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Abstract— We consider the downlink of a wireless system with  Nevertheless, all these promising results unfortunatetye
an M-antenna base station ands” single-antenna users. A limited  at the critical assumption of good channel state infornmatio
feedback-based scheduling and precoding scenario is codsred at transmitter (CSIT). Multiuser MIMO systems, unlike the

that builds on the multiuser random beamforming (RBF). Such . . . -
a scheme was shown to yield the same capacity scaling, in tesm point-to-point case, benefit substantially from CSIT, thekl

of multiplexing and multiuser diversity gain, as the optima full  Of which may significantly reduce the system throughput- Pro
CSIT-based (channel state information at transmitter) precoding viding CSIT at the base station (BS) poses serious chalenge

scheme, in the large number of users regime. Unfortunately, in practical settings where the channel information needs
for more practically relevant (low to moderate) K values, po conveyed via a limited feedback channel in the uplink.

RBF yields degraded performance. In this work, we investigee . . .
solutions to this problem. We introduce a two-stage framewd The often impractical assumption of close-to-perfect C88

that decouples the scheduling and beamforming problems. lour ~ Well as the considerable capacity gap between perfect and no
scenario, RBF is exploited to identify good, spatially sepable, CSIT, have motivated research work on schemes employing
users in a first stage. In the second stage, the initial random partial CSIT. A tutorial on multiuser MIMO including how
beams are refined based on the available feedback to offeri, qegl with partial CSIT can be found in [6]. One popular
improved performance toward the selected users. Specifidg we S : .
propose beam power control techniques that do not change the approach to dea_ll W'th |nc0mplete_channel |nf_ormat|0n,mfte
direction of the second-stage beams, offering feedback radtion ~referred to as limited feedback, is to quantize the channel
and performance tradeoffs. The common feature of these schees vector (or the precoder) based on a predetermined codebook
is to restore robustness of RBF with respect to sparse netwkr known at both the BS and the terminals. The limited feed-
settings (low K), at the cost of moderate complexity increase. back model studied in point-to-point MIMO systems [7] has

Index Terms—MIMO systems, Random Beamforming, Power heen extended for multiple antenna broadcast channels [8],
Control, Scheduling, Partial CSIT, Sparse networks. [9]. In this framework, each user is allowed to feed back
B-bit quantized information on its channel direction (CDI)
through a finite rate uplink channel. Whén > M, CDI is
complemented with instantaneous channel quality infoilonat

In multiuser downlink multiple-input, multiple-output (CQI) and used in systems employing efficient user selection
(MIMO) systems, the spatial multiplexing capability oféer and ZFBF precoding [10]-{12], as a means to intelligently
by multiple antennas can be advantageously exploited tetbogelect M spatially separable users with large channel gains,
the system capacity. A direct capacity gain proportionahto approaching thus the capacity with full CSIT by means of
number of transmit antennad can be achieved by servingmultiuser diversity [13].
multiple users in a space-division multiple access (SDMA) If we consider that each user is allowed to use oBly=
fashion. Recent information theoretic advances revedlitiea log, M bits for CDI quantization, the optimal choice for a
capacity-achieving transmit strategy for the MIMO broatcarandomly generated codebook is one that contains orthcalorm
channel (i.e. channel from the transmitter to mobile usirs)vectors. Therefore, the above channel vector quantization
the so-called dirty paper coding (DPC) [1]-[3]. However,®P based techniques can be viewed as extensions of an intgresti
involves high complexity and sensitivity to channel erforglternative low-rate feedback scheme, coined as multiuser
making its implementation prohibitive in practical sysgem random beamforming (RBF) and proposed in [14]. Therein,
In turn, several low-complexity strategies have recenderb B = M random orthonormal beamforming vectors are gen-
proposed to approach the capacity promised in multiusefiated and the best user on each beam is scheduled. The
MIMO systems. Among them, linear precoding based on zeriglea of [14] extends to the multiple beam case the concept of
forcing beamforming (ZFBF) is shown to achieve a largepportunistic beamforming, initially proposed in [15]. &
fraction of DPC capacity while exhibiting reduced comptgxi the number of userd( is large (dense networks), RBF is

I. INTRODUCTION

[4], [5]. shown to yield the optimal capacity scaling &f loglog K
with only little feedback from the users, i.e. in the form of
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users is increased. On the other hand, a major drawback of B-beam case, solutions based on iterative algorithms are
this technique is that its performance is quickly degraaith proposed and numerically simulated.

decreasind<. Furthermore, this degradation is amplified when « In another proposed robust variant of RBF, no additional

the number of transmit antennas increases. As the number of CSIT feedback is required during the second stage. In-
active users decreases ahflincreases, it becomes more and  stead, we exploit the SINR information obtained under

more unlikely thatM randomly generate@quipoweredeams
will closely match the vector channels of any setMdfusers.
This situation could easily be faced as traffic is normallysby
with frequent silent periods in data-access networks, thas

the random beams in the first stage in order to not only
perform scheduling but also to refine the number of active
beams. An on/off beam power control is proposed as a
low-complexity solution, yielding a dual-mode scheme

scheduler may not count on a large number of simultaneously switching from time-division multiple access (TDMA)
active users at all times. transmission (only one beam is allocated non-zero power)

In this paper, we generalize our work in [16] and propose to SDMA where aI_I beams are active with equal power.
a new class of random unitary beamforming-inspired schemes The throughput gains over [14] are shown to be substan-
that exhibits robustness in cells with - practically releva tial for high SNR and lowK values.
low to moderate number of users (sparse networks), while pre The remainder of this paper is organized as follows. The
serving the limited feedback and low-complexity advansagsystem model is described in Section I, and in Section Il we
of RBF. One first key idea is based on splitting the desigeview linear precoding and scheduling in MIMO broadcast
between the scheduling and the final beam computation (drannels. Section IV is devoted to the proposed two-stage
"user serving") stages, thus taking profit from the fact thecheduling and linear precoding framework. In Section V,
number of users to be served at each scheduling slot is myawer allocation techniques based on beam gain knowledge
less than the number of active users (i< M << K). are proposed, while in Section VI an on/off beam power
In the scheduling phase (stage 1), a coarse finite feedbacktrol scheme is investigated. We provide numerical tesul
rate user selection scheme is presented exploiting theeppbnan Section VII, and conclude in Section VIII.
of RBF [14]. We use the SINR reported by all users, which
is measured upon the initial precoding matrix as a basis on
which to further improve the design of the final beams that
will be used to serve the selected users (stage 2). In getlegal We consider a multi-antenna Gaussian broadcast channel in
initial precoder can be designed based on any a priori ctianwélich a transmitter equipped with/ antennas communicates
knowledge; however here we assume that the first-stage beavite K > M single-antenna receivers. The received signal
are generated at random as in [14] since no a priori CSYE(t) of the k-th user at time slot is mathematically described
is assumed. Once the group Bf (1 < B < M) users is as
pre-selected using the SINR feedback on the random beams, yi(t) = hi (H)x(t) + ng,
additional CSIT may be requested to only the selected user
group in order to design the final precoder. More specificallfhere x(t) € C"*! is the vector of transmitted symbols

we make the following proposals and contributions: at time slott, andhy(t) € C'** is the channel vector of
the k-th receiver, with components distributed aCA/(0,1)

« The second-stage precoding matrix may require varialfiRayleigh fading). We assume that each of the receivers has
levels of additional CSIT feedback to be computegerfect and instantaneous knowledge of its own chahnel
depending on design targets, and the final beams walhd thatn, is independent and identically distributed (i.i.d.)
improve over the random beamforming used in [14Lircularly symmetric additive complex Gaussian noise with
In particular, while we expect little gain over [14] forzero mean and variance; = o2, Vk. The transmitter is
large K, significant throughput gain appears for sparsubject to a power constrair®, i.e., Trxx”) < P, where
networks in which the initial random beamformer majfr(-) is the trace operator, and all users are assumed to
not provide satisfactory SINR for allf users. experience the same average SNR.

« In this work, we restrict ourselves to the case that we Notation We use bold upper and lower case letters for
do not change the initial beam direction and we thematrices and vectors, respectivély:) denotes the expectation
propose to adapt the power and the number of actigperator. The natural logarithm is referred tolas(-), while
beams to the number of users, the average signal-to-naise base 2 logarithm is denoted lag,(-).
ratio (SNR) and the number of transmit antennas as a
means to maximize the system throughput.

« In one variant of the proposed designs, we study the
problem of power allocation across th8 (initially
equipowered) random beams showing substantial capactet S(t) = {k;}£., be the set of selected users that are
ity improvement over [14] for a wide range of values ofissigned non-zero rate at time slpwith cardinality|S(t)| =
K. The scheme requirds < M real-valued scalar values 8,1 < B < M. From now on, for simplicity, we drop the time
to be fed back from each of th8 pre-selected users. index. Under linear beamforming, the transmitter mulépli

« For a 2-beam system, the global optimal beam power dghe (normalized) data symbol for each ugeby a vectorwy
lution is provided in closed-form, whereas for the generab that the transmitted signal is = 3, _ VPwysi, with

II. SYSTEM MODEL

k=1,... K (1)

IIl. USERSELECTION AND LINEAR PRECODING FOR
MIMO BROADCAST CHANNELS



V/P}, denoting thek-th user transmit power scaling factor. Theactivated. In the general case however, we could decide to

received signal for each usére S is therefore activate the3 < M best beams only.
yr = (VPrhewy)sy + Z (VPhew;)s; + i (2) Stage 2: Final Precoding design
JES 7k In our proposed framework, we follow up with a second stage
where 3, (s Px ||Wk|\ < P. The instantaneous SINR atwhere theB users inS may be allowed to report back to
receiverk is the BS additional limited feedback, denoted @s & € S.
Py [y w2 Based on the feedback |pformat|on,the transmitter deglgms
SINR;, = kITk Tk keS (3) final precoding matrixW (S) = f(5,), where f(-) is some
ZPJ |thj|2 +0° feedback-based beamforming design function. Note that in
i#k [14] there is no second stage, in other wowWs(S) = Q. The

Assuming user codes drawn from an i.i.d. Gaussian distribsecond-stage feedback can take on among others the fajowin
tion, the supremum of the rates supported for usés given forms, depending on the system feedback rate constraint:
by Ri = log, (1 + SINRy) and the average achievable sum « Strategy 1ﬁk = hy, (full CSIT)

rate R is given by « Strategy 2 ﬁk = hy, (quantlzed channel vector)

_ _ « Strategy 33, = |hyq.m|* (BGI: beam gain information)
S) = %Rk N l;lo&(l + SINRy) “) « Strategy 4ﬁi = . (no additional feedback)

The user sef is chosen to maximize the achievable sum rate Under strategy 3, th selected users feed back beam gain
. Mformation for all B active beams, i.e3 real-valued scalars.
ie.S* = arg __max R(S).

c{l,...K} Note that anyone of these two-stage schemes represents an
efficient feedback reduction strategy considering the remrmb
IV. TwoO-STAGE SCHEDULING AND LINEAR PRECODING  of selected users3 is typically very small in comparison
In this section, we propose a MIMO downlink schedulingvith K. For instance3 = 2 or 4 in practical standardized
and beamforming framework in which the design is spliystems whileX could be a few tens even for moderately
into two stages. In the first stage, a coarse beamformiggarse networks. The optimal way of splitting the feedback
matrix is used (possibly even selected at random) and u$ad across the stage 1 (scheduling) and the stage 2 (beam
group selection (of sizés) is performed among alk active design) is an interesting open problem, beyond the scope of
users. In the second stage, possibly additional channditguathis paper, although some design rules, wherés given by
information is collected for the selected user group, and @nquantized version of the quantization error of the channel
improved beamforming matrix is designed to serve therand ZFBF were already suggested [17].
The fact thatB << K is instrumental in reducing the The design of a two-stage feedback scheme will inevitably
total feedback requirement in this scenario. The two-stagdroduce a longer hand-shaking delay before the actual

framework can be described as follows: payload data can be sent to the mobile. For an efficient
operation of feedback-based approach (whether singles stag
Stage 1: User Selection or two-stage), the total duration spent on feedback togethe

The transmitter generates a linear precoding maf¥ixbased with payload transmission must be significantly less that th
on any a priori channel information we may have. In our casepherence time of the chanrigl,,,. Therefore, for the 2-stage
since the channel conditions of the users are not knownapproach to be applicable, we envision a framing structure
priori, a unitary precoding matri is drawn randomly and which encompasses the two stages of feedback, back to back,
equal power allocation is used’f, = %,Vm), as a means as an overall feedback preamble, prior to payload trangoniss
to reduce feedback burden and complexity requirements, iTdis preamble (minislot) of short duratiomn,, during which

= Q = [q1...95]. The B columnsq,, € CM*1 of users report their feedback messages is thus followed by a
the precoder can interpreted as random orthonormal beatasger slot of durationry >> 7,,, which is dedicated to
generated according to an isotropic distribution, as psedo pilot and data transmission. The total framing intervaladion

in [14]. should be kept less than the coherence time of the channel,
Each of theK users, say thé-th, calculates the SINRs overi.e. 75 + 7., < T..n. Note that the second stage of feedback
all equipowered beams, i.e. collects fresh CSIT, so that the precoder design does nfarsuf
h 2 from extra outdating degradation (compared with a single
SINRg, ,, = [ | m=1,...,B (5) stage feedback). Nevertheless, the impact of employing two
Z |hqu‘|2 + Bo?/P stages on the sum-rate performance and the resulting delays
J#m is assessed through simulations in Section VII by congideri

finds the beamb, that provides the maximum SINR, i.e.@ time-varying channel.

by = arg I SINR;,, and feeds backy = SINRy.;, in - \yhen the number of active usefs is large (dense net-
addition to the beam indel,. A simple and low-complexity works), random beamforming can benefit from multiuser di-
user selection scheme is employed at the BS by selecting tieesity by scheduling users with favorable channel coadgi
users that have the highest SINR on each bggmThe group (highest SINR), improving thus the system capacity. The
of selected users is denoted &sin [14] B = M beams are selected group of users exhibit large channel gains and good



spatial separability among them and the probability that tivector P’ with Yom PJIM < P cannot be the optimum power
random beam direction is closely matched to certain usersvisctor. For any3 > 1, a power vecto® with P,, = 8P,
increased with increasingC. For low to moderate numberm = 1,... M such thaly " GPy = P increases the sum rate
of users (sparse networks), the probability that Bllusers R(S,P), since it increases all user rates.

enjoy a reasonable SINR is lower since the selected usérswhat follows we search for the optimal beam power
may not be fully separable under a randomly generated ynitalocation (power vectoP*) by finding

beamforming matrixQ. Nevertheless, we point out that this .

user set, the user group selected by the scheduler under the P =arg Prg%’LR(SvP) (8)
initial random orthogonal beams, is likely to exhibit good

separability conditions relative to the rest of the useisces WhereP" = {P|>° P, < PP, >0,m=1,...,M}is

|t iS at |east the best user group fone orthogona' precoder the constraint Set, which is a closed and bounded set. Agl"nou
Q_ Therefore’ we argue that a design based on randl)mthe sum rate function is concave in SINR, it is not StriCtly
could be kept for the purpose afcheduling In strategies concave in power. Thus, the optimization problem is hard
1_3, we propose to augment the random beamforming St%bsolve due to I’Ion-COI’IveXity of the Objective fUnCtion, and
(stage 1) with an additional yet low-rate CSIT feedbackgsta N0 transformation into convex by relaxation seems doable.
2), as a means to restore robustness and improve sum-fdtis problem is however typical of sum-rate maximizing
performance. Note that the second stage only involves th@wer control [18]. In the following sections, we investiga

B pre-selected users. In this work we focus particularly oHosed-form optimal solution for a 2-beam system and itezat
strategies 3 and 4 due to their low-rate feedback merits, agjutions for the general case.

we propose power control techniques that do not refine the

direction of the beamforming vectors. A. Optimum Beam Power Allocation fét = 2

For RBF system with3 = 2 beams, the optimum beam
power allocation policy under strategy 3 can be derived
analytically. The sum rate for user s8t= {k;, k2} is given

In this section, we consider thatrategy 3is adopted in terms of P, € [0, P] by:
during the second gtage, thus the scheduler gains knowledge )
of vk, m = |hg,, am|” for k,, € S. Without loss of generality .

(WLOG), we order users such thak,; > x,;,Vi < j is RS, ) = Z logs (1 + SINR,,.m)
assumed, and unless otherwise stdfed M. If a moderate
number of users exist, some of the random beams may ngtlog Kl n P11 ) (1 N (P — P1)7k22>l
reach a target. This is measured at the BS in terms of the ©2 o2+ (P — P1)Vi,2 02 + P17y1

BGI 7k,,m- In turn, the power control is used to reduce the (©)]
resource allocated to the low-quality beams, to the bengfit ®ince the logarithm is a monotonically increasing functiog
the good-quality beams. As a result we propose to choose figf consider the following objective function:

to change the direction of the initial random beams. Based Piyest (P — P) Yy
on this beam gain informatior(BGI) ;. ., we propose to  J(F1) = (1 T ey (p_lpl)%ﬂ) (1 + 72)

V. BEAM POWER CONTROL WITH BEAM GAIN
INFORMATION

m=1

. . . . . o2 + Pl’Ykgl
design the beamforming matrix bxfapplymg a power allogatio (10)
strategy across the beams{@f,, },,_, i.e. w,,, = VP,,qm. By Fermat's theorem, the necessary conditions for maxima of
Define the vector of transmit powe® = [P;...Py] the continuous objective function can occur either at iitsced

where P,,, is the transmit power on beam. The SINR of points or at points on its boundary. Therefore, the global
the selected user,, € S over its preferred beam can be maximizer of the above generally non-convex optimization

expressed as: problem is given by the following alternatives:
P Ve, m « boundary points ofP2: P, =0 or P, = P.
SINRy,, m(P) = 2 D, _ (6) « extreme points on the boundary &?: i.e., the values
omt ; 3 Vhemj Py € [0, P resulting from2Z(24) — o,
JFmM

The beam power allocation problem for RBF in order @ pecifically, we have the following result:
maximize the sum rate subject to a total power constraint c&jeorem 1: For the two-beam RBF. the optimum sum-rate

be formulated as: maximizing beam power allocatioR* = (P;, Py) is given
M by
max R(S,P) = max Y _ log, (1 + SINRy,, m(P)) Py =arg max J(P)
P P Pi={0,p,P'} (11)
o Py =P Pr

$t.Y Pp<P Pp>0,m=1,...M (7)

m=1
We first remark that the power constraint is always satisfied P (=B+ VB2 —4AT)/2A f A#£0
with equality. This is easily verified by noting that any powe | -I'/B if A=0

where P; € [0, P] and

(12a)



A = Ve 1Vho1t (Vhat — Vho2) (PYki2 + 07)

+ Vo2 Ve 2(Ve1 — Vka2) (Pt +0%)  (12b)

B

= Y1 (P2 + 07) (PYky1Vha2 + 2702107 — Yy207)
+ ’7k22(P7k12 + 02)(271612 - ’Ykll)(P'ykzl + 02) (12C)

' = %,10°(Pyk2 + 0°)(Pyg,e + 0°)
- ’7k22(P7k21 + 0'2)(P7k12 + 02)2 (12d)
Proof: See Appendix L.A. [ ]

Hence, the optimal power control is not ‘water-filling’, but

either TDMA-mode (the BS transmits to only one user/bea
with non-zero power) or SDMA-mode in which the transmi

; o a
power values to multiple users are positive and aIIocateét]]?

according to (12a).

1) Beam power control in extreme interference casés:
gain more intuition on the optimal power allocation schem
we investigate two extreme cases in terms of interferen
Define the interference factors,,, = W In the 2-
beam case, we hawe,, = V"lf and oy, = ”:2;. For non-
interfering beams (i.e.q, =1ak2 = 0), the o2ptimal beam
power allocation is given by the water-filling power alldoat

+
} } andP; =P — P/

P/ = min {P, {
(13)

where[z]" = max(0, z). Note that SDMA with equal power

L
2

(’Wﬂl — ’77622)02
2911 1Yko2

allocation is optimal when both users experience the same

channel conditions,1 = Vk,2)-
In the case of fully-interfering beams (i.ey, = o, =

1),

TDMA mode is of course optimal as the solution to (7) unded

the assumption WLOG/,1 > Yi,2 iS

Pf=P and P;y=0 (14)

2) Optimality conditions for TDMA transmission mode:

The beam power solution stated in Theorem 1 implies that

the optimum transmission mode is either TDM&; (= 0 or

(]

Additionally, if BGI knowledge is allowed (strategy 3), a
(sharper) sufficient TDMA optimality condition is the folle
ing:
Lemma 2 The optimum power allocation is TDMA mode
(Pf=P)if

P'Ykll > 1 — Oékl — Ozk2
o2 =

(16)
Oék] akz

Proof: See Appendix I.C. [ ]

B. Beam Power Allocation for more than two beams

For the general case #f > 2 beams, an analytical treatment
(7) does not unfortunately seem tractable, because of the
k of convexity. Therefore, we propose a suboptimal - yet
icient - iterative algorithm which aims to increase thsteyn
throughput by distributing the total power over the beams.
Our algorithm tries to identify the extreme points of the

ot

sum rate by finding the power vectd that maximizes (7).

clerie extreme points of the objective function are found by

iteratively solving the Karush-Kuhn-Tucker (KKT) conditis

for the beam power control problem. Note that the power
vector to which our algorithm converges is not necessarily
optimal (global maximum) for general channels, unless the
Hessian of the Lagrangian of the objective function is a
negative definite matrix. Nevertheless, simulation ressittow
that significant sum-rate improvement can be provided.

1) Iterative Beam Power Control Algorithm\e resort to
uboptimal - yet efficient - iterative algorithm, inspirby
iterative water-filling (IWF) algorithms [19], [20], as a aes

to identify the extreme points on the boundary®¥ . In the
roposed lterative Beam Power Control Algorithm, each user
iteratively maximizes its own rate by performing singleeus
water-filling and treating the multiuser interference frah

the other users (beams) as noise.

a) Proposed Algorithmiet P() be the initial point and

I(PW) = o2 + D im Pj(l)'ykjj be the interference function

P) or SDMA with P, = P'. In this section, we are interestec@t i-th iteration. The steps of the algorithm are summarized in

in identifying the region of TDMA optimality and providing
the relevant conditions. We first derive conditions reaugjri
knowledge of the interference factasg, € (0, 1] only. These

conditions can be used as practical design rules, espediall
distributed resource allocation scenarios. Formally, \ageh
that

Lemma 1 If ag, > 0.5, the optimum power allocation is
Pf = P and Py = 0 (TDMA transmission mode).

Proof: See Appendix I.B. [ ]

Corollary 1: A sufficient condition for TDMA optimality is

ak, + ag, > 1 or equivalentl ! i + ! i
k1 k2 = q Y cos2 0, cos? 05

>3
(15)

wheret; = / (hy,,q;) is the angle (misalignment) between

the direction of the normalized chanri?e)cl. and beamg;.

Proof: The first condition is a direct result of Lemma 1 by b
summing up the interference factors and the equivalemrmbafgwe observ

relation is derived by usingy, = tan?6;. ]

Table 1.

Iterative Beam Power Control Algorithm

Step 1 (Initialization) SetP™® =0

Step 2For iterationi = 1,2, ..., computevk,, € S:
©)
A =

Vemm Vhemm m

zZ(PG-1) — o2+ o p](ifl),mjj

Step 3(Water-filling: let 7 be the solution of:

> logy (14 mmA() )

m€ES

max

7 = arg
WZOaZmeSPk

Step 4 (Update: let P = 7(»
TABLE |
ITERATIVE BEAM POWER CONTROL ALGORITHM

ations are in order: at each iteratipronce

”’“";_jg;,l) is calculated for each usdt,
j#EmM " g

km

(243

Kem i)



usinng(i_l),j # m, it is then kept fixed and treated as noise. We would like to point out that one may additionally

Given the total power constraift, the ‘water-filling step’ is a resort to Geometric Programming [18], which represents the
convex optimization problem similar to multiuser watelitiity  state of the art in continuous power control for non-convex
with common water-filling level. Thus, all transmit powergroblems. These techniques are shown to be convergent and it
in P assigned to beams are calculated simultaneously turns out that they often compute the globally optimal power
order to maintain a constant water-filling level. The algori allocation. Interestingly, it can be shown that the heigarist
computes iteratively the beam power allocation that leads iterative algorithm proposed in Section V-B.1 finds an eguiv
sum rate increase and converges to a limit value greaterlemt interpretation, as applying the so-calldcessive convex
equal to the sum rate of equal power allocation. Formallgpproximation[18], [23] to the beam power control problem
the power assigned to beam at iteration: yields P = results in the same iterative algorithm.
[ — 1M1, with > [ — 1A = P, wherey is

" P " C. Beam Power Control in Specific Regimé&sX 2)
the common water-filling level. The beam power control for 1o apparent non-convexity of thB-beam case can be

strategy 3 assigns transmit powers over the beams when figyiated in certain SINR regimes, as a hidden convexity of
sum rate given b_y the iterative solution is higher than tHat ¢, heam power allocation problem appears. We shall canside
the boundary points. the beam power allocation fd8 = M beams in three cases:

. b). Convergence Issue#s stated before, no global Max-1 the high SINR regime, 2) the low SINR regime, and 3)
imum is guaranteed due to the lack of convexity of sum-raig,nroximation by the arithmetic-geometric means inegyali
maximization problem. Therefore, we do not expect that the 1) High SINR regime:For SINR values higher than 0dB,
convergence point of the iterative algorithm be generally ¢ approximatiorlog(1 + =) ~ log(z) can be applied, and
global optimal power solution. Interestingly, it can be &ho he objective functiorg(P) = R(S, P) becomes

that the convergence leads to a Nash equilibrium, when con-

M M
sidering that each user participates in a non-cooperasingeg
. . P)~ 1 SINR =1 SINR
The convergence to an equilibrium point can be guaranteed (P) Z 082 ( knm) = 108 H R m

sinceZ(P) is a standard interference function [19], [21]. Th?& similar result has previously observed in [18] in the case

proof of existence of Nash equilibrium follows from an eas§{ code division multiple access (CDMA) power control and

adaptation of the proof in [22]. However, the uniqueness O ved by Geometric Proaramming. as the approximate hiah-
these equilibrium points cannot be easily derived for theeca v y et 9 ing, pproxi '9
of arbitrary channels. SINR sum rate is a concave functionlog P,,,.

) . . . . 2) Low SINR regime:ln the low SINR regime, the sum
In this section, we derive analytically the convergencapoi . ; X 4 .
. . : ) rate is approximated by applying Taylor first-order series
of the 2-beam case using the iterative algorithm and compare . L cion. i.elo (1+ ) ~ z. Therefore
it with the optimal beam power solution given by Theorem 1. P » E08 - '

m=1 m=1

At the steady state, say iteratisnwe have that M M PV m
y y d G(P) =~ log, e Z SINRg,,,m = log, e Z %
(s) (s) )\(S) - Umr m=1 m=1 Z Pj’ykmj +o
P = =1/ : I = j#m
P(s) =pu— 1//\(51) with )\(s) _ : %221 (19)
2 k2 I The objective function (19) is convex in each varialig,
since
_ P 1 1 .
andy = Tt o oy, from the sum power constraint. Upon 92 12\4: ProVim
convergence of the algorithm, we have tﬁéf) = Pi(s_l), i= OP \ == 5= Pk, + 02
1,2, which results to the system of equaticA®” = b with )
B 2Pm7kmm7kmi > 20
A= 2_7/?21/71622 71612/77611 - 3 = 0 ( )
71621/’71622 2- 77612/77611 m# (Zj;ém Pivk,.; + 02)
Piog?(-L _ 1 Hence, the optimal beam power control strategy is found by
b= Tho2 k1l the KKT conditions and can be solved numerically using
P+o? (-t efficient interior-point methods [24].

Ykl Vko2

3) Arithmetic-geometric means approximatioRrom the
arithmetic-geometric means inequality [25], the sum rate c
be upper bounded as

For det A # 0 — «f, # 1 and oy, # 1, we have that
PT = A~1'b, giving the ‘water-filling’ solution(P;, P — P;)

with o
py = P2 (i1 = ma2) + 0% (Va1 = Vrs2) (18) R(P) = log, (H (1+ SINka,m(P))>
2’7]6117/622 - ’7k22’7k12 - ’7]€21’7]€11 m=1
It can be observed that (18) is different from (12a). Fortalya o
it still provides a heuristic power allocation algorithmdan < Mlo 14 1 Z PoYkmm —g (P)
as shown through simulations in Section VII, there is not a 82 M £~ 52 4 Z Pk, i - TaGM
significant reduction in sum rate by allocating the powerrove - iEm "

beams using this algorithm. (22)



Since the logarithm is a monotonically increasing funcéo where AR = Rrpya — Rspama-

the argument of the log-function &4 (P) is convex wrt The expected TDMA rate can be evaluatedRgpria =

eachP,,, a close-form global optimal solution can be derived {log, (1 + Lvk,1)}, where F,, (z) = (1— e ),
The sharpness of the above sum-rate approximationwsich is given by the following closed-form expression:

quantified by the differencé = Gagn(P) — R(P). For

max; (1+SINRy,:) Proposition 1: For any values ofP, M, and K, the average

h = — =5 > 1 the following inequality stands Lo
ming (1+STN Ry, ;) g inequality rate of TDMA-based random beamforming is given by
M ’ K
[A = —— —1)%e* /TEi(—ko”/P) (24
logy Rrpma 1Og2; | (C1)e i(—ko®/P) (24)
) =
’ o hh—T . . H H 0o .-t . . .

where K (h, 1.) = log eloghh,llg is the fII’S.t der|v¢?1t|ve of where E{z) = — [°, &—dt is the exponential integral.

the Kantorovich constant [26]. Therefore, inequality (24) Proof: See Appendix I. [ ]

tight for equal SINR values, and the approximation is better

when the spread of (1+SINR) values is small-¢ 1). VIl. NUMERICAL RESULTS

In this section, we evaluate the sum-rate performance of the
V1. BEAM POWER CONTROL WITH SINR FEEDBACK proposed beam power control algorithms through Monte Carlo
In this section, we present a low-complexity, low-feedbackimulations, based on the system model described Section
variant of the two-stage linear beamforming framework. Fdr and considering tha3 = M beams are generated. The
that, we adopstrategy 4in the second stage, assuming thugchieved sum rate is compared with conventional SDMA-
that the scheduler has access only to the same amount of fdesed random beamforming [14] where equal power is allo-
back information as in [14], namelg, = 5, = SINR,, .. cated over the beams.
Nevertheless, we further exploit this scalar informatioriew We simulate a time-varying Rayleigh fading channel where
of rendering the precoding matrix more robust with respethe fadinghy(¢) is i.i.d. among users and for different anten-
to cases where not allf users can be served satisfactorilynas. We consider Clark-Jake’s Doppler model, with autacorr
simultaneously with the same amount of power. The majtation functionE{h(t)h(t +¢(Ty)} = Jo(2w fplT,) where fp
challenge here is that when only SINR feedback is availablgnotes the one-sided Doppler bandwidth (in Hz) agnd) is
the transmitter cannot estimate the precise effect onfarter the Bessel function of the first kind. We set the frame duratio
ence and user rate (SINR) if the transmit power had beequal to7, = 1 ms and carrier frequency is 2 GHz.
allocated differently over the beams. In this case we resortWe first assess the performance of beam power control
to a power control strategy based on the maximization of thdéth BGI second-stage feedback (strategy 3). As a general
expected sum rate. comment, it ought to be mentioned that channel variations
do not change the capacity scaling of the proposed schemes
with respect to the conventional ones. Time variation tesul
A. On/Off Beam Power Control in slightly reduced throughput as compared with uncoreglat
We propose a simple power allocation scheme, coined @annels, however as the two-stage approach can be accom-
On/Off Beam Power Control, in which the transmitter takes glished in the preamble phase, the reported feedback does
binary decision between: not become severely outdated. Note that the second stage of
« TDMA transmission toward one selected user (the orieedback collects fresh CSIT, therefore the precoder desig
with maximumg,, from stage 1). does not suffer from extra outdating degradation (compared
« SDMA where all random equipowered beams are activejth a single-stage feedback).
as in [14]. In Figure 1 we present the sum rate achieved using optimal

This beam power control can be seen as discretization of f@wver allocation vs. the number of active uséfsfor the
continuous power control problem solved in Section V, sinc&beam case, SNR = 20 dB and 60 Hz Doppler shift. Single-
the power vector only accepts a binary solution. beam random beamforming refers to the scheme proposed
The scheduler, based only on SINR feedback, compares #d15] where only one random beam is generated (TDMA)
instantaneous achievable SDMA sum rate with the expect@d€ach slot. The gains of optimally allocating power across

TDMA rate, and selects the transmission mode that maximiZ2&ams are more pronounced for systems with low to moderate
M number of users (up to 30), whereas fdérincreasing, the ben-

the system throughput. L&spara = Z log(1+SINRy,,.m) efits of beam power control vanishes as the optimal solution

denote the achievable SDMA sum ?IaTé that can be eXpIiCi@ﬁg\(,)vcsa;essut;i;f::;;g:lr?sog\:\e;z1232gisc;na§fetﬁge;\}2i;§égsu|{jeR
calculated at the BS, arfdrp 4 denote the expected TDMA ¢ 7 ysars angp = 60 Hz, illustrating that beam power
tra%suramés:](/)g fFatBeéam power control scheme results in tq%"qcation prevents the system from b(_acoming interference
following binary mode decision denoted & |m|te_d. Povyer control z_slllows us t_o SW|tc_h off beams,_ tr_\us
keeping a linear capacity growth in the interference-kdit
7o { TDMA if AR >0 regime and converging to TDMA at high SNR. In Figure 3 we
“ 1 SDMA if AR<0

(23) compare the achieved sum rate difference between the dptima



power allocation and the power solution given by our iteati
algorithm at SNR = 10 dB angp = 100 Hz. Use of the
iterative algorithm, despite suboptimal, results in rgigle
throughput loss at all ranges &. The performance of the
iterative power control is further evaluated in Figure 4 for
4-beam downlink showing substantial sum-rate enhanceme
for practical number of users.

We then evaluate the results of the on/off beam power cc
trol (strategy 4), which uses the same amount of feedback
the conventional RBF [14]. Note that no additional feedbiack
requested during the second stage, thus no delay is inteddu
in the scheduling protocol. In Figure 5 we plot the sum ral
vs. the number of users fat/ = 2 transmit antennas and
SNR = 10 dB. The scheme is switching from TDMA modt
at low K, where all transmit power is given to the highes
Or = SINRy,,, user, to SDMA-based RBF with equal powel

allocation. We also observe that the sum-rate gap between th

Sum rate [bps/Hz]

optimal power control (with second-stage feedback) andfon/Fig. 2.

power control (no additional feedback) féf < 20 users is
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approximately 0.4 bps/Hz. In Figure 6 we consider a 4-beanRBF, achieving a linear sum-rate growth at high SNR.
RBF scheme and show the sum rate performance of on/off

beam power control as a function of average SNR. Althou

(strategy 3) withM/ = 2 transmit antennagy = 10 users, and Doppler shift,
= 60 Hz. Beam power control circumvents the interferencetéid behavior

50

the throughput curve of conventional RBF converges to |
finite ceiling at high SNR, the TDMA-SDMA binary decision 65F '
capability of the beam on/off scheme provides a simple mea o
to circumvent the interference-limited behavior of RBF twit
no extra feedback. We note also that TDMA mode is genera _ 5S¢
preferable from a sum-rate point of view in sparse network % | 8 Single-stage RBF i
. . . .. . § 5 Two-stage RBF w/ Iter. Beam Power Control
and the range of< in which TDMA is beneficial increases g —o— Two-stage RBF w/ Optimal Power Allocation
for SNR increasing. g5 6 ‘ =
n
Ar 55 }
3.5 T
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Fig. 3. Sum rate versus the number of users for lterative BEamer

—=&— Single-stage RBF

Sum rate [bps/Hz]

Single-stage single-beam RBF
—6— Two-stage RBF with Optimal Power Control

3 i i i i
0 10 20 30 40 50 60 70

Number of users the final beamformer is designed based on refined CSIT fed
back by the users selected in the first stage. Several beam

Allocation and Optimal Power Control withi/ = 2 transmit antennas, SNR
=10 dB, and Doppler shiff, = 60 Hz. Use of suboptimal iterative algorithm
6 ) results in negligible loss compared to the optimal solution

which builds on previously proposed SDMA-based random
beamforming, is introduced. This scheme divides the sdhedu
: : ing and the precoding design stages into two steps, where

Fig. 1. Sum rate versus the number of users for Optimal BeamePGontrol POWer control strategies, with various levels of complexit
with M = 2 transmit antennas, SNR = 20 dB and Doppler sfiit= 60 Hz. and feedback load, are proposed in order to restore rolssstne

Significant throughput gains are achieved by optimally cating the power
across beams for systems with low to moderate number of.users

or zero cost of extra feedback.

VIIl. CONCLUSION

Future research directions may include investigating CSIT

of RBF in sparse networks. Their sum-rate performance is
assessed, revealing substantial gains compared to RBF for
systems with low to moderate number of users, at a moderate

The downlink of a multiuser MIMO system with limited quantization and the effect of feedback delay and estimatio

feedback and more users than transmit antennas was coneidsrs on the sum-rate performance. Fairness and quality of

ered. A two-stage scheduling and linear precoding framlkewoservice are also issues of particular practical importance
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Allocation with M = 4 transmit antennas, Doppler shifip = 100 Hz and (bounded sum rate) is avoided by selecting TDMA transmissitode for
SNR = 10 dB. increasing SNR.
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the polynomial) that maximizeg (P ), which concludes the

1 proof.
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©

B. Proof of Lemma 1

Let J;(P;)(¢ = 1,2) represent the individual rate of user
given as

Sum rate [bps/Hz]

—©6— Single-stage RBF - equal power allocation

—&— Two-stage RBF with On/Off Beam Power Control Pi’}/k”'
5r Single-stage single—beam RBF ] c71 (Pl) = 10g2 (1 + B} P P, - (26)
—&— Two-stage RBF with Optimal Beam Power Control o“ + ( — 4 )’Ykij

P, o
02/7k1i+aki(P—Pi)) , JF (27)

Number of users

‘ ‘
0 10 20 30 40 50 60 70 _ 1
= log, <1 +

Fig. 5. Sum rate versus the number of users for On/Off BeamePowThe sum-rate maximizing beam power allocation problem can
Control with M = 2 transmit antennas and SNR = 20 dB. On/Off beam POWa rewritten as

control switches to TDMA mode at lowk, and strategy 4 gives almost same
performance as strategy 3 without the additional feedback.

max2 jl(Pl) + jQ(PQ) Subject toP; + P, =P

PcP

We investigate now the behavior of the individual user rdste o
APPENDIX| jective function. By calculating the first and second deiea

A. Proof of Theorem 1 of J;(P;) we have

Since J(Py) is not always concave iP;, the P, that 0Ji(P;) A+ o, P <0 (28)
maximizes it is either the boundary point®( = 0 and oP, A(A+P)
P, = P) or the solutions corresponding @7 /0P, = 0.
By differentiating the objective function with respect 19, PT(P)  dy(A+ o, P)
we have 9Pz & - (29)
9T Ap24BP 4T 25)
oP with A = Oéki(P - Pi) + 02/'71@7;1’, di = (2&;% — 1)A +
where A, B,T are given by (12b), (12c) and (12d), respec2: Fi» anddz = A?(A + P;)*. The sign ofd, determines
tively. Setting g—gl — 0, the possible values of P, that (€ convexity or concavity of7;(P). f dy >0 — P, >

maximize the throughput are the real-valued roots of tHes— — 2) A, Ji(P;) is a convex function of;, and concave
second-order polynomiad PZ +BP; +I" = 0 (for A # 0) that otherwise. Since\ > 0, for o, > 0.5 the objective function
satisfy the constrainP, € [0, P] or P, = —I'/B for A =0. J;(P;) is convexvi, i.e. 5‘{;—19” > 0, hence the sum of two
Hence, the optimumP; is the value among the boundaryconvex functions7; (P;) + J»(P,) is maximized forP; = P
points (P, = 0 and P, = P) and the extreme points (roots ofand Py = 0.



C. Proof of Lemma 2 [6]

Let Rrpua = log, 1+% denote the system
throughput for TDMA mode. TDMA is optimal when

Rrpma > R(P) — log, (?((zljf))) >0, where

(7]

(8]

P
A(Py) = (14 =252 (Par, Yz +0%) (P Pr)a, Y1 +0%)
El

C(Pl) = (Po‘kl'ykll + Pl'ykll(l - akl) + 02)

10
X (Pkys + Pryiya(an, — 1) + 02) (0]

The region of TDMA optimality depends on the convexity 0f;y;

¥(P) = A(P) — C(Py). By differentiating twice we have

that

0%V (P)
oP?

Kyl

Py
= =29k, 1Vky2 ( o

[12]
Ok 102 + Qky 1+ Qg2 — 1
2 (30)
For ag’—lgf;“ <0, ¥(P) is concave wrtP; (U(P;) > 0), since [13]
¥ (0) > 0 and ¥ (P) = 0, which results in (16).
[14]

D. Proof of Proposition 1

Since the cumulative distribzution function of
Plhyqi|? /o2 is Fy(z) = 1 —e %7 /P the average sum rate
of TDMA-based random opportunistic beamforming is giveﬂ6]
by

[15]

P hyq,|?
o2

R =E<logy(1+  max

[17]

/ log, (1 + z)dFX (z)dx
0

[18]
(@ 1 /°° 1 %
log2 J, 1+x( s (@))dx [19]
o0 2

:1Og2€/ 1_|_x(1—(1—e_””‘7 IPYVE Y dae

’ [20]
o] —mko’z/P

ULy (e [

log 2 k 0 1+ [21]

k=0

K

log 2 P

where integration by parts is applied to obtain (a) and (B8
follows from binomial expansion.
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