̂|. Since
|Rds,1| = |ds| and |Ads,i| < |ds|, we have that |R̂| > |Â|. This means that there
is at least one free node in R̂ that can be matched with the blocks b without
violating condition (C2) and the lemma is proved.

A.2 Proof of Proposition 1

Proof. Thanks to Lemma 2, proving Proposition 1 corresponds to prove that in
a generic time step t, only if repairs are done with a repair degree d ≥ k, then
any selection of nodes Bk

t can be perfectly matched with a selection Bk
t−1.

Consider a repaired node b ∈ Bk
t . All the other k − 1 nodes in Bk

t can be
matched at most with k− 1 nodes in Bt−1. If b has been repaired with a degree
d < k, it is possible that all the nodes in R(b) have already been matched with
the k − 1 nodes in Bk

t , preventing the matching of b. If d ≥ k there is at least
one free node that can be matched with b. This can be repeated for all the
repaired blocks proving, thanks to Lemma 2, the proposition.

A.3 Proof of Proposition 2

Proof. Thanks to Lemma 2, proving Proposition 2 corresponds to prove that
if a selection Bk

1 is done fulfilling condition (C2), then it is possible to find a
perfect matching between the nodes in Bk

1 and the original fragments in F . This
can be proved using iteratively the Lemma 3 from the innest group that nodes
in Bk

1 belong to, to the outest one.

A.4 Proof of Proposition 3

Proof. Thanks to Lemma 2, proving Proposition 3 corresponds to prove that in
a generic time step t, where repairs are done fulfilling the condition (C3) and
condition (C4), any selection of nodes Bk

t that fulfills the condition (C2) can be
perfectly matched with a selection Bk

t−1 that in turn fullfills the condition (C2).
Thanks to Lemma 4, Bk

t−1 can be found matching one by one the nodes in
Bk

t proceeding from the nodes with the lowest repair degree to the nodes with
the highest one.

B Computation of failure probability

Let us consider a Hierarchical (k,h)-code and assume that l losses occurred in
this code, where 0 ≤ l ≤ (k + h). We first define the probability P (k′|l), which
is the probability that, given that l losses occurred, k′ is the maximum number
of alive fragments in the code, which fulfills the condition condition (C2). Note
that the definition implies that P (k′|l) exists only for 0 ≤ k′ ≤ k. Given these
probabilities, computing the failure probabilities is straightforward:

P (failure|l) = 1− P (k′ = k|l)

23

To compute the failure probability we procede as follows:

1. We compute the probabilities P0(k′|l) for the Hierarchical (k0, h0)-code,
represented by the level 0 (the innest) in the hierarchy as explained in
section B.1.

2. We compute the probabilities Ps(k′|l) for the Hierarchical (ds,Hs)-code,
represented by the generic level s, using the probabilities Ps−1(k′|l) com-
puted for the hierarchical (ds−1, Hs−1)-code, represented by the level s−1,
as explained in section B.2.

B.1 Probabilities for level 0

At the level 0 the probability computation is straightforward:

P0(k′|l) =





1 ∀k′ = k0 + h0 − l, k′ < k0

1 ∀k′ > k0 + h0 − l, k′ = k0

0 otherwise

B.2 Probabilities for level s

If we have l losses in a generic hierarchical (ds, Hs)-code associated with the
s-th level of the hierarchy we have many different ways in which these losses
can be distributed among the gs groups Gds−1,i this code is made of and the hs

fragments associated with this level s. Let us define the Loss Configuration
of l losses denoted as LCl as a vector of gs + 1 elements LCl = {l0, l1, . . . , lgs},
where each element li indicates how many losses occur in the group Gds−1,i

except from l0, which indicates how many losses occur among the hs fragments
of the level s. The constraints of LCl are:

{
l0 ≤ hs

li ≤ ds−1 + Hs−1, ∀i = 1, . . . , gs

We denote as P (LCl) the probability that this configuration take place given
that l losses occurred and we compute it as explained in section B.3.

Every of the last gs values in the configuration (all of them except l0) in-
dicates a number of losses li in a given subgroup and thus denotes a set of
probabilities Ps−1(k′|li), with 0 ≤ k′ ≤ ds−1, which express the probability that
k′ is the maximum number of alive fragments from the subgroup i that fulfill
the condition (C2) for the level (s− 1).

If, for each of this subgroup we select a specific value k′i, we define a Frag-
ment Configuration of K ′ =

∑gs

i=1 ki alive fragments denoted as FCK′ , whose
probability is denoted as P (FCK′) and given by:

P (FCK′) =
gs∏

i=1

Ps−1(k′i|li)

The probability P (FCK′) represents one of the components of the probability
that, given the configuration analyzed LCl, K ′ is maximum number of alive

24

fragments taken from the subgroups such that the condition (C2) is fullfilled for
the level s. To obtain the maximum number of alive fragments from the whole
group that fulfill the condition (C2), K ′ must be augmented with hs − l0 alive
fragments of the level s, with the constraint: K ′ + hs − l0 ≤ ds.

Putting the pieces together we can finally define the probability Ps(k′|l):

Ps(k′|l) =
∑

∀LCl

P (LCl)f(k′,LCl)

where the auxiliary function fs(k′,LCl) is defined as follows

fs(k′,LCl) =



1 k′ < hs − l0∑
∀FCk′−(hs−l0)

P (FCk′−(hs−l0)) k′ < k, k′ ≥ hs − l0∑ks−l0
j=0

∑
∀FCk′−j

P (FCk′−j) k′ = k, k′ ≥ hs − l0

B.3 Loss Configuration probability

We can map the loss configuration problem to the following balls and bin prob-
lem. Consider a set of gs + 1 colors, for each color i there are ni balls, which
are inserted in a bin. We extract form the bin a total of l balls, which will
form a color configuration described by a vector of gs + 1 elements, where each
element li indicates how many balls of color i have been extracted. Considering
the original loss configuration problem, our objective is to compute the prob-
ability of a given color extraction, where n0 = hs and ni = ks−1 + hs−1 for
1 ≥ i ≥ g. This probability can be computed dividing the number of possible
configurations corresponding to the extraction by the total number of possible
configurations, which gives:

P (LCl) =

∏gs

i=0

(
ni

li

)
(Pgs

i=0 ni

l

)

where LCl = {l0 . . . lg} and :
(

n

k

)
=

n!
k!(n− k)!

References

[1] A. Duminuco and E. Biersack. Hierarchical codes: A flexible trade-off for
erasure codes in peer-to-peer storage systems. Peer-to-Peer Networks and
Applications. http: // dx. doi. org/ 10. 1007/ s12083-009-0044-8 , 2009.

[2] S. Acedacnski, S. Deb, M. Medard, and R. Koetter. How good is random
linear coding based distributed networked storage? In NETCOD, 2005.

25

[3] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. Farsite: Federated,
available and reliable storage for an incompletely trusted environment. In 5th
Symposium on OSDI 2002, 2002.

[4] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Transactions on Information Theory, 46(4), July 2000.

[5] F. Dabek et al. Wide-area cooperative storage with CFS. In Proc. SOSP
2001, Oct. 2001.

[6] A. G. Dimakis, B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. Computer Research
Repository (CoRR), arXiv:0803.0632v1 http://arxiv.org/abs/0803.0632,
Mar. 2008.

[7] A. Duminuco and E. Biersack. A practical study of regenerating codes
for peer-to-peer backup systems. to appear to the 29th Intl Conference on
Distributed Computing Systems (ICDCS), 2009.

[8] B. Godfrey. Repository of availability traces. http://www.cs.berkeley.
edu/∼pbg/availability/, 2006.

[9] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly durable, decen-
tralized storage despite massive correlated failures. In NSDI05, 2005.

[10] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE
Transactions on Information Theory, 49(2), February 2003.

[11] M. Mitzenmacher. Digital fountains: A survey and look forward. In IEEE
Information Theory Workshop, 2004.

[12] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-
like systems. Software – Practice & Experience, 27(9):995–1012, September
1997.

[13] R. Rodrigues and B. Liskov. High availability in DHTs: Erasure coding
vs.replication. In IPTPS05, 2005.

[14] M. Steiner. Kad traces. http://www.eurecom.fr/∼btroup/kadtraces/,
2007.

[15] H. Weatherspoon. Design and Evaluation of DistributedWide-Area On-line
Archival Storage Systems. PhD thesis, University of California, Berkeley,
2006.

[16] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication: A
quantitative comparison. In Proceedings of IPTPS’02, Cambridge, MA, Mar.
2002.

26

