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Enhanced Multiuser Random Beamforming: Dealing
with the Not So Large Number of Users Case

Marios Kountouris,Member, IEEE,David Gesbert,Senior Member, IEEE,and Thomas Sälzer

Abstract— We consider the downlink of a wireless system with
an M -antenna base station andK single-antenna users. A limited
feedback-based scheduling and precoding scenario is considered
that builds on the multiuser random beamforming (RBF). Such
a scheme was shown to yield the same capacity scaling, in terms
of multiplexing and multiuser diversity gain, as the optimal full
CSIT-based (channel state information at transmitter) precoding
scheme, in the large number of usersK regime. Unfortunately,
for more practically relevant (low to moderate) K values,
RBF yields degraded performance. In this work, we investigate
solutions to this problem. We introduce a two-stage framework
that decouples the scheduling and beamforming problems. Inour
scenario, RBF is exploited to identify good, spatially separable,
users in a first stage. In the second stage, the initial random
beams are refined based on the available feedback to offer
improved performance toward the selected users. Specifically, we
propose beam power control techniques that do not change the
direction of the second-stage beams, offering feedback reduction
and performance tradeoffs. The common feature of these schemes
is to restore robustness of RBF with respect to sparse network
settings (lowK), at the cost of moderate complexity increase.

Index Terms— MIMO systems, Random Beamforming, Power
Control, Scheduling, Partial CSIT, Sparse networks.

I. I NTRODUCTION

In multiuser downlink multiple-input, multiple-output
(MIMO) systems, the spatial multiplexing capability offered
by multiple antennas can be advantageously exploited to boost
the system capacity. A direct capacity gain proportional tothe
number of transmit antennasM can be achieved by serving
multiple users in a space-division multiple access (SDMA)
fashion. Recent information theoretic advances reveal that the
capacity-achieving transmit strategy for the MIMO broadcast
channel (i.e. channel from the transmitter to mobile users)is
the so-called dirty paper coding (DPC) [1]–[3]. However, DPC
involves high complexity and sensitivity to channel errors,
making its implementation prohibitive in practical systems.
In turn, several low-complexity strategies have recently been
proposed to approach the capacity promised in multiuser
MIMO systems. Among them, linear precoding based on zero-
forcing beamforming (ZFBF) is shown to achieve a large
fraction of DPC capacity while exhibiting reduced complexity
[4], [5].
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Nevertheless, all these promising results unfortunately come
at the critical assumption of good channel state information
at transmitter (CSIT). Multiuser MIMO systems, unlike the
point-to-point case, benefit substantially from CSIT, the lack
of which may significantly reduce the system throughput. Pro-
viding CSIT at the base station (BS) poses serious challenges
in practical settings where the channel information needs
be conveyed via a limited feedback channel in the uplink.
The often impractical assumption of close-to-perfect CSIT, as
well as the considerable capacity gap between perfect and no
CSIT, have motivated research work on schemes employing
partial CSIT. A tutorial on multiuser MIMO including how
to deal with partial CSIT can be found in [6]. One popular
approach to deal with incomplete channel information, often
referred to as limited feedback, is to quantize the channel
vector (or the precoder) based on a predetermined codebook
known at both the BS and the terminals. The limited feed-
back model studied in point-to-point MIMO systems [7] has
been extended for multiple antenna broadcast channels [8],
[9]. In this framework, each user is allowed to feed back
B-bit quantized information on its channel direction (CDI)
through a finite rate uplink channel. WhenK ≥ M , CDI is
complemented with instantaneous channel quality information
(CQI) and used in systems employing efficient user selection
and ZFBF precoding [10]–[12], as a means to intelligently
selectM spatially separable users with large channel gains,
approaching thus the capacity with full CSIT by means of
multiuser diversity [13].

If we consider that each user is allowed to use onlyB =
log2 M bits for CDI quantization, the optimal choice for a
randomly generated codebook is one that contains orthonormal
vectors. Therefore, the above channel vector quantization-
based techniques can be viewed as extensions of an interesting,
alternative low-rate feedback scheme, coined as multiuser
random beamforming (RBF) and proposed in [14]. Therein,
B = M random orthonormal beamforming vectors are gen-
erated and the best user on each beam is scheduled. The
idea of [14] extends to the multiple beam case the concept of
opportunistic beamforming, initially proposed in [15]. When
the number of usersK is large (dense networks), RBF is
shown to yield the optimal capacity scaling ofM log log K
with only little feedback from the users, i.e. in the form of
individual signal-to-interference-plus-noise ratio (SINR). The
capacity growth of MIMO Gaussian broadcast channel with
perfect CSIT is achieved by the RBF scheme. Although the
beams are generated randomly and without a priori CSIT, for
K → ∞ the selected group of users exhibits large channel
gains as well as good spatial separability, and the probability
that the random beam directions are nearly matched to certain
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users is increased. On the other hand, a major drawback of
this technique is that its performance is quickly degradingwith
decreasingK. Furthermore, this degradation is amplified when
the number of transmit antennas increases. As the number of
active users decreases andM increases, it becomes more and
more unlikely thatM randomly generated,equipoweredbeams
will closely match the vector channels of any set ofM users.
This situation could easily be faced as traffic is normally bursty
with frequent silent periods in data-access networks, thusthe
scheduler may not count on a large number of simultaneously
active users at all times.

In this paper, we generalize our work in [16] and propose
a new class of random unitary beamforming-inspired schemes
that exhibits robustness in cells with - practically relevant -
low to moderate number of users (sparse networks), while pre-
serving the limited feedback and low-complexity advantages
of RBF. One first key idea is based on splitting the design
between the scheduling and the final beam computation (or
"user serving") stages, thus taking profit from the fact the
number of users to be served at each scheduling slot is much
less than the number of active users (i.e.B ≤ M << K).
In the scheduling phase (stage 1), a coarse finite feedback
rate user selection scheme is presented exploiting the concept
of RBF [14]. We use the SINR reported by all users, which
is measured upon the initial precoding matrix as a basis on
which to further improve the design of the final beams that
will be used to serve the selected users (stage 2). In general, the
initial precoder can be designed based on any a priori channel
knowledge; however here we assume that the first-stage beams
are generated at random as in [14] since no a priori CSIT
is assumed. Once the group ofB (1 ≤ B ≤ M) users is
pre-selected using the SINR feedback on the random beams,
additional CSIT may be requested to only the selected user
group in order to design the final precoder. More specifically,
we make the following proposals and contributions:

• The second-stage precoding matrix may require variable
levels of additional CSIT feedback to be computed,
depending on design targets, and the final beams will
improve over the random beamforming used in [14].
In particular, while we expect little gain over [14] for
large K, significant throughput gain appears for sparse
networks in which the initial random beamformer may
not provide satisfactory SINR for allM users.

• In this work, we restrict ourselves to the case that we
do not change the initial beam direction and we then
propose to adapt the power and the number of active
beams to the number of users, the average signal-to-noise
ratio (SNR) and the number of transmit antennas as a
means to maximize the system throughput.

• In one variant of the proposed designs, we study the
problem of power allocation across theB (initially
equipowered) random beams showing substantial capac-
ity improvement over [14] for a wide range of values of
K. The scheme requiresB ≤ M real-valued scalar values
to be fed back from each of theB pre-selected users.

• For a 2-beam system, the global optimal beam power so-
lution is provided in closed-form, whereas for the general

B-beam case, solutions based on iterative algorithms are
proposed and numerically simulated.

• In another proposed robust variant of RBF, no additional
CSIT feedback is required during the second stage. In-
stead, we exploit the SINR information obtained under
the random beams in the first stage in order to not only
perform scheduling but also to refine the number of active
beams. An on/off beam power control is proposed as a
low-complexity solution, yielding a dual-mode scheme
switching from time-division multiple access (TDMA)
transmission (only one beam is allocated non-zero power)
to SDMA where all beams are active with equal power.
The throughput gains over [14] are shown to be substan-
tial for high SNR and lowK values.

The remainder of this paper is organized as follows. The
system model is described in Section II, and in Section III we
review linear precoding and scheduling in MIMO broadcast
channels. Section IV is devoted to the proposed two-stage
scheduling and linear precoding framework. In Section V,
power allocation techniques based on beam gain knowledge
are proposed, while in Section VI an on/off beam power
control scheme is investigated. We provide numerical results
in Section VII, and conclude in Section VIII.

II. SYSTEM MODEL

We consider a multi-antenna Gaussian broadcast channel in
which a transmitter equipped withM antennas communicates
with K ≥ M single-antenna receivers. The received signal
yk(t) of thek-th user at time slott is mathematically described
as

yk(t) = hk(t)x(t) + nk, k = 1, . . . , K (1)

where x(t) ∈ CM×1 is the vector of transmitted symbols
at time slott, and hk(t) ∈ C1×M is the channel vector of
the k-th receiver, with components distributed as∼ CN (0, 1)
(Rayleigh fading). We assume that each of the receivers has
perfect and instantaneous knowledge of its own channelhk,
and thatnk is independent and identically distributed (i.i.d.)
circularly symmetric additive complex Gaussian noise with
zero mean and varianceσ2

k = σ2, ∀k. The transmitter is
subject to a power constraintP , i.e., Tr(xxH) ≤ P , where
Tr(·) is the trace operator, and all users are assumed to
experience the same average SNR.

Notation: We use bold upper and lower case letters for
matrices and vectors, respectively.E(·) denotes the expectation
operator. The natural logarithm is referred to aslog(·), while
the base 2 logarithm is denoted aslog2(·).

III. U SERSELECTION AND L INEAR PRECODING FOR

MIMO B ROADCAST CHANNELS

Let S(t) = {ki}Bi=1 be the set of selected users that are
assigned non-zero rate at time slott, with cardinality|S(t)| =
B, 1 ≤ B ≤ M . From now on, for simplicity, we drop the time
index. Under linear beamforming, the transmitter multiplies
the (normalized) data symbol for each userk by a vectorwk

so that the transmitted signal isx =
∑

k∈S

√
P kwksk with



3

√
P k denoting thek-th user transmit power scaling factor. The

received signal for each userk ∈ S is therefore

yk = (
√

P khkwk)sk +
∑

j∈S,j 6=k

(
√

P jhkwj)sj + nk (2)

where
∑

k∈S Pk ‖wk‖2 ≤ P . The instantaneous SINR at
receiverk is

SINRk =
Pk |hkwk|2

∑

j 6=k

Pj |hkwj |2 + σ2
k ∈ S (3)

Assuming user codes drawn from an i.i.d. Gaussian distribu-
tion, the supremum of the rates supported for userk is given
by Rk = log2 (1 + SINRk) and the average achievable sum
rateR is given by

R(S) =
∑

k∈S

Rk =
∑

k∈S

log2(1 + SINRk) (4)

The user setS is chosen to maximize the achievable sum rate,
i.e. S∗ = arg max

S⊂{1,...,K}
R(S).

IV. T WO-STAGE SCHEDULING AND L INEAR PRECODING

In this section, we propose a MIMO downlink scheduling
and beamforming framework in which the design is split
into two stages. In the first stage, a coarse beamforming
matrix is used (possibly even selected at random) and user
group selection (of sizeB) is performed among allK active
users. In the second stage, possibly additional channel quality
information is collected for the selected user group, and an
improved beamforming matrix is designed to serve them.
The fact thatB << K is instrumental in reducing the
total feedback requirement in this scenario. The two-stage
framework can be described as follows:

Stage 1: User Selection
The transmitter generates a linear precoding matrixW based
on any a priori channel information we may have. In our case,
since the channel conditions of the users are not known a
priori, a unitary precoding matrixQ is drawn randomly and
equal power allocation is used (Pm = P

B , ∀m), as a means
to reduce feedback burden and complexity requirements, i.e.
W = Q = [q1 . . .qB]. The B columnsqm ∈ CM×1 of
the precoder can interpreted as random orthonormal beams,
generated according to an isotropic distribution, as proposed
in [14].

Each of theK users, say thek-th, calculates the SINRs over
all equipowered beams, i.e.

SINRk,m =
|hkqm|2

∑

j 6=m

|hkqj |2 + Bσ2/P
m = 1, . . . ,B (5)

finds the beambk that provides the maximum SINR, i.e.
bk = arg max

m=1,...,B
SINRk,m, and feeds backβk = SINRk,bk

in

addition to the beam indexbk. A simple and low-complexity
user selection scheme is employed at the BS by selecting the
users that have the highest SINR on each beamqm. The group
of selected users is denoted asS. In [14] B = M beams are

activated. In the general case however, we could decide to
activate theB ≤ M best beams only.

Stage 2: Final Precoding design
In our proposed framework, we follow up with a second stage
where theB users inS may be allowed to report back to
the BS additional limited feedback, denoted asβ

′

k, k ∈ S.
Based on the feedback information, the transmitter designsthe
final precoding matrixW

′

(S) = f(β
′

k), wheref(·) is some
feedback-based beamforming design function. Note that in
[14] there is no second stage, in other wordsW

′

(S) = Q. The
second-stage feedback can take on among others the following
forms, depending on the system feedback rate constraint:

• Strategy 1: β
′

k = hk (full CSIT)
• Strategy 2: β

′

k = ĥk (quantized channel vector)
• Strategy 3: β

′

k = |hkqm|2 (BGI: beam gain information)
• Strategy 4: β

′

k = βk (no additional feedback)

Under strategy 3, theB selected users feed back beam gain
information for allB active beams, i.e.B real-valued scalars.
Note that anyone of these two-stage schemes represents an
efficient feedback reduction strategy considering the number
of selected usersB is typically very small in comparison
with K. For instanceB = 2 or 4 in practical standardized
systems whileK could be a few tens even for moderately
sparse networks. The optimal way of splitting the feedback
load across the stage 1 (scheduling) and the stage 2 (beam
design) is an interesting open problem, beyond the scope of
this paper, although some design rules, whereβ

′

k is given by
a quantized version of the quantization error of the channel
and ZFBF were already suggested [17].

The design of a two-stage feedback scheme will inevitably
introduce a longer hand-shaking delay before the actual
payload data can be sent to the mobile. For an efficient
operation of feedback-based approach (whether single stage
or two-stage), the total duration spent on feedback together
with payload transmission must be significantly less that the
coherence time of the channelTcoh. Therefore, for the 2-stage
approach to be applicable, we envision a framing structure
which encompasses the two stages of feedback, back to back,
as an overall feedback preamble, prior to payload transmission.
This preamble (minislot) of short durationτm, during which
users report their feedback messages is thus followed by a
larger slot of durationτs >> τm, which is dedicated to
pilot and data transmission. The total framing interval duration
should be kept less than the coherence time of the channel,
i.e. τs + τm ≤ Tcoh. Note that the second stage of feedback
collects fresh CSIT, so that the precoder design does not suffer
from extra outdating degradation (compared with a single
stage feedback). Nevertheless, the impact of employing two
stages on the sum-rate performance and the resulting delays
is assessed through simulations in Section VII by considering
a time-varying channel.

When the number of active usersK is large (dense net-
works), random beamforming can benefit from multiuser di-
versity by scheduling users with favorable channel conditions
(highest SINR), improving thus the system capacity. The
selected group of users exhibit large channel gains and good
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spatial separability among them and the probability that the
random beam direction is closely matched to certain users is
increased with increasingK. For low to moderate number
of users (sparse networks), the probability that allB users
enjoy a reasonable SINR is lower since the selected users
may not be fully separable under a randomly generated unitary
beamforming matrixQ. Nevertheless, we point out that this
user set, the user group selected by the scheduler under the
initial random orthogonal beams, is likely to exhibit good
separability conditions relative to the rest of the users, since
it is at least the best user group forone orthogonal precoder
Q. Therefore, we argue that a design based on randomQ

could be kept for the purpose ofscheduling. In strategies
1-3, we propose to augment the random beamforming step
(stage 1) with an additional yet low-rate CSIT feedback (stage
2), as a means to restore robustness and improve sum-rate
performance. Note that the second stage only involves the
B pre-selected users. In this work we focus particularly on
strategies 3 and 4 due to their low-rate feedback merits, and
we propose power control techniques that do not refine the
direction of the beamforming vectors.

V. BEAM POWER CONTROL WITH BEAM GAIN

INFORMATION

In this section, we consider thatstrategy 3 is adopted
during the second stage, thus the scheduler gains knowledge
of γkmm = |hkm

qm|2 for km ∈ S. Without loss of generality
(WLOG), we order users such thatγkii ≥ γkjj , ∀i < j is
assumed, and unless otherwise statedB = M . If a moderate
number of users exist, some of the random beams may not
reach a target. This is measured at the BS in terms of the
BGI γkmm. In turn, the power control is used to reduce the
resource allocated to the low-quality beams, to the benefit of
the good-quality beams. As a result we propose to choose not
to change the direction of the initial random beams. Based
on this beam gain information(BGI) γkmm we propose to
design the beamforming matrix by applying a power allocation
strategy across the beams of{qm}M

m=1, i.e. wm =
√

Pmqm.
Define the vector of transmit powersP = [P1 . . . PM ]

wherePm is the transmit power on beamm. The SINR of
the selected userkm ∈ S over its preferred beamm can be
expressed as:

SINRkm,m(P) =
Pmγkmm

σ2 +
∑

j 6=m

Pjγkmj

(6)

The beam power allocation problem for RBF in order to
maximize the sum rate subject to a total power constraint can
be formulated as:

max
P

R(S,P) = max
P

M
∑

m=1

log2 (1 + SINRkm,m(P))

s.t.

M
∑

m=1

Pm ≤ P, Pm ≥ 0, m = 1, . . . , M (7)

We first remark that the power constraint is always satisfied
with equality. This is easily verified by noting that any power

vectorP
′

with
∑

m P
′

M < P cannot be the optimum power
vector. For anyβ > 1, a power vectorP with Pm = βP

′

m,
m = 1, . . .M such that

∑

m βPM = P increases the sum rate
R(S,P), since it increases all user rates.
In what follows we search for the optimal beam power
allocation (power vectorP∗) by finding

P∗ = arg max
P∈PM

R(S,P) (8)

wherePM = {P|∑m Pm ≤ P, Pm ≥ 0, m = 1, . . . , M} is
the constraint set, which is a closed and bounded set. Although
the sum rate function is concave in SINR, it is not strictly
concave in power. Thus, the optimization problem is hard
to solve due to non-convexity of the objective function, and
no transformation into convex by relaxation seems doable.
This problem is however typical of sum-rate maximizing
power control [18]. In the following sections, we investigate a
closed-form optimal solution for a 2-beam system and iterative
solutions for the general case.

A. Optimum Beam Power Allocation forB = 2

For RBF system withB = 2 beams, the optimum beam
power allocation policy under strategy 3 can be derived
analytically. The sum rate for user setS = {k1, k2} is given
in terms ofP1 ∈ [0, P ] by:

R(S, P1) =

2
∑

m=1

log2 (1 + SINRkm,m)

= log2

[(

1 +
P1γk11

σ2 + (P − P1)γk12

)(

1 +
(P − P1)γk22

σ2 + P1γk21

)]

(9)
Since the logarithm is a monotonically increasing function, we
can consider the following objective function:

J (P1) =

(

1 +
P1γk11

σ2 + (P − P1)γk12

)(

1 +
(P − P1)γk22

σ2 + P1γk21

)

(10)
By Fermat’s theorem, the necessary conditions for maxima of
the continuous objective function can occur either at its critical
points or at points on its boundary. Therefore, the global
maximizer of the above generally non-convex optimization
problem is given by the following alternatives:

• boundary points ofP2: P1 = 0 or P1 = P .
• extreme points on the boundary ofP2: i.e., the values

P1 ∈ [0, P ] resulting from∂J (P1)
∂P1

= 0.

Specifically, we have the following result:
Theorem 1: For the two-beam RBF, the optimum sum-rate
maximizing beam power allocationP∗ = (P ∗

1 , P ∗
2 ) is given

by:
{

P ∗
1 = arg max

P1={0,P,P ′}
J (P1)

P ∗
2 = P − P ∗

1

(11)

whereP1 ∈ [0, P ] and

P
′

=

{

(−B ±
√

B2 − 4AΓ)/2A if A 6= 0
−Γ/B if A = 0

(12a)
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A = γk11γk21(γk21 − γk22)(Pγk12 + σ2)

+ γk22γk12(γk11 − γk12)(Pγk21 + σ2) (12b)

B = γk11(Pγk12 + σ2)(Pγk21γk22 + 2γk21σ
2 − γk22σ

2)

+ γk22(Pγk12 + σ2)(2γk12 − γk11)(Pγk21 + σ2) (12c)

Γ = γk11σ
2(Pγk12 + σ2)(Pγk22 + σ2)

− γk22(Pγk21 + σ2)(Pγk12 + σ2)2 (12d)

Proof: See Appendix I.A.
Hence, the optimal power control is not ‘water-filling’, but

either TDMA-mode (the BS transmits to only one user/beam
with non-zero power) or SDMA-mode in which the transmit
power values to multiple users are positive and allocated
according to (12a).

1) Beam power control in extreme interference cases:To
gain more intuition on the optimal power allocation scheme,
we investigate two extreme cases in terms of interference.
Define the interference factorsαkm

=
∑

j 6=m
γkmj

γkmm
. In the 2-

beam case, we haveαk1 =
γk12

γk11
and αk2 =

γk21

γk22
. For non-

interfering beams (i.e.,αk1 = αk2 = 0), the optimal beam
power allocation is given by the water-filling power allocation

P
∗
1 = min

{

P,

[

P

2
+

(γk11 − γk22)σ
2

2γk11γk22

]+
}

andP
∗
2 = P − P

∗
1

(13)
where[x]+ = max(0, x). Note that SDMA with equal power
allocation is optimal when both users experience the same
channel conditions (γk11 = γk22).
In the case of fully-interfering beams (i.e.,αk1 = αk2 = 1),
TDMA mode is of course optimal as the solution to (7) under
the assumption WLOGγk11 > γk22 is

P ∗
1 = P and P ∗

2 = 0 (14)

2) Optimality conditions for TDMA transmission mode:
The beam power solution stated in Theorem 1 implies that
the optimum transmission mode is either TDMA (P1 = 0 or
P ) or SDMA with P1 = P

′

. In this section, we are interested
in identifying the region of TDMA optimality and providing
the relevant conditions. We first derive conditions requiring
knowledge of the interference factorsαki

∈ (0, 1] only. These
conditions can be used as practical design rules, especially in
distributed resource allocation scenarios. Formally, we have
that
Lemma 1: If αki

≥ 0.5, the optimum power allocation is
P ∗

1 = P and P ∗
2 = 0 (TDMA transmission mode).

Proof: See Appendix I.B.

Corollary 1 : A sufficient condition for TDMA optimality is

αk1 + αk2 ≥ 1 or equivalently

(

1

cos2 θ1

)2

+

(

1

cos2 θ2

)2

≥ 3

(15)
whereθi = ∠

(

h̄ki
,qi

)

is the angle (misalignment) between
the direction of the normalized channelh̄ki

and beamqi.
Proof: The first condition is a direct result of Lemma 1 by
summing up the interference factors and the equivalent second
relation is derived by usingαki

= tan2 θi.

Additionally, if BGI knowledge is allowed (strategy 3), a
(sharper) sufficient TDMA optimality condition is the follow-
ing:
Lemma 2: The optimum power allocation is TDMA mode
(P ∗

1 = P ) if
Pγk11

σ2
≥ 1 − αk1 − αk2

αk1αk2

(16)

Proof: See Appendix I.C.

B. Beam Power Allocation for more than two beams

For the general case ofB > 2 beams, an analytical treatment
of (7) does not unfortunately seem tractable, because of the
lack of convexity. Therefore, we propose a suboptimal - yet
efficient - iterative algorithm which aims to increase the system
throughput by distributing the total power over the beams.
Our algorithm tries to identify the extreme points of the
sum rate by finding the power vectorP that maximizes (7).
The extreme points of the objective function are found by
iteratively solving the Karush-Kuhn-Tucker (KKT) conditions
for the beam power control problem. Note that the power
vector to which our algorithm converges is not necessarily
optimal (global maximum) for general channels, unless the
Hessian of the Lagrangian of the objective function is a
negative definite matrix. Nevertheless, simulation results show
that significant sum-rate improvement can be provided.

1) Iterative Beam Power Control Algorithm:We resort to
a suboptimal - yet efficient - iterative algorithm, inspiredby
iterative water-filling (IWF) algorithms [19], [20], as a means
to identify the extreme points on the boundary ofPM . In the
proposed Iterative Beam Power Control Algorithm, each user
iteratively maximizes its own rate by performing single-user
water-filling and treating the multiuser interference fromall
the other users (beams) as noise.

a) Proposed Algorithm:Let P(0) be the initial point and
I(P(i)) = σ2 +

∑

j 6=m P
(i)
j γkjj be the interference function

at i-th iteration. The steps of the algorithm are summarized in
Table I.

Iterative Beam Power Control Algorithm

Step 1 (Initialization) SetP(0) = 0

Step 2For iterationi = 1, 2, . . ., compute∀km ∈ S :
λ

(i)
km

=
γkmm

I(P(i−1))
=

γkmm

σ2+
∑

j 6=m P
(i−1)
j

γkj j

Step 3 (Water-filling): let π(i) be the solution of:

π(i) = arg max
π≥0,

∑

m πm≤P

∑

km∈S

log2

(

1 + πmλ
(i)
km

)

Step 4 (Update): let P(i) = π(i)

TABLE I

ITERATIVE BEAM POWER CONTROL ALGORITHM

Some observations are in order: at each iterationi, once
λ

(i)
km

=
γkmm

(σ2+
∑

j 6=m
P

(i−1)
j

γkmj)
is calculated for each userkm



6

usingP
(i−1)
j , j 6= m, it is then kept fixed and treated as noise.

Given the total power constraintP , the ‘water-filling step’ is a
convex optimization problem similar to multiuser water-filling
with common water-filling level. Thus, all transmit powers
in P assigned to beams are calculated simultaneously in
order to maintain a constant water-filling level. The algorithm
computes iteratively the beam power allocation that leads to
sum rate increase and converges to a limit value greater or
equal to the sum rate of equal power allocation. Formally,
the power assigned to beamm at iterationi yields P

(i)
m =

[µ − 1/λ
(i)
km

]+, with
∑

km∈S

[µ − 1/λ
(i)
km

]+ = P , where µ is

the common water-filling level. The beam power control for
strategy 3 assigns transmit powers over the beams when the
sum rate given by the iterative solution is higher than that of
the boundary points.

b) Convergence Issues:As stated before, no global max-
imum is guaranteed due to the lack of convexity of sum-rate
maximization problem. Therefore, we do not expect that the
convergence point of the iterative algorithm be generally a
global optimal power solution. Interestingly, it can be shown
that the convergence leads to a Nash equilibrium, when con-
sidering that each user participates in a non-cooperative game.
The convergence to an equilibrium point can be guaranteed
sinceI(P) is a standard interference function [19], [21]. The
proof of existence of Nash equilibrium follows from an easy
adaptation of the proof in [22]. However, the uniqueness of
these equilibrium points cannot be easily derived for the case
of arbitrary channels.

In this section, we derive analytically the convergence point
of the 2-beam case using the iterative algorithm and compare
it with the optimal beam power solution given by Theorem 1.

At the steady state, say iterations, we have that
{

P
(s)
1 = µ − 1/λ

(s)
k1

P
(s)
2 = µ − 1/λ

(s)
k2

with







λ
(s)
k1

=
γk11

P
(s−1)
2 γk12+σ2

λ
(s)
k2

=
γk22

P
(s−1)
1 γk21+σ2

(17)
andµ = P

2 + 1
2λk1

+ 1
2λk2

from the sum power constraint. Upon

convergence of the algorithm, we have thatP
(s)
i = P

(s−1)
i , i =

1, 2, which results to the system of equationsAPT = b with

A =

[

2 − γk21/γk22 γk12/γk11

γk21/γk22 2 − γk12/γk11

]

b =





P + σ2
(

1
γk22

− 1
γk11

)

P + σ2
(

1
γk11

− 1
γk22

)





For detA 6= 0 → αk1 6= 1 and αk2 6= 1, we have that
PT = A−1b, giving the ‘water-filling’ solution(P1, P − P1)
with

P1 =
Pγk22 (γk11 − γk12) + σ2 (γk11 − γk22)

2γk11γk22 − γk22γk12 − γk21γk11
(18)

It can be observed that (18) is different from (12a). Fortunately,
it still provides a heuristic power allocation algorithm and
as shown through simulations in Section VII, there is not a
significant reduction in sum rate by allocating the power over
beams using this algorithm.

We would like to point out that one may additionally
resort to Geometric Programming [18], which represents the
state of the art in continuous power control for non-convex
problems. These techniques are shown to be convergent and it
turns out that they often compute the globally optimal power
allocation. Interestingly, it can be shown that the heuristic
iterative algorithm proposed in Section V-B.1 finds an equiva-
lent interpretation, as applying the so-calledsuccessive convex
approximation[18], [23] to the beam power control problem
results in the same iterative algorithm.

C. Beam Power Control in Specific Regimes (B ≥ 2)

The apparent non-convexity of theB-beam case can be
alleviated in certain SINR regimes, as a hidden convexity of
the beam power allocation problem appears. We shall consider
the beam power allocation forB = M beams in three cases:
1) the high SINR regime, 2) the low SINR regime, and 3)
approximation by the arithmetic-geometric means inequality.

1) High SINR regime:For SINR values higher than 0dB,
the approximationlog(1 + x) ≈ log(x) can be applied, and
the objective functionG(P) = R(S,P) becomes

G(P) ≈
M
∑

m=1

log2 (SINRkmm) = log2

(

M
∏

m=1

SINRkmm

)

A similar result has previously observed in [18] in the case
of code division multiple access (CDMA) power control and
solved by Geometric Programming, as the approximate high-
SINR sum rate is a concave function oflog Pm.

2) Low SINR regime:In the low SINR regime, the sum
rate is approximated by applying Taylor first-order series
expansion, i.e.log(1 + x) ≈ x. Therefore,

G(P) ≈ log2 e

M
∑

m=1

SINRkmm = log2 e

M
∑

m=1

Pmγkmm
∑

j 6=m

Pjγkmj + σ
2

(19)
The objective function (19) is convex in each variablePm

since
∂2

∂P 2
m

(

M
∑

m=1

Pmγkmm
∑

j 6=m Pjγkmj + σ2

)

=
∑

m 6=i

2Pmγkmmγ2
kmi

(

∑

j 6=m Pjγkmj + σ2
)3 ≥ 0 (20)

Hence, the optimal beam power control strategy is found by
the KKT conditions and can be solved numerically using
efficient interior-point methods [24].

3) Arithmetic-geometric means approximation:From the
arithmetic-geometric means inequality [25], the sum rate can
be upper bounded as

R(P) = log2

(

M
∏

m=1

(1 + SINRkm,m(P))

)

≤ M log2









1 +
1

M

M
∑

m=1

Pmγkmm

σ2 +
∑

j 6=m

Pjγkmj









= GAGM (P)

(21)
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Since the logarithm is a monotonically increasing functionand
the argument of the log-function ofGAGM (P) is convex wrt
eachPm, a close-form global optimal solution can be derived.

The sharpness of the above sum-rate approximation is
quantified by the differenceδ = GAGM (P) − R(P). For
h =

maxi(1+SINRkii)

minj(1+SINRkjj)
> 1 the following inequality stands

0 ≤ δ ≤ M

log2

K
′

(h, 1) (22)

whereK
′

(h, 1) = log

(

h
1

h−1

e log h
1

h−1

)

is the first derivative of

the Kantorovich constant [26]. Therefore, inequality (21)is
tight for equal SINR values, and the approximation is better
when the spread of (1+SINR) values is small (h → 1).

VI. B EAM POWER CONTROL WITH SINR FEEDBACK

In this section, we present a low-complexity, low-feedback
variant of the two-stage linear beamforming framework. For
that, we adoptstrategy 4in the second stage, assuming thus
that the scheduler has access only to the same amount of feed-
back information as in [14], namelyβ

′

k = βk = SINRkmm.
Nevertheless, we further exploit this scalar information in view
of rendering the precoding matrix more robust with respect
to cases where not allM users can be served satisfactorily
simultaneously with the same amount of power. The major
challenge here is that when only SINR feedback is available,
the transmitter cannot estimate the precise effect on interfer-
ence and user rate (SINR) if the transmit power had been
allocated differently over the beams. In this case we resort
to a power control strategy based on the maximization of the
expected sum rate.

A. On/Off Beam Power Control

We propose a simple power allocation scheme, coined as
On/Off Beam Power Control, in which the transmitter takes a
binary decision between:

• TDMA transmission toward one selected user (the one
with maximumβk from stage 1).

• SDMA where all random equipowered beams are active,
as in [14].

This beam power control can be seen as discretization of the
continuous power control problem solved in Section V, since
the power vector only accepts a binary solution.

The scheduler, based only on SINR feedback, compares the
instantaneous achievable SDMA sum rate with the expected
TDMA rate, and selects the transmission mode that maximizes

the system throughput. LetRSDMA =

M
∑

m=1

log(1+SINRkmm)

denote the achievable SDMA sum rate that can be explicitly
calculated at the BS, andRTDMA denote the expected TDMA
transmission rate.

The On/Off Beam power control scheme results in the
following binary mode decision denoted asF :

F =

{

TDMA if ∆R > 0
SDMA if ∆R ≤ 0

(23)

where∆R = RTDMA −RSDMA.
The expected TDMA rate can be evaluated asRTDMA =
E
{

log2

(

1 + P
σ2 γk11

)}

, where Fγk11
(x) = (1 − e−x)

K ,
which is given by the following closed-form expression:

Proposition 1: For any values ofP , M , andK, the average
rate of TDMA-based random beamforming is given by

RTDMA =
1

log 2

K
∑

k=1

(

K

k

)

(−1)kekσ2/P Ei(−kσ2/P ) (24)

where Ei(x) = −
∫∞

−x
e−t

t dt is the exponential integral.
Proof: See Appendix I.

VII. N UMERICAL RESULTS

In this section, we evaluate the sum-rate performance of the
proposed beam power control algorithms through Monte Carlo
simulations, based on the system model described Section
II and considering thatB = M beams are generated. The
achieved sum rate is compared with conventional SDMA-
based random beamforming [14] where equal power is allo-
cated over the beams.

We simulate a time-varying Rayleigh fading channel where
the fadinghk(t) is i.i.d. among users and for different anten-
nas. We consider Clark-Jake’s Doppler model, with autocorre-
lation functionE{h(t)h(t + ℓTs)} = J0(2πfDℓTs) wherefD

denotes the one-sided Doppler bandwidth (in Hz) andJ0(·) is
the Bessel function of the first kind. We set the frame duration
equal toTs = 1 ms and carrier frequency is 2 GHz.

We first assess the performance of beam power control
with BGI second-stage feedback (strategy 3). As a general
comment, it ought to be mentioned that channel variations
do not change the capacity scaling of the proposed schemes
with respect to the conventional ones. Time variation results
in slightly reduced throughput as compared with uncorrelated
channels, however as the two-stage approach can be accom-
plished in the preamble phase, the reported feedback does
not become severely outdated. Note that the second stage of
feedback collects fresh CSIT, therefore the precoder design
does not suffer from extra outdating degradation (compared
with a single-stage feedback).

In Figure 1 we present the sum rate achieved using optimal
power allocation vs. the number of active usersK for the
2-beam case, SNR = 20 dB and 60 Hz Doppler shift. Single-
beam random beamforming refers to the scheme proposed
in [15] where only one random beam is generated (TDMA)
at each slot. The gains of optimally allocating power across
beams are more pronounced for systems with low to moderate
number of users (up to 30), whereas forK increasing, the ben-
efits of beam power control vanishes as the optimal solution
advocates the use of equipowered beams, as expected. Figure2
shows a sum-rate comparison as a function of the average SNR
for K = 10 users andfD = 60 Hz, illustrating that beam power
allocation prevents the system from becoming interference-
limited. Power control allows us to switch off beams, thus
keeping a linear capacity growth in the interference-limited
regime and converging to TDMA at high SNR. In Figure 3 we
compare the achieved sum rate difference between the optimal
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power allocation and the power solution given by our iterative
algorithm at SNR = 10 dB andfD = 100 Hz. Use of the
iterative algorithm, despite suboptimal, results in negligible
throughput loss at all ranges ofK. The performance of the
iterative power control is further evaluated in Figure 4 fora
4-beam downlink showing substantial sum-rate enhancements
for practical number of users.

We then evaluate the results of the on/off beam power con-
trol (strategy 4), which uses the same amount of feedback as
the conventional RBF [14]. Note that no additional feedbackis
requested during the second stage, thus no delay is introduced
in the scheduling protocol. In Figure 5 we plot the sum rate
vs. the number of users forM = 2 transmit antennas and
SNR = 10 dB. The scheme is switching from TDMA mode
at low K, where all transmit power is given to the highest
βk = SINRkm

user, to SDMA-based RBF with equal power
allocation. We also observe that the sum-rate gap between the
optimal power control (with second-stage feedback) and on/off
power control (no additional feedback) forK < 20 users is
approximately 0.4 bps/Hz. In Figure 6 we consider a 4-beam
RBF scheme and show the sum rate performance of on/off
beam power control as a function of average SNR. Although
the throughput curve of conventional RBF converges to a
finite ceiling at high SNR, the TDMA-SDMA binary decision
capability of the beam on/off scheme provides a simple means
to circumvent the interference-limited behavior of RBF with
no extra feedback. We note also that TDMA mode is generally
preferable from a sum-rate point of view in sparse networks,
and the range ofK in which TDMA is beneficial increases
for SNR increasing.
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Fig. 1. Sum rate versus the number of users for Optimal Beam Power Control
with M = 2 transmit antennas, SNR = 20 dB and Doppler shiftfD = 60 Hz.
Significant throughput gains are achieved by optimally allocating the power
across beams for systems with low to moderate number of users.

VIII. C ONCLUSION

The downlink of a multiuser MIMO system with limited
feedback and more users than transmit antennas was consid-
ered. A two-stage scheduling and linear precoding framework,
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Fig. 2. Sum rate versus average SNR for Optimal Beam Power Control
(strategy 3) withM = 2 transmit antennas,K = 10 users, and Doppler shiftfD

= 60 Hz. Beam power control circumvents the interference-limited behavior
of RBF, achieving a linear sum-rate growth at high SNR.
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Fig. 3. Sum rate versus the number of users for Iterative BeamPower
Allocation and Optimal Power Control withM = 2 transmit antennas, SNR
= 10 dB, and Doppler shiftfD = 60 Hz. Use of suboptimal iterative algorithm
results in negligible loss compared to the optimal solution.

which builds on previously proposed SDMA-based random
beamforming, is introduced. This scheme divides the schedul-
ing and the precoding design stages into two steps, where
the final beamformer is designed based on refined CSIT fed
back by the users selected in the first stage. Several beam
power control strategies, with various levels of complexity
and feedback load, are proposed in order to restore robustness
of RBF in sparse networks. Their sum-rate performance is
assessed, revealing substantial gains compared to RBF for
systems with low to moderate number of users, at a moderate
or zero cost of extra feedback.

Future research directions may include investigating CSIT
quantization and the effect of feedback delay and estimation
errors on the sum-rate performance. Fairness and quality of
service are also issues of particular practical importance.
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Fig. 4. Sum rate versus the number of users for Iterative BeamPower
Allocation with M = 4 transmit antennas, Doppler shiftfD = 100 Hz and
SNR = 10 dB.
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Fig. 5. Sum rate versus the number of users for On/Off Beam Power
Control withM = 2 transmit antennas and SNR = 20 dB. On/Off beam power
control switches to TDMA mode at lowK, and strategy 4 gives almost same
performance as strategy 3 without the additional feedback.

APPENDIX I

A. Proof of Theorem 1

Since J (P1) is not always concave inP1, the P1 that
maximizes it is either the boundary points (P1 = 0 and
P1 = P ) or the solutions corresponding to∂J /∂P1 = 0.
By differentiating the objective function with respect toP1,
we have

∂J
∂P1

= AP 2
1 + BP1 + Γ (25)

where A, B, Γ are given by (12b), (12c) and (12d), respec-
tively. Setting ∂J

∂P1
= 0, the possible values of P1 that

maximize the throughput are the real-valued roots of the
second-order polynomialAP 2

1 +BP1+Γ = 0 (for A 6= 0) that
satisfy the constraintP1 ∈ [0, P ] or P1 = −Γ/B for A = 0.
Hence, the optimumP ∗

1 is the value among the boundary
points (P1 = 0 andP1 = P ) and the extreme points (roots of
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Fig. 6. Sum rate versus average SNR for On/Off Beam Power Control with
M = 4 transmit antennas andK = 25 users. Interference-limited behavior
(bounded sum rate) is avoided by selecting TDMA transmission mode for
increasing SNR.

the polynomial) that maximizesJ (P1), which concludes the
proof.

B. Proof of Lemma 1

Let Ji(Pi)(i = 1, 2) represent the individual rate of userki

given as

Ji(Pi) = log2

(

1 +
Piγkii

σ2 + (P − Pi)γkij

)

(26)

= log2

(

1 +
Pi

σ2/γkii + αki
(P − Pi)

)

, j 6= i (27)

The sum-rate maximizing beam power allocation problem can
be rewritten as

max
P∈P2

J1(P1) + J2(P2) subject toP1 + P2 = P

We investigate now the behavior of the individual user rate ob-
jective function. By calculating the first and second derivative
of Ji(Pi) we have

∂Ji(Pi)

∂Pi
=

∆ + αki
Pi

∆(∆ + Pi)
> 0 (28)

∂2Ji(Pi)

∂P 2
i

=
d1(∆ + αki

Pi)

d2
(29)

with ∆ = αki
(P − Pi) + σ2/γkii, d1 = (2αki

− 1)∆ +
αki

Pi, and d2 = ∆2(∆ + Pi)
2. The sign ofd1 determines

the convexity or concavity ofJi(Pi). If d1 > 0 → Pi >
(

1
αki

− 2
)

∆, Ji(Pi) is a convex function ofPi, and concave
otherwise. Since∆ > 0, for αki

≥ 0.5 the objective function
Ji(Pi) is convex∀i, i.e. ∂Ji(Pi)

∂Pi
> 0, hence the sum of two

convex functionsJ1(P1) +J2(P2) is maximized forP ∗
1 = P

andP ∗
2 = 0.
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C. Proof of Lemma 2

Let RTDMA = log2

(

1 +
Rγk11

σ2

)

denote the system
throughput for TDMA mode. TDMA is optimal when
RTDMA ≥ R(P) → log2

(

A(P1)
C(P1)

)

≥ 0, where

A(P1) = (1+
Pγk11

σ2
)(Pαk1γk22+σ2)((P−P1)αk1γk11+σ2)

C(P1) = (Pαk1γk11 + P1γk11(1 − αk1) + σ2)

×(Pγk22 + P1γk22(αk2 − 1) + σ2)

The region of TDMA optimality depends on the convexity of
Ψ(P1) = A(P1) − C(P1). By differentiating twice we have
that

∂2Ψ(P1)

∂P 2
1

= −2γk11γk22

(

Pγk11

σ2
αk11αk22 + αk11 + αk22 − 1

)

(30)

For ∂2Ψ(P1)
∂P 2

1
≤ 0, Ψ(P1) is concave wrtP1 (Ψ(P1) ≥ 0), since

Ψ(0) ≥ 0 andΨ(P ) = 0, which results in (16).

D. Proof of Proposition 1

Since the cumulative distribution function ofs =
P |hkq1|2 /σ2 is Fs(x) = 1− e−xσ2/P , the average sum rate
of TDMA-based random opportunistic beamforming is given
by

R = E

{

log2(1 + max
1≤k≤K

P |hkq1|2
σ2

}

=

∫ ∞

0

log2(1 + x)dFK
s (x)dx

(a)
=

1

log 2

∫ ∞

0

1

1 + x
(1 − FK

s (x))dx

= log2 e

∫ ∞

0

1

1 + x
(1 − (1 − e−xσ2/P )K)dx

(b)
= − 1

log 2

K
∑

k=0

(

K

k

)

(−1)k

∫ ∞

0

e−xkσ2/P

1 + x
dx

=
1

log 2

K
∑

k=1

(

K

k

)

(−1)kekσ2/P Ei(−kσ2/P )

where integration by parts is applied to obtain (a) and (b)
follows from binomial expansion.
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