
978-1-4244-4439-7/09/$25.00 c©2009 IEEE

Privacy in Context-Based and Epidemic Forwarding

Abdullatif Shikfa
EURECOM

France
Abdullatif.Shikfa@eurecom.fr

Melek Önen
EURECOM

France
Melek.Onen@eurecom.fr

Refik Molva
EURECOM

France
Refik.Molva@eurecom.fr

Abstract

Autonomic and opportunistic communications require
specific routing algorithms, like replication-based algo-
rithms or context-based forwarding. Privacy is a major
concern for protocols which disseminate the context of their
destination. In this paper, we focus on the privacy issue in-
herent to context-based protocols, in the framework of an
original epidemic forwarding scheme, which uses context
as a heuristic to limit the replication of messages. We define
the achievable privacy level with respect to the trusted com-
munities assumption, and the security implications. Indeed,
privacy in such an environment raises challenging prob-
lems, which lead us to a solution based on two refinements
of identity-based encryption, namely searchable encryption
and policy-based encryption. This new solution enables for-
warding while preserving privacy by allowing secure par-
tial matches in the header and by enforcing confidentiality
of the payload.

1 Introduction

Context-based forwarding (e.g.[3, 10, 13]) is a new com-
munication paradigm, where messages are forwarded from
source to destinations based on the context (e.g. location,
workplace or social information) instead of explicit address-
ing. To be more precise, each message is associated with
a message context which corresponds to the context of its
destination, and nodes make their forwarding decisions by
comparing the context of the message with their own con-
text and the context of their neighbors. The assumption be-
hind context-based forwarding is that the larger the context
shared by two nodes, the higher the chances for these two
nodes to meet one another (e.g. two persons working at
the same company are highly likely to be in transmission
range at some point). Context-based forwarding is partic-
ularly adapted to challenged heterogeneous environments,
like opportunistic and autonomic networks [9], where end-
to-end connectivity is not guaranteed.

Indeed, in such environments, classical routing mecha-
nisms are impractical, hence the transmission of messages
should rely on opportunistic strategies. Opportunistic net-
working consists in transmitting the messages over any
communication medium available. Many opportunistic for-
warding protocols are replication based (e.g. [2, 6, 8, 11,
19]). The replication factor depends on a heuristic which is
used by intermediate nodes to decide either to forward the
message or to drop it. Using the context as heuristic is inter-
esting for controlled epidemic forwarding: a node decides
to forward a message only if the shared context between the
message and the node is significant.

Privacy of the destination is a crucial issue in such a pro-
tocol. The message context is indeed essentially the context
of the destination, and the message is forwarded through
various intermediate nodes that may not be trusted by the
destination. Moreover, trust relationships are loose in such
a heterogeneous environment, therefore nodes want to keep
a tight control over the access by other nodes to their pro-
file because of obvious privacy reasons. Thus, nodes should
be able to correctly make context-based forwarding deci-
sions on encrypted messages. The encryption mechanism
itself should be public and should not require prior con-
tact with the destination, while avoiding dictionary attacks.
These requirements lead us to searchable encryption and
ID-based cryptography. Therefore we propose a new so-
lution based on two refinements of ID-based cryptography,
namely Public Encryption with Keyword Search (PEKS)
[4] and policy-based encryption [1]. The particular use of
these functions enables intermediate nodes to detect match-
ing attributes without revealing the non-matching ones, and
enforces confidentiality of the payload of the message, with
no online Trusted Third Party.

The main contributions of this paper are as follows:

• We introduce a communication design that combines
the concepts of epidemic and context-based forward-
ing,

• We study the problem of privacy in this frame-
work, and define the trusted communities assumption.

We further define the security primitives required to
achieve privacy in the proposed protocol.

• We propose an original design that features complete
context-based and epidemic forwarding with strong
privacy enforcement.

In the next section, we first describe the context-based
and epidemic network model. We define the threat model
and then focus on the security requirements of the pro-
posed solution. Section 3 analyzes a basic approach based
on hashes, whereas section 4 presents our original scheme
based on PEKS and policy-based encryption. In section 5
we evaluate our solution both from a security and perfor-
mance point of view, and we conclude in section 6.

2 Problem statement

2.1 Context-based and epidemic forward-
ing

Classical routing mechanisms are not adapted to oppor-
tunistic and autonomic networks. In such environments, the
transmission of messages relies on opportunistic strategies
like epidemic forwarding. The main challenge in epidemic
forwarding is to find a suitable heuristic in order for the
nodes to decide either to forward the message or to drop
it and avoid network congestion.

We present an original design of an epidemic forwarding
protocol, which heuristic is based on the context. The as-
sumption behind context-based forwarding is that the larger
the context shared by two nodes, the higher the chances
for these two nodes to meet one another (e.g. two per-
sons working at the same company are highly likely to be
in transmission range at some point). This assumption leads
to an interesting context-based heuristic for controlled epi-
demic forwarding: the idea is that a node would decide to
store and forward a message only if the shared context be-
tween the message and the node is significant, and to drop
it otherwise.

To be more precise, we consider a network composed
of a set of n nodes {Ni}1≤i≤n. The context is defined as
a set of attributes {Aj}1≤j≤m, where each attribute Aj is
a couple attribute name Ej , attribute value Vj . The set of
attribute names {Ej}1≤j≤m is known by all nodes. The
value of the attribute Aj at node Ni is denoted by Vi,j , and
the pair (Ej , Vi,j) is the attribute j of node i denoted by
Ai,j . Finally, the profile P(i) of node i is the concatenation
of all its attributes: P(i) = Ai,1||...||Ai,m.

When a node NS (1 ≤ S ≤ n) wants to send a message
M to a destination ND (1 ≤ D ≤ n), NS divides M in
header H(M) and payload P (M), M = H(M)||P (M).
The header H(M) holds the profile of ND known by NS :

H(M) = ||j∈LAD,j

where L ⊂ [1,m] is the subset of the indexes of the values
of P(D) that NS knows, and ||j∈LAD,j denotes the con-
catenation of the attributes with such indexes. When an in-
termediate node Ni receives the message M , Ni compares
its own profile P(i) with the header H(M) to extract the
subset Q ⊂ L of indexes of values that are shared between
H(M) and P(i), such that ∀j ∈ Q, AD,j = Ai,j . After this
subset extraction, Ni can compute the probability of meet-
ing the destination as pi(M) = |Q|/|L|, where |X| denotes
the cardinal of a set |X|. pi(M) is used as a metric in our
heuristic and Ni decides either to drop the message or to
store and forward it depending on pi(M).

A message can have one or several destinations: a node
Ni knows that it is a destination of M if pi(H(M)) = 1. In
the sequel of the paper, destination thus designs one node
or a set of nodes depending on the header.

This protocol takes forwarding decisions based on the
destination context, which is potentially sensitive informa-
tion. This protocol hence needs to be enhanced with se-
curity mechanisms both from a privacy and robustness per-
spective. To this extent, we first define the threat model and
then the security requirements.

2.2 Threat model and security assump-
tions

The most obvious threat in this protocol is privacy leak-
age: a nodes’ profile should not be exposed to other nodes
in clear, even if it helps forwarding. Hence, we first assume
that malicious nodes, eavesdropping the communication, or
even curious intermediate nodes are interested in discover-
ing the full profile of the destination of a message. Privacy
should therefore be enforced, but with some limitations in-
herent to the protocol. Indeed, from the design of the proto-
col, an intermediate node should be able to detect matches
between its profile and the destination of the message, thus
full privacy cannot be assured.

Therefore, we make the assumption of trusted communi-
ties, which was first introduced in [18] as intra-community
privacy. Communities are defined on attributes’ basis: all
nodes sharing a given attribute Aj form the community of
attribute Aj . In the trusted communities assumption, nodes
which belong to the same community trust each other and
they do not attack each other. Hence, revealing to another
node a shared attribute is acceptable from a privacy perspec-
tive, but attributes that do not match should remain secret.

Furthermore, we assume that nodes might adopt a ma-
licious behavior for a specific message only based on the
knowledge they get from the said message. For instance,
they could decide to drop all messages addressed to a cer-
tain profile in a Denial of Service (DoS) attempt against
nodes with the said profile. Yet, attacks which do not de-
pend on the knowledge gained from a message (e.g. where

a node randomly drops messages) are out of the scope of
this paper. Such attacks are indeed mainly due to selfish
nodes, and can be mitigated through cooperation enforce-
ment schemes ([7, 12, 15]).

Finally, we assume the existence of a Trusted Third Party
(TTP) during the setup phase to distribute security materials
(like keys or certificates). Yet, such an authority might not
be reachable during the runtime phase because of the delay-
tolerant nature of the network during deployment. Hence
the TTP is only considered offline.

2.3 Security requirements

As mentioned in section 2.1, the proposed protocol,
which combines epidemic forwarding with context-based
information, requires that the header of each message in-
cludes the context of the destination. This presents a major
privacy threat, because the context of the nodes are dissem-
inated throughout the network. A user would agree on shar-
ing all or part of his context information with his friends or
some members of his communities but he would certainly
be reluctant to see his context accessible to strangers. As
pointed out in [16], privacy is expected to be a significant
concern for acceptance of pervasive environments, hence
this protocol needs to be enhanced with security mecha-
nisms to preserve user’s privacy. As mentioned in section
2.2, this requirement is not only critical from a privacy per-
spective, but also from a robustness point of view. The
disclosure of the destination context can indeed lead to a
specific DoS attack against a specific attribute or set of at-
tributes.

To be more precise, several security requirements are
needed to secure the protocol. First, the node NS which
is sending a message M should encrypt the header of the
message H(M) in order to prevent other nodes from ac-
cessing the destination’s profile. This encryption function
should be public, because any node should be able to send
a message, even before meeting the destination (or set of
destinations). This encryption function should not prevent
forwarding though and an intermediate node Ni should still
be able to compute the probability pi(H(M)).

Hence, as counterpart to the header encryption mecha-
nism, Ni should have a method to determine whether an
encrypted attribute matches its own profile or not. Contrary
to the header encryption function, this method should be
private, in that only nodes which share an attribute with the
destination should be able to detect a match and hence dis-
cover the attribute. Nodes, which do not share the attribute,
should only learn that they do not share the attribute but
they should not be able to determine what the value of the
attribute is.

Furthermore, NS should also encrypt the payload of the
message P (M), such that only the destination can decrypt

it. Indeed, if intermediate nodes had access to the pay-
load they would infer valuable information about the con-
text of the destination. The difference between the header
and the payload encryption is that header encryption should
allow intermediate nodes to find partial matches between
their profile and the encrypted header, whereas the payload
encryption scheme is an all or nothing scheme, where the
destination can decrypt the payload and other nodes cannot
extract any information from the encrypted payload.

We point out that the term ”encrypt” used to denote a
secure encoding of the header is different from traditional
encryption schemes, like the payload encryption for exam-
ple, in that decryption is not required. However, we use the
term ”encrypt” in both cases for the sake of clarity.

To summarize the security requirements, the proposed
protocol needs the four following security primitives:

1. ENCRYPT HEADER: used by the source to encrypt
the header of the message. This function should be
public and enable partial matches by authorized nodes.

2. ENCRYPT PAYLOAD: public function used by the
source to encrypt the payload of the message for the
destination.

3. MATCH HEADER: used by an intermediate node to
determine matches between its own profile and the en-
crypted header of the received message. The interme-
diate node discovers matching attributes but does not
learn the value of non-matching attributes with this pri-
vate function.

4. DECRYPT PAYLOAD: private function used by the
destination to decrypt the encrypted payload.

We now examine a first approach to meet these security
requirements.

3 Basic approach based on hash functions

3.1 Solution sketch

The first idea to solve the privacy issue is to use hash
functions, as proposed in [13]. A cryptographic hash func-
tion hash is an efficient one-way function that does not re-
quire the use of a secret key and is preimage resistant: given
h, it is difficult to find any M such that hash(M) = h.

The idea would be to use a hash function hash to im-
plement the ENCRYPT HEADER primitive. To be more
precise, a node NS , which wants to send a message M to
ND, would simply hash all the values of the header H(M),
thus obtaining:

H(M) = ||j∈L(Ej , hash(VD,j)).

As a counterpart, an intermediate node Ni would imple-
ment MATCH HEADER as follows:

• Ni would first hash its profile with the same hash func-
tion hash,

• Ni then tests whether one of its hashed at-
tributes (Ej , hash(Vi,j)) is equal to an attribute
(Ej , hash(VD,j)) of the received header.

Thanks to the preimage resistance of hash, this implies that
the attributes where the equality holds are shared attributes,
and the one where it does not hold are non-matching at-
tributes.

This idea is seducing because it requires only a public
function, which is hash. Furthermore, hash functions are
widely available, and they are efficient to compute.

3.2 Dictionary attack

The idea of using hash functions does not meet the secu-
rity requirements defined in section 2.3 though. This solu-
tion is namely prone to dictionary attacks and such attacks
have a strong impact on the privacy of the solution. Indeed,
in context based communications, attributes are not pseudo-
random sequences, they are rather well formated and have a
meaning. Therefore, the intermediate node can simply com-
pute the hash of each word in a dictionary and then identify
the values in the message header, to discover the value of
the attributes that did not match.

Since the hash function is public, dictionary attacks can
easily and efficiently be launched by any node. Therefore
hash functions, as they are used here, do not provide confi-
dentiality or privacy.

Since ENCRYPT HEADER has to be implemented by
a public function because of the design of the protocol,
two important properties are required to avoid dictionary
attacks:

• The output of ENCRYPT HEADER should be ran-
domized, which means that the output of EN-
CRYPT HEADER should be different at each execu-
tion, even if the input don’t change.

• MATCH HEADER, the counterpart of EN-
CRYPT HEADER, should be private. This was
already mentioned in section 2.3, but the basic
solution does not verify this property.

4 Our proposed solution

4.1 General idea

Our goal is to protect the privacy of communicating
nodes by encrypting the header and the payload while not

disrupting the forwarding of messages. This implies that
nodes with shared attributes are able to match these at-
tributes in the header (partial match) while only the destina-
tion can decrypt the payload (complete match). The basic
approach emphasized the importance of thwarting dictio-
nary attacks, hence our protocol requires some randomness
or salting. Salting was originally proposed in the context of
password protection, to protect weak user passwords from
pre-computation attacks or rainbow tables [14]. Yet our
problem is different because we require public encryption
functions that can be used by any node without the need of
a secret, and we therefore cannot rely on shared keys which
are required by symmetric techniques. Regarding asym-
metric techniques, classical schemes like RSA [17], which
are based on certificates to prove a node’s identity, are not
adapted either because a node would have to fetch a destina-
tion certificate before sending a message to this destination,
and this is unpractical in a DTN environment.

The alternative to classical asymmetric techniques is
identity-based cryptography, which avoids the need for cer-
tificates. Therefore we propose a solution based on refine-
ments of ID-based encryption, which we tailored to our
needs to allow any node to compute an encrypted version
of the message. The encryption functions depend on an in-
ternal random number, hence the output of the functions
change at each execution, even if the input is the same. The
solution relies on an offline TTP. This means that there is a
setup phase during which nodes contact the TTP to retrieve
some secrets corresponding to their profile, but afterward,
during the runtime phase, the TTP is not needed anymore.
In the next section, we present an overview of two crypto-
graphic tools and then we focus on the innovative way in
which they are integrated in our scheme to meet the privacy
requirements.

4.2 Policy-based cryptography and Pub-
lic Encryption with Keyword Search
(PEKS)

ID-based cryptography is a type of public-key cryptogra-
phy in which the public key of a node is the node’s identity.
The main advantage of ID-based cryptography is that a node
does not need to know the public key (or a certificate) of a
destination to send an encrypted message. Boneh et al. pro-
posed the first practical ID-based encryption scheme called
IBE in [5], and since then many developments have been
proposed. We present two interesting developments to our
protocol, namely policy-based cryptography and PEKS.

Policy-based cryptography proposed by Bagga et al. [1]
is an extension of ID-based cryptography where the ID used
for encryption is replaced by a logical expression of several
basic identities. In the particular case of policy-based en-
cryption, this allows to encrypt a packet with a key corre-

sponding to the conjunction or disjunction of two identities
or attributes, which permits an easy management of com-
plex security policies. For our protocol, we just need the
property that we can encrypt a message with a key corre-
sponding to the conjunction of several attributes.

Another refinement over ID-based encryption is PEKS,
introduced by Boneh et al. in [4]. PEKS allows an inter-
mediate node to look for a match on encrypted data, pro-
vided the node has some adapted trapdoor. The node does
not learn any information except whether a match occurred
or not. We give a functional example with three nodes
A, B and C to explain the scheme more precisely. If B
wants to send a searchable keyword W to A through C,
it encrypts W with a specific function PEKS and sends
M = PEKS(Apub,W) to C, where Apub is the public
key of A. C cannot infer any information on M at this step.
If A wants to enable C to look for the keyword W in the
messages that are addressed to her, she has to provide C
with a trapdoor T = Trapdoor(Apriv,W), where Apriv is
the private key of A. With both M and T , C proceeds to a
test Test(M,T) which returns true if T is the trapdoor cor-
responding to W and M the encryption of the same W and
false otherwise. Hence, if the result is true, C only knows
that A and B encrypted the same keyword (but it does not
learn the value of the keyword W) and if the result is false
it just deduces that it was not the same keyword. We defer
the practical constructions of PEKS, Trapdoor and Test
to [4], and we now focus on the description of our solu-
tion, and more specifically on the particular use of PEKS
and policy-based encryption.

4.3 Description of the scheme

The functions PEKS, Trapdoor and Test presented in
the previous section are public functions, but Trapdoor re-
quires the private key of the destination as input which is
not practical in the DTN scenario. We therefore propose
to modify the scheme defined in [4] by introducing a TTP
which computes trapdoors for authorized nodes. Our proto-
col has thus two phases: a setup phase, where nodes retrieve
their secrets (analog to key distribution in other schemes)
and a runtime phase where nodes are deployed and commu-
nicate between each other.

4.3.1 Setup phase

In the setup phase, all nodes have access to a Public Key
Generator which is a Trusted Third Party (TTP). TTP
generates m pairs of public/private key pairs (one per at-
tribute) TTPpub,j/TTPpriv,j , for 1 ≤ j ≤ m, and gives
the m public keys TTPpub,j to all nodes.

Furthermore each node Ni sends his profile P(i) to
TTP , which verifies the validity of the said profile (the

method of verification is out of the scope of this pa-
per) and in turn gives to Ni the trapdoors associated with
P(i). To be more precise, Ni receives the set of couples
(Ej , T rapdoor(TTPpriv,j , Vi,j)) for 1 ≤ j ≤ m, where
Trapdoor is the trapdoor function of the PEKS scheme (see
section 4.2). These trapdoors will be used to find matches
between a received header and Ni’s profile.

TTP also provides Ni with the private keys correspond-
ing to its attributes. This is similar to the private key corre-
sponding to a node’s ID that is provided in IBE. We call
these keys Aprivi,j

, and the corresponding public key is
simply Ai,j itself. The private keys are used to decrypt
messages at the destination. The policy-based encryption
of a message M with the key Ai,j is denoted by {M}Ai,j

,
and the decryption with the associated private key verifies
{{M}Ai,j

}Aprivi,j
= M .

To sum up, at the end of this setup phase, each node Ni

has 3m secrets which are:

• public keys of the TTP : TTPpub,j ,

• trapdoors corresponding to P(i):
Trapdoor(TTPpriv,j , Vi,j),

• private keys corresponding to P(i): Aprivi,j
,

for 1 ≤ j ≤ m.

4.3.2 Runtime phase

During the runtime phase, TTP is offline and nodes cannot
access it, they only use the keys they retrieved during the
setup phase. We now describe our proposal for the security
primitives presented in section 2.3:

• ENCRYPT HEADER:
Consider a node NS which wants to send a mes-
sage M to ND. As described in section 2.1, NS

should include a specific header with the attribute of
the destination. In order to protect privacy, NS sends
a searchable encryption of this header by using the
public keys TTPpub,j and the PEKS function de-
scribed in section 4.2. Hence, each attribute AD,j is
modified in a searchable encrypted attribute A′

D,j =
(Ej , PEKS(TTPpub,j , VD,j)). NS is able to com-
pute these A′

D,j because the PEKS function is pub-
lic, and NS retrieved TTPpub,j during the setup phase.
The modified header H ′(M) that is actually included
by NS is:

H ′(M) = ||j∈LA′
D,j

with L ⊂ [1,m].

• ENCRYPT PAYLOAD:
In order to complete the protection of privacy, the rest
of the message M , which is the payload P (M), should

also be encrypted such that only the destination (or the
set of destinations) can decrypt it. At this step, we use
policy-based encryption (see section 4.2) to encrypt
the payload with the conjunction of the attributes of
the profile of the destination. To be more precise the
encrypted payload P ′(M) is

P ′(M) = {M}∧j∈LAD,j

where ∧ designates the logical and, and ∧j∈LAD,j is
the conjunction of all attributes whose index lies in L.

Finally the message actually sent by NS to its neigh-
bors is M ′ = H ′(M)||P ′(M).

• MATCH HEADER:
When an intermediate node Ni receives a message M ′,
Ni needs to compute pi(M ′) to take a forwarding deci-
sion. To this end, Ni has to determine the matches be-
tween H ′(M) and its own profile. At this step, Ni uses
the Test function of PEKS together with the trapdoors
it retrieved during the setup phase. To be more precise,
for each j ∈ L, Ni extracts PEKS(TTPpub,j , VD,j)
from H ′(M) and computes

Test(PEKS(TTPpub,j , VD,j),
T rapdoor(TTPpriv,j , Vi,j)),

which outputs:

– true, if VD,j = Vi,j ,

– false, if VD,j 6= Vi,j .

When the output is true, Ni knows that it shares the
attribute Ai,j with the destination and it adds j to the
set Q of matching indexes (see section 2.1). On the
contrary, if the output is false, Ni does not learn any
additional information about AD,j . Ni can thus deter-
mine the set Q and compute the probability pi(M ′) to
take a forwarding decision.

• DECRYPT PAYLOAD:
If pi(M ′) = 1, it means that Ni is actually a desti-
nation of M ′, hence it needs to decrypt the payload.
To this end, Ni needs to construct the decryption key
corresponding to ∧j∈LAD,j . This is possible only
with the knowledge of AprivD,j

for all j ∈ L. Since
pi(M ′) = 1, it means that for all j ∈ L, AD,j = Ai,j ,
hence Ni indeed knows AprivD,j

for all j ∈ L. Ni can
therefore construct the decryption key that we denote
by ∧j∈LAprivD,j

, and Ni can access the payload of the
message by computing:

P (M) = {P ′(M)}∧j∈LAprivD,j
.

This completes the description of our scheme, and we
evaluate its security and efficiency in the next section.

5 Evaluation
In this section, we evaluate the security and the perfor-

mance of the scheme.
The security of the encryption schemes we use were for-

mally proved by their authors in [1] and [4], and the proofs
essentially mean that these schemes are secure under the
assumption that the Bilinear Diffie-Hellman problem is in-
tractable, which is a widely accepted assumption.

Hence, the MATCH HEADER primitive allows an in-
termediate node Ni to discover matches between the desti-
nation profile and its own profile thanks to the Test func-
tion of PEKS. Ni cannot discover the non-matching at-
tributes by using the Test function because the function
requires a trapdoor as input, and Ni only receives the
trapdoor corresponding to its own profile during the setup
phase. Therefore, even though Test is a public func-
tion, Test(., T rapdoor(TTPpriv,j , Vi,j) is a private func-
tion that only nodes with the correct attribute can evaluate.
This primitive reveals the matching attributes, hence privacy
is not absolute, but this fits under the trusted communities
assumption described in section 2.2.

Thanks to the properties of policy-based encryption, the
DECRYPT PAYLOAD primitive requires a private key that
is computable only by nodes which have all the attributes
of the header. These nodes are, by design of the protocol,
the destinations of the message. Other nodes cannot deduce
any information about the payload even if they share some
of the attributes.

Furthermore, ENCRYPT HEADER and ENCRYPT
PAYLOAD use only public functions and public keys that
are distributed during the setup phase to all nodes. Any
node NS can therefore send messages, even before meeting
the destinations during the runtime phase. These primitives
also avoid the dictionary attack trap, because they make use
of internal randomization, hence their output is different at
each execution, even if the inputs do not change.

Hence the proposed framework ensures privacy against
curious nodes or eavesdroppers, while enabling the compu-
tation of the probability used in forwarding decisions.

From a management perspective, the TTP provides all
keys during the setup phase but it does not play any role in
the runtime phase. This offline TTP is therefore compatible
with an opportunistic network. As in many DTN protocols,
key revocation is a difficult problem. In order to reduce
the impact of this issue, we propose that, periodically, the
TTP regenerates keys and all nodes have to do setup to get
updated keys.

Concerning storage, as mentioned in section 4.3.1, each
node has to store 3m secrets. Each of these secrets is in fact
an element of a group of points on an elliptic curve of prime
order p. In such settings it is sufficient to have p of 160 bits
length to have a security equivalent to 1024 bits RSA. The
storage overhead is therefore 480m bits, which is linear in

the number m of attributes.
Finally, from a performance point of view, elliptic curve

operations used in all the primitives are cheaper than classic
asymmetric cryptography but they are still more expensive
than symmetric encryption. The cost is acceptable for small
texts, like the values of attributes but it is prohibitive when it
comes to encrypting large data, like the payload. To circum-
vent this obstacle, the sender can use a symmetric encryp-
tion algorithm to encrypt the payload with a secret key, and
encrypt the secret key with the policy-based encryption. We
did not mention this option in the description of the scheme
for the sake of clarity, but for practical deployment this op-
tion should be implemented.

To put it in a nutshell, this scheme enforces, at reasonable
costs, privacy of the destination profile all the way since
intermediate nodes do not know what is the final destination
of the information, they just know the shared attributes and
hence they can take a forwarding decision.

6 Conclusion

In this paper, we introduced a communication design
for opportunistic networks which combines epidemic and
context-based forwarding. We focused on the analysis of
privacy issues in such a protocol and defined the security
primitives required to preserve privacy within trusted com-
munities. These primitives require the use of carefully cho-
sen public functions to ensure both privacy and forwarding
operations, while avoiding dictionary attacks.

Finally, we presented an original solution which com-
bines PEKS and policy-based encryption. The specific
use of PEKS allows intermediate nodes to discover partial
matches between their profile and the destination profile,
while policy-based encryption enforces confidentiality of
the payload. This scheme suits opportunistic networks well,
because it has a low storage and computation overhead and
it relies on an offline TTP only.

Acknowledgement
This work has been supported by the HAGGLE and

SOCIALNETS projects, grant agreement number 27918
and 217141, funded respectively by the EC sixth frame-
work program theme FP6-IST-2004-2.3.4 for Situated and
Autonomic Communications and the EC seventh frame-
work programme theme FP7-ICT-2007-8.2 for Perva-
sive Adaptation. See http://www.haggleproject.org/ and
http://www.social-nets.eu/ for further details.

References

[1] W. Bagga, R. Molva, and S. Crosta. Policy-based encryp-
tion schemes from bilinear pairings. In ACM Symposium on
Information, Computer and Communications Security (ASI-
ACCS), 2006.

[2] A. Balasubramanian, B. N. Levine, and A. Venkataramani.
DTN Routing as a Resource Allocation Problem. In ACM
SIGCOMM, 2007.

[3] C. Boldrini, M. Conti, J. Jacopini, and A. Passarella. Hibop:
a history based routing protocol for opportunistic networks.
In IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2007.

[4] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano.
Public-key encryption with keyword search. In Eurocrypt,
2004.

[5] D. Boneh and M. Franklin. Identity-based encryption from
the weil pairing. In CRYPTO, 2001.

[6] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
Maxprop: Routing for vehicle-based disruption-tolerant net-
works. In IEEE International Conference on Computer
Communications (INFOCOM), 2006.

[7] L. Buttyán and J.-P. Hubaux. Nuglets: a virtual currency
to stimulate cooperation in self-organized ad hoc networks.
Technical Report DSC/2001, EPFL, 2001.

[8] A. El Fawal, J.-Y. Le Boudec, and K. Salamatian. Self-
limiting epidemic forwarding. In IEEE International Sym-
posium on a World of Wireless, Mobile and Multimedia Net-
works (WoWMoM), 2007.

[9] Haggle project, 2006.
http://www.haggleproject.org/index.php.

[10] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: social-
based forwarding in delay tolerant networks. In ACM in-
ternational symposium on Mobile ad hoc networking and
computing (MobiHoc), 2008.

[11] A. Lindgren and A. Doria. Probabilistic routing protocol for
intermittently connected networks. In IRTF Internet Draft,
draft-irtf-dtnrg-prophet-00.txt, 2008.

[12] P. Michiardi and R. Molva. Core: a collaborative reputation
mechanism to enforce node cooperation in mobile ad hoc
networks. In IFIP TC6/TC11 Joint Working Conference on
Communications and Multimedia Security, 2002.

[13] H. A. Nguyen, S. Giordano, and A. Puiatti. Probabilistic
routing protocol for intermittently connected mobile ad hoc
network (propicman). In IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2007.

[14] P. Oechslin. Making a faster cryptanalytic time-memory
trade-off. In CRYPTO, 2003.

[15] M. Önen, A. Shikfa, and R. Molva. Optimistic fair exchange
for secure forwarding. In International Conference on Mo-
bile and Ubiquitous Systems: Networking & Services, (Mo-
biQuitous), 2007.

[16] L. Opyrchal, A. Prakash, and A. Agrawal. Supporting pri-
vacy policies in a publish-subscribe substrate for pervasive
environments. JNW, 2007.

[17] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 1978.

[18] A. Shikfa, M. Önen, and R. Molva. Privacy in content-based
opportunistic networks. In Workshop on Opportunistic Net-
working (WON), 2009.

[19] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray
and wait: an efficient routing scheme for intermittently con-
nected mobile networks. In ACM SIGCOMM workshop on
Delay-tolerant networking (WDTN), 2005.

