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Abstract—1

This paper introduces a new method for distributed interfer-
ence mitigation in full spectral-reuse OFDMA cellular networks.
This considers the use of pre-defined frequency-domain power
profiles helping make the interference more predictable across
the subcarriers. We propose a method for computing the power
profiles so as to maximize the capacity of the system in case
of maximum throughput scheduling, and a simple linear model
implemented also in presence of a fairness-oriented scheduler.
We prove that our idea of power planning gives substantial
improvements in terms of outage capacity in case of fairness-
oriented scheduling. The advantage of our method over previ-
ously proposed approaches for interference mitigation based on
power control is that our algorithm is fully distributed and does
not require any exchange of signaling between the different cells.

I. I NTRODUCTION

The demand for multimedia wireless services is expected to
grow substantially as new wireless communications devices
are offered on the market, supported by so-called 3G and
4G mobile networks (LTE, WiMAX, UMB, LTE Advanced,
etc.). It is quite interesting to note that, in order to be
up to the challenge, such network must meet a two-fold,
contradictory, demand: first, to provide a smooth and fair (to
the extent of the possible) Quality Of Service (QoS) as a
user roams from a close-to-center cell location to an edge-
of-cell one. Second, the networks must achieve the maximum
spectrum efficiency, hence, operate in an environment with
maximum reuse of the spectral resource, thereby creating
much more severe interference conditions in the cell border
area compared with those prevailing closer to the base. In the
past years, several approaches relying on the concept of inter-
cell coordination have emerged from the wireless research
community which can be seen as potential solution to this
dilemma. We shall distinguish between two categories: packet-
based coordination and resource-allocation based coordination.
In the first, data packets destined at the users are replicated
as several base stations, before jointly precoding/beamforming
and transmitting from all the base station antennas [1], [2],
[3]. Typically this approach is the optimal one because it
eliminates the notion of cell border in favor of a virtual
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Multiple Input Multiple Output (MIMO) view of the entire
network. The downside is a large overhead in inter-cell
signaling, packet routing, and feedback for exchanging the
channel state information required to compute the precoders,
although some overhead reduction methods are emerging [4].
In the second approach, interference is tackled by means of
coordinated resource control (power, scheduling, etc.) between
the cells [5] [6] which make lower complexity, distributed
coordination techniques possible. Power control, smart soft
reuse partitioning are possible strategies there [7], [8], [9].

In this paper, we consider the use of power control com-
bined with Orthogonal Frequency Division Multiple Access
(OFDMA) user scheduling as a way to deal with interference,
while decreasing the outage capacity of the network glob-
ally. Traditionally, distributed power control has targeted the
maximization of the number of users achieving a prescribed
QoS threshold. However, in network design aimed at carrying
usual (best effort) IP (Internet Protocol) traffic, link adaptation
protocols exist and maximizing the sum of user rates can be
more relevant. Dynamic multi-cell power control targeted at
maximizing the sum of user rates in the network is a very
difficult task and does not lend itself easily to a distributed
(across the cells) implementation, except some particular cases
with a large number of users [10]. The reason is as follows:
dynamic power control affects the Signal to Interference to
Noise Ratios (SINRs) of all users in all cells in a fullycoupled
manner making interference unpredictable. To address this
issues, we propose the following contributions in this paper.

- We propose the use of a power control scheme for
OFDMA systems, referred to aspower planning. The
scheme isdynamic in frequency domainbut static in
time domain, in order to restore the predictability of
interference. This aspect is essential so as to allow
each cell to make a distributed scheduling decision,i.e.,
independently on the actions taken in other cells.

- The power planning method works by identifying a power
profile in the frequency domain. The power profile indi-
cates the downlink transmit power associated in advance
to each subcarrier. To each cell (or sector) is assigned
a given power profile. All profiles are subject to a total
power constraint over the subcarriers.

- We propose a procedure to compute the power profiles



as to pursue system performance in case maximum sum
rate is considered as a metric. This procedure takes the
form of an iterative off-line algorithm which computes the
power planning vector by maximizing the network sum
rate taking into account a maximum sum rate scheduler,
such that the obtained power planning vector is ideally
matched to the desired scheduling rule. The scheduling
algorithm is independently run in each cell, realizing a
distributed implementation. The algorithm’s well-behaved
convergence is illustrated in this paper.

- Finally, a simple distributed fairness-oriented scheduler
is proposed which tries to allocate a minimum target rate
to all users while taking into account channel conditions.
This scheduler only requires a user to feedback the mea-
sured SINR to its serving base alone. The inter-cell co-
ordination gains are achieved thanks to the interference-
diversity effect,i.e., for a given total interferenceI being
measured, which neighboring bases contribute most to
this interference at any given user is a random event,
due to path loss and fading effects. Strong and weak
interfering sources are automatically assigned unequal
transmit power levels, thanks to the scheduler.

Interestingly, other contributions exist in the literature sug-
gesting the use of power profiles. For instance [11] proposes
the use of fixed unequal power levels over different time
slots, in Time Division Multiple Access (TDMA) systems.
The profiles are adjusted to as to create a soft frequency reuse
pattern with strongly interfered slots and weakly interfered
slots. However the powers and users are selected so that a pre-
required SINR threshold is met. Furthermore, the calculation
only considers one interfering base per cell. More recently,
a contribution to 802.16 WiMAX [12] considers the use
of power profiles for OFDMA. However these profiles are
dynamic and evolve on the fly with the taking into account of
users with new random channels. As a result, the interference
pattern is not predictable and intercell feedback and signaling
must be implemented to track the interference across cells. As
mentioned above, in this paper we focus on power planning
idea and distributed coordination.

II. SYSTEM MODEL

In this work we consider a wireless network where a fixed
number of cellsN are deployed according to a hexagonal
pattern. Each cell is equipped with an OFDMA transmission
system composed ofS subcarriers assumed to be used only
in downlink, and omnidirectional antennas are considered at
each Base Station (BS). Over the network area, a fixed number
of usersU are randomly uniformly distributed. So, up toS
different users can be served in each cell. The system exploit
full reuse of the spectrum in all cells.

Now letun be the index of a user connected to celln, where
n is the closest cell. Userun is affected by long term pathloss
depending on the distance from each cellm in the network
according to the widely used expression:

Lun(m)(dB) = k0 + k1 ln d(un,m) + shun(m), (1)

wherek0 andk1 are constants depending on the propagation
environment,d(un,m) is the distance between userun and
cell m, andshum

(n) the log-normal shadowing contribution.
Short-term Rayleigh frequency-selective fast fading coeffi-
cientsγun

(m, s) are considered, withs subcarrier index. From
now on, we will denote as “channel gain”chun

(m, s) the
contribution of both the long-term and short-term gains:

chun(m, s)(dB) = γun(m, s)(dB)− Lun(m)(dB). (2)

In such system, we address the problem of resource alloca-
tion that consists in power and frequency allocation, and user
scheduling. In particular, the aim is maximizing the multicell
capacityCnet, defined as:

Cnet =
N∑

n=1

S∑
s=1

C(sn) =
N∑

n=1

S∑
s=1

log2(1+SINRû(sn)), (3)

whereSINRû(sn) is the Signal over Interference plus Noise
Ratio (SINR) experienced by the userû (if any) allocated over
subcarriers of cell n. This is computed as:

SINRû(sn) =
Pr,û(sn)

Pnoise + Iû(sn)
, (4)

wherePr,û(sn) is the power received by user̂u allocated in
cell n over subcarriers, Pnoise is the Additive White Gaussian
Noise (AWGN) contribution, equal over all subcarriers, and
Iû(sn) is the interference power experienced by the same user:

Iû(sn) =
N∑

m=1,m6=n

Iû,m(sn), (5)

with Iû,m(sn) the power experienced by userû due to the
transmission of cellm over the same subcarriers. Here,
intercell interference is of primary concern, while intracell
interference can be considered as negligible due to resource
orthogonality.

As performance metric we will consider theoutage network
capacity, defined as the percentage of users perceiving a
capacity lower than a predefined threshold.

Due to the multicell environment, to perform optimal
scheduling and resource allocation, decisions should be taken
in a centralized way at some control unit able to collect
information from all users, and decide accordingly. However,
as the number of cells grow, the complexity of these opera-
tions becomes prohibitive. So, a fully distributed approach is
recommendable in order to take complexity under control.

In this work, we aim at designing a completely distributed
implementation of scheduling and resource allocation among
cells, with the objective of minimizing the overall outage
network capacity according to what defined in Eq. 3. In
order to have a completely distributed strategy and make
the interference level predictable, we propose a novel power
planning approach, which inserts some structuring in power
allocation, as shown in the next Section.



As a final remark, the following assumption is performed:
when taking decisions, each BS knows all useful and cross-
link channel gains (from now on also denoted as gain matrix),
which is reasonable if a sufficiently long coherence time and
the use of a feedback channel is assumed.

III. M ULTICELL CAPACITY WITH POWER PLANNING

A. Concept Description

As already mentioned, the objective of this work is to design
a fully distributed implementation of resource allocation and
user scheduling over a multicell OFDMA network, whose
aim is minimizing the network outage capacity as defined in
previous Section according to Eq. 3. To reach this goal, the
selection of the user to be scheduled and of the resources2 to
be assigned to him, should be performed taking into account
the channel gain and the received interference power. If a fully
distributed approach is pursued, each BS can only rely on local
information provided via a feedback channel by its own set
of users. So, in this work we propose to introduce structuring
inside the system, in order to make interference level inside
the network predictable.

Though in principle power levels can continuously vary
inside a predefined range, we propose that only a certain set of
possible power levels are allocable, and these are distributed
among cells and subcarriers according to a predefined pattern.
We denote this concept as “power planning”.

We organize the network in groups ofK adjacent cells
according to a regular pattern as done for frequency planning3

and, for analogy, we denote this group of cells as “cluster”
andK as “cluster size”. Then, we also arrange theS equally
spaced OFDMA subcarriers assigned to each cell inK groups
of S/K adjacent subcarriers, from now on denoted also
as “subbands”. It is clear that the larger the value ofK,
the smaller the frequency diversity if correlation between
subcarriers is taken into account.

Having introduced the geometry of the system and the
organization of the OFDMA spectrum, it is possible to move
to the core idea of this work, the power planning, whose
formalization is provided in the following.

B. Capacity Calculation

We define a vector powerP =
[
P (1) · · ·P (K)

]
composed of

the K power levels, also denoted as “power profile”. Hence,
in the allocation process only theseK power values are
usable. From now on, we will denote this vector as “multicell
transmit power vector”. Thus, the terms “power profile” and
“multicell transmit power vector” are used as synonyms. At
this stage, it is worth noting thatK represents the cluster
size, the multicell transmit power vector size and the number
of subbands composing the bandwidth of the system.

In each cell, every subband is assigned with one of the
values belonging to power vectorP, and over all subbands
inside a cell all values ofP are exploited. Nevertheless, looking

2We define as resource the couple subcarrier/transmit power level.
3Cells are grouped byK with K = i2 + i · j + j2 and i, j integers.

Fig. 1. Power planning concept.

at a specific subband, the set of cells belonging to the same
cluster use all power levels available inP.

So, we assign each cell in the network with a tagj ranging
from 1 to K denoting the cell type. Then, since each tag is
assigned with a specific power vector (i.e., with a specific
order of the possibleK power levels in vectorP), cells with
the same tag will be assigned with the same power vector,
whereas cells belonging to the same cluster are assigned with
permutations of the original power vector. For sake of clarity,
the concept of power planning is graphically depicted in Fig. 1
for K = 3, where “cell type” denotes the tag assigned to a
certain cell belonging to the cluster represented.

Finally, the multicell transmit power vector is subject to the
following constraint on the average value:

1
K

K∑

k=1

P (k) = P . (6)

Having inserted this structuring inside the system, it is
possible to rewrite the capacity expression highlighting the
contribution of the different types of cell:

Cnet =
N∑

n=1

Cn =
K∑

j=1

Nj∑
n∗=1

C
(j)
n∗ . (7)

whereCn is the capacity of celln, Nj is the number of cells
with tag j, C

(j)
n∗ is the capacity of then∗-th cell of typej. For

sake of brevity, in the following we report the analysis of the
capacity in a target cell in case of cluster sizeK equal to 3,
though everything holds for any possible value ofK, and we
consider only the case of target cell of type 1. Moreover, we
take into account only the first tier of interferers, since this is
the most relevant contribution to interference. Removing the
cell index, the type 1 target cell experiences a capacityC(1):

C(1) =
K∑

g=1

S/K∑
s?=1

C
(1)
û (s?

g), (8)



whereC
(1)
û (s?

g) is the capacity experienced by userû allocated
over thes?-th subcarrier of subbandg, which in turn is:

C
(1)
û (s?

g) = log2(1 + SINR
(1)
û (s?

g)), (9)

where SINR
(1)
û (s?

g) is the relevant SINR. So, it is clear
that three possible SINR expressions for target cell 1 can be
computed, one for each subband. For example, according to
the cell numeration in Fig. 1, in case of subband 1 the SINR
over a generic subcarriers?

1 is:

SINR
(1)
û (s?

1) =
P (1)chû(1, s?

1)

Pnoise + I
(1)
û (s?

1)
, (10)

whereI
(1)
û (s?

1) is the interference power experienced by user
û allocated over subcarriers? of subband 1:

I
(1)
û (s?

1) = P (2)ĉh2,û(s?
1) + P (3)ĉh3,û(s?

1), (11)

where:

{
ĉh2,û(s?

1) = chû(2, s?
1) + chû(4, s?

1) + chû(6, s?
1),

ĉh3,û(s?
1) = chû(3, s?

1) + chû(5, s?
1) + chû(7, s?

1).
(12)

The same analysis can be conducted for any type of target
cell by properly permutating the power index.

The scheduling functionality can take advantage of the
knowledge of the power vector when taking decision about
which users should be served and over which resources,
since only the local gain matrix. In this work we focus on
a scheduling algorithm aiming at maximizing the capacity
over the network and on another fairness-oriented, though the
analysis above holds for any kind of schedulers.

C. Maximum Sum Rate Scheduling Algorithm

In order to perform evaluations of the power planning
strategy proposed, we consider in this work a basic scheduling
strategy like maximum SINR. In each cell, this policy selects
for each subcarrier the user who experiences the maximum
SINR. This strategy is run in each cell autonomously, hence,
in a completely distributed way. In fact, having set the power
values associated to each subband in each cell during the
planning stage, the amount of power coming from neighboring
cells is known. Hence, only the gain matrix of its own users is
required, which can be assumed to be known through the use
of a feedback channel. Considering Eq. 4 and 11, it is clear
that the selection of the users depends on the specific set of
powers available and their association to subbands.

D. Equal Minimum Rate Allocation Scheduling Algorithm

In order to perform evaluations of the power planning strat-
egy proposed, in this work a basic fairness-oriented scheduling
strategy is considered, whose aim is trying to allocate a
predefined minimum target rateR∗b to each user.

In each cell, this policy starts from the subband assigned
with lowest power level and selects for each subcarrier the
user who experiences the maximum SINR. Then, as soon

as a user has reached the target rate, he is removed from
the set of allocable users. Moreover, once all subcarriers
belonging to the first subband selected have been allocated,
the algorithm moves to the subband with the second lowest
assigned power level and so on. Also this strategy is run in
each cell autonomously, hence, in a completely distributed
way. This is a very simple strategy, however it could be
useful to test how the power planning idea behaves in case
of fairness-oriented scheduling.

IV. COMPUTING THE POWER PLANNING VECTOR

Described the power planning concept, and provided the
constraint set in Eq. 6, an open issue is how to suitably design
the multicell transmit power vector. In this work we present
two possible models: a simple linear model and an iterative
power planning algorithm making use of alternate optimization
of the power and the scheduler. Because the power planning
vector are used in a static manner (only function of network
statistics) these algorithms can be run off-line.

A. Linear Model

We set that theK power values inside the multicell transmit
power vectorP lay on a straight line forming an angleϑ with
the line of the average power valueP . We restrictϑ to the
range 0 toπ/4 since larger values will lead to the same set
of power vectors read in the opposite direction.

Parameterϑ defines the difference between the power levels
inside the vector:i.e., in caseϑ is equal toπ/4 the maximum
allowed difference between power values is obtained, whereas
the case ofϑ equal to 0 leads to equal power values over all
cells. All other values ofϑ lead to intermediate situations.

In this case the optimization of the angle parameter is done
via discretization and bruteforce search.

B. Iterative Procedure

Clearly, there are many possible ways to compute the
multicell transmit power vector. In this work, beside the linear
model, whose drawbacks have been highlighted above, we
decided to implement also an iterative procedure based on the
gradient ascent method with the objective of maximizing the
overall network capacityCnet. This, as emphasized in Sec-
tion III-B, depends on the power vector, the power constraint
set in Eq. 6, and the scheduling algorithm.

We focus our analysis on the caseK = 3, though it is easily
extendable to any possible value ofK. In order to compute
the power values, we rewrite the power vector elements as the
three components of a sphere with radiusP , as:

P =





P (1) = (P cosα cos β)2,
P (2) = (P sin α cos β)2,
P (3) = (P sin α)2,

(13)

which guarantees the constraint on average power and positive
values. Moreover, this reduces the number of variables to
be adjusted to two, namely anglesα and β that, together
with the radius, univocally identify the coordinates of each
point of the sphere. In order to make this exhaustive search



procedure feasible, a finite set composed of a large number
of different scenariosNs, such that it could be approximated
as infinite, is considered. Each scenario is characterized by
different positions and channel realizations. Then, an average
over all computed power vectors is computed. In particular,
the method acts as follows:

1) the power profile is initialized at a starting point;
2) a set of ofU uniformly randomly distributed users is

deployed in a target cell, with the relevant gain matrix;
3) users are scheduled according to the maximum SINR

strategy reported in Section III-C;
4) multicell network capacity according to Eq. 3;
5) the power profile is updated according to the gradient

ascent of the capacity;
6) algorithm goes back to step 2 untilNs scenario statistics

have been gathered;
then, the procedure runs until power vectors for allNs

scenarios have been computed. It is worth noting that this
procedure is not optimal: though the power vector obtained
for each scenario is the optimum one for that specific scenario
in terms of network capacity, it is difficult to identify a way
to find “the” optimum power vector over all possible channel
realizations and user positions. So, for sake of simplicity, here
we decided to consider a simple average power vector, though
more clever solutions will be explored in the future.

V. SIMULATIONS

In this work we compare the power planning strategy
proposed with the case where all cells and subcarriers are
assigned with equal power levels. We evaluated performance
for cluster sizeK equal to 3, though the analysis above holds
for any cluster size value.

Results are obtained via simulation considering a network
composed ofN equal to 9 cells, each one withS equal to 128
subcarriers available for allocation, and interfered by the six
closest cells, since higher orders of interferers are negligible.
Moreover, we considerk0 equal to 40 dB,k1 equal to 15.2,
the shadowing variance is 8 dB,P is set to 3 Watts and the
total bandwidth is 3.84 MHz, thus the bandwidth around each
subcarrier is 30 KHz. As a performance metric we consider
the outage capacity evaluated by looking at the lowest part of
the Cumulative Distribution Function (CDF) of the capacity
computed over each subcarrier of each cell.

In Fig. 2 the CDF of the network capacity is reported in case
Maximum Sum Rate Scheduling and with a number of users
in the networkU equal to 288. In the plot “EP” refers to the
case of equal power assigned to each subband over each cell,
“LM” refers to the linear model for which different values of
ϑ are evaluated, and “IP” refers to the iterative procedure,
which is implemented by taking into accountNs = 100
different realizations. Moreover results have been obtained by
implementing scheduling algorithm over 10 different scenar-
ios, since this number could be considered as sufficient to
make evaluations. The figure shows that power planning does
not give any advantage in terms of outage capacity in case of
maximum sum rate scheduling, but at most shows the same
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performance of the equal power case (forvartheta = π/8).
However, a small gain is given in terms of average capacity.
This is due to the scheduling algorithm which, trying to pursue
maximum capacity all over the network, selects the best users,
i.e., the closest ones to the base station. Since these users suffer
from very low interference, power planning does not give any
substantial benefits.

In Figs. 3 and Fig. 4 the good behavior of the iterative
procedure in computed the optimum power vector for a certain
realization out of 100 is depicted. In particular, Fig. 3 shows
that all local maxima result in the same absolute capacity
value, and Fig. 4 shows the convergence of the algorithm
toward the values ofP used to obtain results.

In Fig. 5 the outage network capacity in case of fairness-
oriented scheduler with target rateR∗b = 3 kbit/s is reported.
In this case only the linear model is compared to the equal
power case, since the iterative procedure is not matched to
the scheduling policy under consideration. This Figure shows
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that power planning gives substantial improvements in case the
system is forced to serve also unlucky users. In fact, regardless
of the way the power vector is computed, it outperforms the
equal power case.

In Fig. 6 the outage network capacity in case of fairness-
oriented scheduler depending on target rateR∗b is reported.
This Figure shows there is always at least one power vector
outperforming the equal power case for allR∗b values reported.
Nevertheless, the more demanding the system is (i.e., R∗b = 10
kbit/s), the higher the outage capacity, as expectable.

VI. CONCLUSION

In this paper a new method based on the use of pre-defined
frequency-domain power profiles has been introduced in a
full spectral-reuse OFDMA cellular network with the aim of
making interference more predictable. This concept is included
in a scheduling policy to take advantage of interference
predictability and is implemented in a distributed way over
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a multicell network. Two methods to compute the power
profiles have been proposed and compared to equal power
assignment over all subcarriers and cells. The idea has been
tested in presence of both maximum sum rate and fairness-
oriented scheduling. Performance show that no substantial
gain is obtained in case of maximum sum rate scheduler,
while significative performance increase can be reached in
case of fairness-oriented scheduling. Complexity reduction is
guaranteed through distributed scheduling among cells.
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