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Abstract— Network-wide optimization of transmit power with ~ minimum acceptable level for the signal-to-interferepbes-
the goal of maximizing the total throughput, promises significant noise ratio (SINR) for each receiver. This is to guarantee a
system capacity gains in interference-limited data networks. target outage probability for the communication link, whic

Finding distributed solutions to this global optimization problem . . . . .
however, remains a challenging task. In this work, we first is the measure of Quality of Service (QoS) in connection-

focus on the maximization of the weighted sum-rate capacity, Oriented voice networks.
as this allows the incorporation of QoS criteria in the objective In this work however, we investigate power allocation in

function. For the case of two links, we are able to analytically the context of future data wireless networks enabled with
characterize the optimal solution to the weighted sum-rate link adaptation protocols. Based upon underlying channel

maximization problem. However, computing the optimal solution diti h t ble to adapt the t it rat
requires centralized knowledge of network information. We thus conditons, such systems are able 10 adapt the transmit rate

formulate a framework for distributed power optimization valid ~ (Or select transmit rates) through adaptive modulation and
for N mutually interfering links, based on the concept of channel coding. Moreover, due to the elastic nature of data traffiet(w

state partitioning. By assuming instantaneous knowledge of local prowsing, email, etc.), guaranteeing a strict SINR reqnoést
information and statistical knowledge of non-local information, is not always required. Rather, maximizing the total amount

we derive a distributed power allocation algorithm, which we
first analyze for the case ofN — 2. Although a gain is observed of data transferred becomes a more relevant performande goa

over equal power allocation, the distributed algorithm shows However, having some form of Quality of Service (QoS)
a performance gap as compared to a centralized solution, as constraints on performance is none the less desirable &r th
expected. We show however, that minimal information message operator, who may offer different levels of service to eneras
passing (!n this case one bit) between interfering links can help In light of these arguments, we considgam-rate and possibly
reduce this gap substantially. Finally, we also propose a method to = . hted te of th t f teri
incorporate user scheduling into the distributed power allocation welg sumrrate of the system ‘?S our performance ?”,er'on'
algorithm. and formulate the power allocation problem to maximize the
. . metric. The weighted sum-rate function proves useful for
Index Terms—Power control, Co-channel interference, Dis- danti llocati lici h by virtuehaf
tributed, Resource allocation, Full spectrum reuse, Weighted sum a E_:'tp ve res_ource aflocation policies, W_ e_r(-.:‘, y V'_r u
rate, Scheduling, Multi-user Diversity weights, a link can be more or less prioritized with respect
to resources depending on QoS or fairness constraints. We
characterize the optimal solution to this problem, whicéoal
|. INTRODUCTION encompasses the unweighted sum-rate maximization problem

Links operating on the same spectral resource are pIagLPJSV'_OUSIy add_ressed n [6]’.[7]' However, f|n<_j|ng this sioio
by mutual interference which diminishes system capacity. tails gentrallzed processing .Of network-vwde channeafest
Power control serves as a means to mitigate this effect a &””?a“o”- Although this promises the maximum exploigab
has been an extensively researched topic for the past 2@.yeg?'n’ it may be too costly from a signaling overhead point of
In traditional voice-centric wireless networks, power toh
was found to be an effective method to enhance the relibilit
of the system. A number of approaches have been proposellE
address this problem, [1]-[5] to name a few. The key idea
earlier power control work is to either aim for a certain &trg
received power, or to balance the transmit powers to aclaev

Consequently, sub-optimal distributed solutions to thiop

are desirable if we hope to achieve some of the theotetica
gﬁms in practice. As one avenuggme theoretic results have

een explored for this purpose (see for instance [8], among
8thers). Typically, game theoretic algorithms represdm t
interfering links in the network as players of a non-coofieea
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well, and it typically depends on the global system layout
and environment [8], [10]. Some game theoretic approach
also require communication of information between links
to compute the pricing function [12]. As an alternative to
game theoretic approaches, Geometric Programming (GP)

techniques can be applied in the high SINR regime, which v g
render the sum-rate maximizing power control problem crnve
[13], [14]. Finally, distributed sum-rate maximizing pove

control and scheduling algorithms were proposed in [15],
taking advantage of a simplified interference model. Such
approaches rely, however, on statistical averaging ptieger
of large random networks and thus are not applicable for all
networks [16]. In the course of this study, we will formulate
generalized distributed optimization problem by takingaad @) (b)
tage of statistical knowledge of “non-local” informatiomthe _ _ _ _

Fig. 1. Snapshot of network model, withh = 4 interfering pairs of

network. This formulation is ir)dependent of any Underlyingansmitters and receivers. The cellular model (a) and thglesimop peer-
channel model or system architecture and thus can be appliggeer or ad-hoc model (b) give rise to equivalent mathenatiuzdels.

to both cellular or ad-hoc scenarios. Dashed circles refer to silent users while solid circleeraéd access points
. . . . or users selected by the scheduler.
The most important contributions of this work are as fol-
lows:

« We initially formulate the power allocation problem forminimal message passing. We will also discuss joint use of
maximizing a weighted sum-rate criterion, which woulgiser scheduling with power allocation. Numerical resuits i
enable the incorporation of certain types of QoS comection VI demonstrate the performance of these algorithms

straints on the links. after which we conclude the paper.
o For the particular case of two cells or links (say for a

two-cell network or a larger network with clusters of
two cells), we are able to characterize the optimal power
allocation.

« We then propose a framework for distributed sum-rate cqnqider a wireless network with a collection of nodes,

maximizing power control in an arbitrary network with, nich can be both transmitters and receivers. Initially we
several interfering cells or I|nk§,_ ba}sed on thg concept ghnsider that by virtue of a scheduling protocl, transmit-
channel state knowIeFjge partitioning accordingdcal  roceive active pairs are already simultaneously selected f
and non-_l oca_l information. . these nodes to potentially communicate at a given timernfsta

» By considering the two-cell case in the above frameworlie others remain silent. Later on we will incorporate
we derive simple conditions for link activation, based Ogcheduling into the power allocation problem as well, jaint

signal-to-noise ratio (SNR) and SINR. power allocation and user scheduling. In this network, each

« By allowing 1-bit information message passing bet"Veetpansmitter sends a message which is intended for its receiv

interfering links, substantial improvement in the CagaCIt()nly. This setup can be seen as an instance of the interierenc

performance can be obtained through a simple modiflpannel the analysis of which is a famously difficult prable
cation of the proposed algorithm. This almost closes the intormation theory [17]. We also assume that there is no
gap between distributed and centralized control. interference cancellation capability at the receivers, can
Fmally,_ we |ncc_>rporate user schec_iulmg into the p_ow%ey jointly decode signals. In such circumstances, theivec
a!locaFlon a!gorlthm, S0 as to exploit an added muItl-useg interfered by all other active links due to full reuse oéth
diversity gain. spectral resource, and this interference is treated ag.niois

Numerical results show that the fully distributed and nearactical terms, the situation depicted above can be that of
distributed power allocation algorithms largely outpenioa a cellular network with reuse factor one ( e.g. the downlink,
system without power control, and are able to extract a kignwith transmitters being access points (AP) or base stgtions
icant amount of the performance gain exhibited by centdlizit can also depict a snapshot of a single-hop ad-hoc network
power control. (Fig.1).

The rest of this paper is organized as follows: In Section In this work, the proposed power allocation algorithms
Il we describe the system model considered in this worlwould apply to single hop wireless networks which can be
We then formulate and characterize the centralized optingther single-hop ad-hoc networks or full-reuse cellulat-n
power allocation problem for weighted sum-rate maximimati works. When, we look at user scheduling, this would be more
in Section Ill. We then propose an optimization frameworkuited to a cellular network where there is a user population
for the distributed power allocation problem in Section IVallowing us to exploit scheduling gains. A practical exaenpl
In Section V, a simple distributed algorithm is presented f@f where the results presented herein might be applicalele ar
link activation as well as a modified algorithm which expdoitfixed broadband wireless access networks [18]

Il. SYSTEM MODEL



A. Sgnal Model 1) Weighted Sum-Rate Capacity: In this case, the objective

. . . ) ) function we consider is the weighted sum-rate, defined as
We considerN synchronized links which are active on any

given spectral resource slot (where resource slots can be time A

or frequency slots in TDMA/FDMA, or codes in orthogonal C(P) =Y wuRu(P). 4)

CDMA). Due to full spectral resource reuse, the receiver n=1

sees interference from the transmitters of all other linkblere,w, > 0 is the weight associated with the receiver of

Denoting the random channel gain between the transmitterliok ». For the particular case of a cellular network, if there

any arbitrary linki and the receiver of link. by G,,; € RT, areU, users in each cel, the weights are associated with

the received signal of,, can be written as each usen,, € [1,...,U,] which may be scheduled at any
given instant. This choice of objective function is of peutar

interest in adaptive resource allocation policies. Speadlfi, a
Yo = VGnnXn + Z VGniXi+ Zn, () resource allocation unit can prioritize users by adjusthmgr
= respective weights, so as to achieve some sort of fairness or

fulfill QoS constraints. For example, traffic queue states ca
where X,, is the intended signal from the transmitterbe observed for each user and the weights set accordingly so
Zfil#n Gn,iX; is the sum of interfering signals fromas to minimize the delay. Another scheme can be imagined
other transmitters, and,, is the noise. For conveniencg,, where the weights are adjusted according to the throughput
is modeled as additive white Gaussian noise (AWGN) witthe users have already experienced so as to obtain some sort
powerE|Z,|? = n,. of rate fairness. Thus, this choice of objective functiordsin

relevance in scenarios where QoS constraints may need to be

met. We also point out here that sum-rate maximization is a

I1l. OPTIMAL POWERALLOCATION special case of (4) whem,, = 1 V n. We will touch upon this
) special case later on in the text.
A. Problem Formulation 2) Optimal Power Allocation Problem: Taking (4) as the

In this section, we formulate the optimal power allocatioRbjective function we want to maximize, the optimal power
problem for maximizing a certain metric based on the sufilocation problem can be stated as
of individual link capacities. For this purpose, we define P* = arg max C(P) )
the transmit power vector P, which contains transmit power PcQ '
values used by each transmitter to communicate with Hgg problem is known to be non-convex [13], and an optimal

respective receiver: solution would require an exhaustive search over the feasib
set of transmit powers which entails high complexity as well
P =[P, Py...,Py,...,Px]. as centralized processing.

By consideringN = 2, i.e., just two links, we obtain some
more insight into the problem at hand. Thus, in the next
section, we investigate the optimal solution to the weidhte
sum-rate maximization power allocation problem for two
interfering links.

where [P],, = P,. As in all realistic networks we impose a
power constraint on each transmitter such tRat, < P, <
P..x, and we assume from here on that;, = 0. Thus the
constrained set of transmit power vectors is given by:

Q={P|0< P, <PpaxVn=1,...,N}.
B. Weighted Sum-Rate Optimal Power Allocation for N = 2

The signal to interference-plus-noise ratio (SINR) at te r  For two links, problem (5) can be written as
ceiver of linkn is then given by

P* = arg max (w1 R1(P) + waRa(P)), (6)
G P pea
" (P) = N ) (2)  we will now characterize the optimal solution to the power
N + ZGn,iPi allocation problem for weighted sum-rate maximization. We
i1 first present the following lemma:
i#n Lemma 1. The optimal solution to the weighted sum-rate
where P, — E|X,[2. Assuming an ideal link adaptationmaXimiZing power allocation problem (5), has at least one

Iipk operating atPy, .-

protocol and perfect CSI at the transmitter, the rate of lin Proof: This is straightf df th ffor L
n can then be expressed in bits/sec/Hz using the Shanr!Lolnn [Gr]oo. IS 1S straightiorward from the proot for err;ma

capacity [17] as

Letting
Rn(P) =logy (147 (P)), ©)) J(P. P _ 1 1 ﬁ
( ) (PP = wilogy(l+ =5
which is clearly dependent upon the complete transmit power GaoPs

wa logy (1 +

vector. no+ Ga 1Py’



through Lemma 1 we may let one of the links operate at ma: **

imum power by setting? = P,,.x. Our task is then reduced
to finding the optimalP;. The derivative of/ (P, Pyax) W.I.t 0= Optimal Power of ink 2
P, can be expressed as
6J(P17 Pmax) _ CLP12 + bPl +c 10 =0~ -0~ 0= ©=-©0-0 -,—.--O--.-*l-‘o‘—0-‘-0‘—‘0-»-0—‘0-‘-0—»0 —4
oP f(P1) ’ , '
where g ;! \
a = ’LU1G171G§71, ’.' '
b = 2w1G1,1772G2,1 + G1,1G2,1G2,2Pmax(’w1 - ’wz), 051 ,' \ .
c = w1G1,1m3 + w1G1,172 PnaxG2.2 ! '
— W2 PraxG2,2Ga,1m — wa P2, G2 2G21G 0, i \
f(P)= (2 + P1G21 + PrnaxGa2) - (12 + P1G2,1) ’ \
(M + PmaxG12 + Pi1G1,1). 7 \
3 ]
We see thaif (Py) is always positive, and in order to finkh R P T S -
such that?/Luleax) — o we need to solve P2 +bP; +c¢ = 0. ;

1 . . .
Note that Whem.l = wa, 1€, th_e links are Symme_ma” b> Fig. 2. Variation of transmit powers with changing weights Zointerfering
0 and this results in the scenario already treated in [6],I[Y]. links. Channel gains are taken @& ; = 0.9611, Gy = 0.2004, Go.5 =
this case the optimal power allocationkigary, as expressed 0.5219, G2,1 = 0.0940, and noise power is considered tofe= 72 = 0.1.
in Lemma 2 Weight of link 1 is varied andve = 1 — wy. Binary power allocation is no

. . . .. longer optimal for the weighted sum rate maximization problem.
Lemma 2. The optimal sum-rate capacity maximizing
power allocation for 2 interfering links whem; = ws, i.e.

2 allocation, here(P;, P,) = (0,1). We also show the effect
P =arg maXZ'Rn(P), of varying the weights on the optimal power allocation in
Pea i Fig. 2. Here we varyw; and takews, = 1 — wy. We observe
lies in the binary set that for certain values of weights, intermediate power ealu
5 (other than 0 orP,,.,) are indeed optimal for weighted sum-
Q” = {P | [P]n € {Oapmax}}- (7)
Proof: See [6], [7}.

rate maximization, which is in contrast to the equal weights
. ) B (or no weights) case where binary power allocation is always

Whenw, > ws, the links are no longer symmetric. In thisgptimal [6]. However, we also compare the weighted sum-rate
casea,b > 0, and P, is either 0 OrP,,ay if P> is set toP,, ..

- obtained by searching over the optimal power allocation set
However, whenw; < wy, b may no longer be positive and(g) to searching over only the binary power allocation give

thus the potential non-binary solution may also be possible by (7). Interestingly, Fig. 3 shows that although binary pow
well:
o —b 4 Vb2 — 4dac
e

allocation is not optimal, the difference between the two in
2a

terms of weighted sum-rate is quite small. Although we do not

o ) ] generalize this here, we will take advantage of this obsiemva
For P, a similar analysis can be carried out to see thi{ the next section, where we propose a distributed algrith

whenw; > wy, we need to checl,, obtained similar to”  for power allocation based on binary solutions. Moreover, i

by simply inverting the indices of, b, and c. Only positive s also interesting to explore binary power allocation foe t

real solutions which satisfy the power constraint need to Bgse ofV > 2 and this has been studied in [7].

considered. This leads us to state the following theorem:

> _ _ Note that in order to compute the optimal power allocation
Theorem 1: The optimal power allocation for weightedfor weighted sum-rate maximization (8), centralized knowl

;ur(g—)rate capacity maximization of 2 interfering links is@i  eqge of the link state information and link weights is reqdir
in

As an example, consider the weights = 0.1369, wy =

This is hard to realize in practice, as feeding back and ace
0.4544, and the following channel gain matrix:

ing all network information presents significant signaleggd

computational overhead. Thus, in the next section we p®pos
G 0.9611 0.2004 a framework for a distributed solution of the optimal power
—\0.0940 0.5219 /°

allocation problem.
where thei, j-th entry of the matrixG represents the channel

. . IV. DISTRIBUTED POWERALLOCATION
gainG; ;. We take the maximum power to U&,.. = 1, an

assume from here on that the noise powers are the same fdpiStributed optimization is an important problem as it
all links, 71 = 72 = n = 0.1. By employing the conditions enables the implementation of an otherwise unpractical cen
in (8), allocating the powetP;, Py) = (0.1203,1) yields a tralized solution, especially for large systems. Findirapd

weighted sum-rate of (P}, P}) = 1.2040, which is slightly distributed optimization algorithms however proves to be a
better thanC(Py, P,) = 1%1’9821 obtained,by the best binaryformidable task, as the objective function being optimized

usually depends on all system parameters. Obtaining the opt
INote that this result was also reported independently if. [19 mal solution would thus require the gathering and processin



argmax(PhPQ)EQBJ(Pl,Pg) Wy = Wy
(P, Py = argmaX(Pl’PQ)E{QBU(PMX’P;)}J(Pl,Pg) wy > wa (8)
argmax(Pl7P2)E{QBU(P1/7PMX)}J(P1,Pg) wy < wa

36

from now on we assume that the noise is equal for all links
i.e.,n, =n V¥ n. The local information of which transmitter

has instantaneous knowledge is giverd{f?. Thus, non-local
information for transmitter. can be denoted &, = G\ G'°%,

of which we assume only statistical knowledge. Based on this
framework, linkn then tries to maximize thexpected network
capacity defined as

T T T
= Optimal Power Allocation
@' Binary Power Allocation

32
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18 L w * * * ! ! ! ! ]Eénlg'm'{'} is the expectation operator averaging the capacity
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" over all realizations of},,, conditioned on the knowledge of
Gloca The distributed power allocation problem under this
framework can thus be written as

Fig. 3. Variation of weighted sum-rate with changing weidbt2 interfering
links. By searching over the optimal power allocation set gy wmall gain
is obtained as compared to just searching over binary povaragion.

) ) o . ) P; = [argmaan(P)} Vn=1,...,N. (10)
of all system information, which is difficult in practice. In PeQ n

order to obtain a distributed solution, one can imagine vewe

compromising on the amount of information available, sd tha

a pragmatic, though sub-optimal solution is obtained.

For this purpose, we introduce the idea abfannel state
partitioning where the network channel information is divide
into two classesiocal information of which we can have
instantaneous knowledge, anoh-local information of which,
we assume only statistical knowledge is available. Clearly Clearly the choice of local and non-local information will
the notion of local and non-local information is receivesignificantly impact the distributed solution of the power
dependent. For the power allocation problem being consitjerallocation problem. The sets of local and non-local infaiora
each link would make a decision based on local informatiopan be partitioned in a number of ways, depending on the
i.e. what the transmitter or receiver can measure locallis p knowledge each link has. Optimal partitioning is actually a
information fed back from the receiver to the transmitteexciting open research problem. For the problem at hand, we
The resulting algorithms would be sub-optimal compared tet local information beG!°®® = {G,, ;,w, V¥ j}. This means
the centralized solution, as some kind of assumption wouldat a transmitter has knowledge of the direct channel, the
have to be made about other links’ behavior. Nonetheless, iméerference from other cells to its intended receiver, Hred
argue that this is a practical form of distributed control inveight of the user it is serviig This is a natural choice
terms of both complexity and information exchange. In whébr local information, as these values can be measured at the
follows, we formulate the distributed power allocationipiem receiver and fed back to the transmitter. Practically, oehn
under statistical knowledge of non-local information. &ltdtat information can be periodically fed back by the receiver to
this statistical knowledge can be acquired a priori, durdngthe transmitter through a pilot/dedicated channel. Thes th
network calibration preamble. non-local information at the transmitter is given By, =
{Gi;,w; ¥ j,i # n}. Under this knowledge, the expected
network capacity that transmittertries to maximize is given

- Local v.s. Non-Local Channel Knowledge Partitioning:
One Example

A. Network Capacity Maximization Framework Under Satis-
tical Knowledge

As stated, we assume that each transmitter has instant&neoy _ _ -
In another instance, assuming further restriction of thellfeek channel,

local knowledge. Let us denote the set of complete Netwogk may defineGio@ — {G,, ., wn}, in which case the knowledge of
information byG = {G, ;} V i,j and for ease of analysis, interference appears only through its statistics.
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From the power allocation vector resulting from this max-
imization, link n uses P} as the transmission power to its
respective user. However, calculation of the expectedaiypa
from all other links is not so trivial. In the next section, Weis
focus again on the two-link case, which offers insight ifte t Fig.' 4, A 2 _ceII/Iink slcelnario with mutual‘intgrference_. Lod@aformation

. . S of link n is given by G = {G,, ;,wn V i}, i.e. the direct channel and

potential gain offered by this distributed approach. WEppER  interfering channel at the receiver.

a simple distributed algorithm to solve this problem, aslwel

as a modified version of this algorithm incorporating 1-bit

information exchange between neighboring links to enhanedere the expectation is taken over the distribution of othe
performance. link channel gains, namelys2 > and G2 ;. The expected
capacity for link 2 can be expressed similarly, by inverting
the indices. Thus, each link will search over all possible/go
values to find the optimal expected capacity.

We now consider problem (10) specifically for two links. However, from (8) we know the centralized optimal power
The case of two links, though not realistic, allows us to angolution set for weighted sum-rate maximization. Motiate
lytically explore the performance of the distributed agmioes from this result, we adopt the reduced optimization search
proposed later. The algorithms developed can then be usegmace given by (8) for the distributed problem as well. How-
a wider network with more links, where links are previouslgver, we point out that the centralized optimal power atioca
paired up in clusters of two links. Forming of the cluster€) is not necessarily optimal for the distributed problem
should favor strongly interfering links, for which a digted formulation (10) as the objective functions in the two cases
resource allocation technique will exhibit the largestdfies, are not the same. The distributed power allocation probtem f
Networks with sparsely deployed cells might be a case whatgighted sum-rate maximization can thus be written as
clustering with dominant interferer will provide signifita . _ )
gains. For example, in a cellular network, adjacent celis ar ~ Fi = arg Wax Ci(P1, Pp)| Vi=1,2 (13)
often the dominant interferers as the pathloss degradation ' !
between them is the least. A potential clustering methodavouvhereQ’ = Q7 U (Puax, P3) U (P{, Puax). Each link would
be to determine the pairs of cells that interfere the mosh withus need to independently search over five possible power
each other based on average pathloss statistics. allocation points to find the one that maximizes (13). Howgeve

Notice also that the proposed framework exploits statisticBvaluating the non-binary values for the powers still reegii
information about other linksincluding the weights of other knowledge of instantaneous information of the other link,
links. Guaranteeing QoS usually requires the weights to Bed- link 1 would require knowledge af's o, Gy, and ws.
adapted at each scheduling instant, making the weights Motivated by the result exhibited in Fig. 3, we adopt the
stantaneous parameters. If the weights correspond to & gralary power allocation given by (7). In this case, we can
of service that a user has purchased, then we can assumd@f@ally write the distributed optimization problem for
weights to be independent of the channel gains. Moreover, i weights as
the grade of service of all users is known to the network, we _

also assume knowledge of tlaserage weight E {w,} = w, Py = &8 b Beas Ci(P, Pp)| Vi=1,2 (14)

a user may have. Focusing on link 1, we have knowledge of . L
G11, Grs andw; (Fig. 4). We can write the expected network-Phe advantage gained from this simplification is that a com-

capacity as a function of the transmit powers as pletely dlstr|bu_ted algorithm can be derived, as the powars
now only be either 0 0P, as shown below.
G1,1P1 )

N+ Gi2Ps A. Fully Distributed Power Allocation

_— 14 GaoPs (12) As already stated, by adopting binary power control a link
w 082 N+ GarPL) [ will either transmit atPp.. (from now on assumed to be 1

Local Information for Link 1

—— — Local Information for Link 2

V. DISTRIBUTED POWERALLOCATION FOR TWO LINKS

Cl(Pl,PQ) = ’UJ110g2 <1+



Algorithm 1 Distributed Power Allocation y
1: Steps performed at link 1:
20 if (7([L,1]) > 20 ROD=RoD]) 1) or (4, ([1,0]) >
2(AR2(01)) _ 1) then
pP=1
else
P =0
end if
: Steps performed at link 2: R
if (2([1,1]) > 20RO 1) or (75(]0,1]) >
2(A2R1(10) _ 1) then

© N o how

9: P=1

10: else v

11: P, =0

12: end if Fig. 5. 2 cells of radiusk at a distanceD from each other. A user in the

cell under consideration lies at a random point (x,y) dravemf a uniform
distribution over the cartesian plane.

for simplicity) or remain inactive. Thus, solving problei{ _
is equivalent to each link determining if it should be actire 1) Random Exponential Pathloss Channel Model: Assume

not, depending on knowledge of local information. that users are located according to a uniform spatial distri

A cell i needs to consider the following cases to determir@ition over the cell area. Let the cell radius Be and the

which power allocation maximizes the expected capacity ddistance between cell® (Fig. 5). An exponential pathloss
fined in (12): model is assumed for the channel gains, with pathloss ex-

ponent¢; and thusG,,; = d_%, where d,; is the distance

n,i!

1) Expected capacity of both cells being acti@ ,1). between transmitter and receiven.

1,1
2) Expected capacity of only cellbeing active(0, 1) or We first calculate the distribution of the distanee of

¢(1,0). the direct path, assuming the cell under consideration to be
Focusing on link 1, the activity conditions can thus be sungentered at the origin of the cartesian plane (Fig. 5). The jo
matrized as follows: distribution of z andy is given by
1 if C(1,1) > C(0,1) flz,y) = % for 0 < 22 4+ 4> < R%.
P ={ 1 ifC(1,0)>C(0,1) _ TR
0 otherwise Since

r=22+42, 0=tan"'Z,
Note that there is no need to compare the expected capacity o . z
of both cells being active and only cell 1 being active, as cel€ can easily find the Jacobian

1 will be active in either case. By simple manipulation of the gl gl 1
above conditions, link 1 will be active if either J(,y) = gﬁ gj =
T Y
SINR; = 7 ([1,1]) > 2(AR0)-R2(01]) _ 1 (15) Then we have
_ -1 __T
or f(ﬁ 9) - f(l‘,y)|J($,y) | - 7TR2

SNR, = 7 ([1,0]) > 2(AR0.1) _ 1, (16) for
0<r<R, 0<6<2r

where R»(0,1) andR,(1, 1) are the expected capacities of \yith no interference the expected capacity is given (in
link 2 under the indicated power allocations agd = . bits/sec/Hz) by.

w1

By symmetry, the conditions for link 2 can be expressed in a

similar fashion by changing the respective indices. Thesste (9 1) = E {10g2 <1 + r) }
performed at each link are given in Algorithm 1. n

In what follows, based on a simplified distance pathloss T .Rl ) r¢ o\drdd
channel model, we derive the expected capacities. Theyutili = ) ), et f(r,0)dr
of such a model is that it allows us to examine scenarios in 27 R € ,
which large-scale attenuation dominates, as well as atigwi = / / log, (1 + > —5 drdd

. . L . Jo Jo TR

us to investigate the expected capacities in the high and low e
interference regimes. However, in order to capture the com- - 1 {ﬁ _ E&Fl(_g? 1;1— 2; _k )
plete propagation environment, other factors that coutitio In(2) 12 3 & n

i i - —£
average SINR need to be considered e.g. shadowing and fast 4 In <R + n) }’ a7)

fading.



Algorithm 2 1-Bit Distributed Power Allocation
3 1: Steps performed at Link 1:
* it (ya([1,1]) > 20 R2OD=Re01) 1) or (4, ((1,0]) >
2(AR2(0.1) _ 1) then
3 P=1
4 msg bit=1
5: else
6: Pr=0
7
8
9

11 7S > 7S > N

10+

N

—&— Expected Capacity with no interference
—O— Expected Capacity with interference

: msg bit =0
- end if
. Steps Performed at Link 2:
10: if msg_bit = 0 then
11: P=1 . o
R T e O 12: else if15([1,1]) > 2(# RO WD)) 1 then
d=D/2R 13: P2 =1
14: else

Fig. 6. Variation of expected capacities with distance leetwcells based on 15: Py =0
exponential pathloss model, with pathloss exponent 4. Tpeagd capacity 1. end if
with interference will approach that without interferenas the distance
between cells is increased.

Expected Capacity bits/sec/Hz

More precisely, a link is allowed to send a 1-bit message to
where, F; denotes the hypergeometric function. the other link. The most natural choice of information todsen
For the case of interference being present, the interferinguld be the result of its distributed (using FDPA criteria)
channel distance is given hy= v/r2 + D2 — 2rD cos6 (Fig. optimization solution. We call this algorithtBit Distributed

5). Thus, we have Power Allocation (1-BDPA) and describe it as follows:
_ r—¢ 1) Link 1 performs the optimization (14) based on criteria
R(L1) = E {10g2 <1 + W)} (15) and (16), and sends a 1-bit message to the other

or R ¢ link to indicate whether it is active or not.
/ / log, (1 + 7"_§> f(r,0)drdd. 2) Link 2 then performs the optimization (14) to calculate
o Jo n+v P,, under the knowledge aP; .
Although a closed form for this integral is too complicatef the message bit is a 0, then link 2 will obviously be actife.
to derive, it can be easily evaluated numerically to find the1 is sent, then link 2 needs only to consider if both cellagei
expected capacity when both cells are active. In Fig. 6, vtive gives better performance than the expected capakity
plot the expected capaciti@d(0, 1) andR(1,1) as a function the other link. Clearly this algorithm will perform bettdran
of the distanceD between cells (normalized w.r2R) for FDPA as with the 1-bit signal from link 1, a moraformed
R = 500m and¢ = 4. Clearly, as the distanc® increases decision can be made by link 2, thus avoiding shutting down
the effect of interference diminishes and the two capaitigoth links simultaneously. Details are given in Algorithm 2
approach each other, as expected.
Practlcally,R(O,_l) andRR(1,1) f_or any chan_n_el model can ~ pover Allocation and Scheduling
be calculated offline, by generation of a sufficient number of
In cellular networks, there are normally a number of users

channel realizations, and plugged into conditions (15)@6J i :
to determine if the cell should be active. Thus, based onlgim@? €ach cell requesting data from the AP. In this contesey

conditions and in a fully distributed way, each link decidescheduling can be exploited to obtaimulti-user diversity gain
based on local channel information whether it should transn?0]- The idea is to schedule a user which has comparatively
or not based on criteria (15) and (16). We call this algorithﬁener channel conditions than other users, so that higher

Fully Distributed Power Allocation (FDPA). throughput can be achieved.
In order to obtain a multi-user diversity gain, user schedul

) . ) . ing can also be incorporated into the power allocation frame

B. Capacity Enhancement with 1-bit Message Passing work. This is easily done by observing that for a cell to be

The FDPA algorithm presented in the previous section igtive and thus contribute capacity to the system, eithénef
completely distributed, i.e. it requires no real-time mf@tion conditions (15) and (16) should be satisfied. Thus, scheglali
exchange from other links. However, due to each link beingser with the maximum SNR or SINR increases the probability
ignorant of the other link, a sub-optimal decision is taked a of satisfying these conditions. If we suppose that there are
in certain cases a very detrimental result would be each liokers in cell and an equal number of users per cell, then the
shutting itself off, resulting in zero network capacity. activation conditions for cell 1 can be written as

It is thus interesting to explore if somehow a minimum = =
amount of information exchange could be used to enhancgle[rffi_’f’[,l]SlNRl(ul) > 2P Ry DR (1) — 1
performance. We let this amount of information be one bit. (18)



or
12

max SNRy (uy) > 9(Bur Rwy (0.1) _ 1, (19) ul
w1 €[1,2,...,Uq]

whereR 17,)(0,1) andRr,)(1, 1) are the expected capacities or

based on employing the max-SNR and max-SINR scheduli
policies. These will be different from the previously cdated
expected capacities because scheduling in general chdrge:
distributions of the channel gains. In this case, thgorder
statistics of the expected capacities have to be calculat

Ho. w . .. 6 =0 Optimal Allocation
Similarly, 3, = =%, wherewy, is the U, order statistic —e— FOPA
LU . . . . . = 1-BDPA
of the average weights, and, , is the weight associated with °r No Power Allocation

Average Network Capacity (bits/sec/Hz/cell)
~

useru,. Although these can be analytically calculated, the al
can also be easily obtained through sufficient Monte-Car
simulations. Thus, the scheduling rule is to find the max-SN

and max-SINR users and see which one satisfies its respec 25 o : = . o .
condition. If both satisfy their respective conditions rihthe D/2R

user which offers higheexpected capacity is scheduled, i.e.

either the max-SINR or the max-SNR user. Fig. 7. 2-cell Network: Comparison of average network capagier

cell for the fully distributed algorithm (FDPA) and 1-bit nesge passing
approach (1-BDPA) with optimal and no power allocation. Tle &lgorithms
VI. NUMERICAL RESULTS exhibit marked gain over no power allocation, with the 1-bitssage passing

As stated previously the formulation of the diStributeépproaCh providing a significant amount of capacity gain.tdl approaches
- NN . converge when the separation between links increases,tagenence de-
power allocation is independent of the system architectuig
(cellular or ad-hoc). Thus for ease of simulation, we adopt a
cellular network layout for evaluating the performance lod t
proposed power allocation algorithms. This will also allog
to investigate user scheduling jointly with power allooati . .
vestig . g Jointy With p . cell versus%. It can be seen that power allocation provides
In this case, we consider the downlink, i.e., the transmltt%k
I

is the AP, and the receiver is the user terminal (UT). We s e most benefit vyhe@% is small, i.e. when Fhere IS S”Of‘g
nterference. Turning off one of the cells will then provide

both link weights equal to 1, as this will simplify presemat more overall capacity than when both cells are transmitting

of the numerical results, thereby allowing us to focus mo . . 0 .
on the performance of the proposed techniques. Monte-Catﬁlae FDPA algorithm achieves 50% of the gain offered by

simulations over random UT positions are carried out for %Dt'mal power allocation, whereas with 1-BDPA a substantia

network with an operating frequency of 1.8 GHz and witﬁlmount of thg gain is exploited. Aﬂ% increases, the gain from
cell radiusR = 500 meters. A UT position is drawn randomlypower allocation decreases and all the schemes converge to t

from a uniform distribution over the cell area. Gains fit same capacity. This is quite straightiorward due to thetfaat

inter-cell and intra-cell AP-UT links are based on the cOsT."creasing the distance between the cells d|m|n|shes“ fb_etef
of interference, and both cells become more or less “shiglde

231 [21] path loss model, including log-normal shadowin ; ) . .
with standard deviation of 10 dB, as well as fast fading WhiC&om interference. This can equivalently be seen from Fig. 6

is assumed i.i.d. with distributio6A/(0,1). The peak power yvhere the expected capacity with interfgrence i_nc.realsg%as.
constraint is given byP,... — 1 Watts. In order to compute the ncreases. Thus, from a network capacity maximization tpoin

expected capacity of the other cell, offline calculationsduha of view, both links should transmit at full power whej%
o ecomes large.

on an adequate number of channel realizations are done for— . .

when both cells are active or just the other cell is active. N Fig- 8 we depict the percentage of erroneous decisions

made in the power allocation by each algorithm as compared to

the optimal solution, where an erroneous decision is defined
A. 2-Cell Network as a deviation from the centralized binary power allocation

We first consider the performance of FDPA and 1-BDPADPA makes a significant amount of errors in the high interfer

compared with the “no power control” (i.e. both cells alwaysnce case. This is due to the fact that under severe intecere
on at P,,.x) and centralized “optimal allocation” (i.e. exhausboth cells can become inactive as both cells may come to the
tive search over all points) for a network with two cells. Teonclusion that they will not contribute enough capacity to
gain insight into the effects of power allocation we vary theutweigh the interference caused. This is demonstratedein t
distance between the two cells. Denoting the distance legtweurve labeled “FDPA: both cells off” which shows that FDPA
APs by D, we vary the ratio%, 2R being the distance turns both cells off 28% of the time in the high interference
between neighboring APs in a reuse one cellular system. Whsmenario, whereas, clearly at least one cell should beeactiv
% < 1 then the cells overlap and this results in severkhis type of error becomes more rare in the low interference
interference, akin to that in ad-hoc networks. Wlﬂﬁg > 1 case, as each cell decides it will offer enough capacityawith
the cells are further apart and thus the effects of intenfee causing too much interference and thus both cells beingeacti

ases and both cells transmitting at full power becomesnapti

diminish. In Fig. 7 we plot theverage network capacity per
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Fig. 9. 4-cell Network: Comparison of average network cayguer cell for
the fully distributed algorithm (FDPA) with exhaustive seta and no power
allocation. Using the clustering approach, the FDPA atpanistill achieves
marked gains over no power allocation.

Fig. 8. Percentage Error of FDPA and 1-BDPA compared with thtaral

binary power allocation. “FDPA: both cells off” shows thabtb cells are

turned off 28% of the time in the high interference scenatiastresulting in

zero sum-rate. Allowing 1-bit signaling reduces the numbeembrs made

and thus 1-BDPA outperforms FDPA.

scheduling. Notice that as the number of users increases, th
ain from power allocation diminishes. This is due to the fac

_become_s th_e optimal thing to dp. We see that with 1'BDPt.at the probability of finding users which have good direct
in the high interference scenario the percentage of ersors |

relatively smaller. This is due to the fact that it can exptbe gains, while still being sufficiently protected from interénce,

. ) . .increases by the process of scheduling alone. Thus thesurve
1-bit information exchange to make a better decision, Whl(f%r full reuse, 1-BDPA, and optimal power allocation wileli

in the severe interference case is to keep one, but not bbtht%ser together. However, FDPA starts to suffer when user

the cells active. At the other extreme, when cells are fartapa L . :
. X scheduling is employed. This can be due to the fact that it
the error percentage is small due to the fact that both cedls 3 duling ‘is ployed © ©

kept active in the presence of low interference still results in both links being inactive, although thrdug
P P ' user scheduling full reuse becomes more and more likely.

The rate of increase in expected capacity of user scheduling

B. 4-cell Network is overshadowed by the damaging effect of making wrong
Here we look at a simple clustering approach for a smalecisions.

4-cell network and investigate the performance of the FDPA
algorithm. For simplicity, we do not search for dominant
interferers at each scheduling instant, but instead twacadit
cells are kept paired together to form a cluster throughloait t
entire simulation. The 4 hexagonal cells are arranged on a %
dimensional grid, and 2 cells with sides touching are paired .~ .~ I . blem f llv inter
together. In this case, a cell can be paired with one of thrBaX'm'Z'F‘g power a ocat!on problem for mutually interifey
possible cells, but as the network is symmetric, the choice Eptkes}nvgz:fnr}zgtigng?:r;?rzgi?; Cc))ff m%v:?nukss n\jvseu';acl)lg t;::IrIn
cell will not have an impact on the end results. The FDP. . U : !
algorithm is then run over each cluster independently. T a;ﬁfstesrgﬁgot:ehgfvg?;l fgltti'r%r; Sceetntt(:atl?z'zgro:glcegggbt
approach is compared to an exhaustive search over all ﬂmss| ?JS roposed a frameworkci‘or distributed weiphted surg—rat
binary powerdgllofgatignTinddno powek: allocation, r? n(;l rhesul xir[’:]izi%g power control, exploiting statisticgl knowtssd
e s o e S o R o or-oca formation. We again analyzed th prtcl
that the FDPA approach provides gain in the high interfeslfenéase of two links, deriving simple conditions on SNR and

VII. CONCLUSIONS

n this work, we have formulated the weighted sum-rate

scenarios and as the distance between cells increasesithe d R fl(l) ' I|_nk TCtg/.aE{'(.)S ' tB(;aseId o_rt1hthese conditions, ggj:;]pu-
from power control diminishes. ionally simple distributed algorithms were propose

were shown to exploit a major part of the gain offered by

) the centralized optimal power allocation. Moreover, weoals

C. Scheduling demonstrated how user scheduling can be incorporated into
Finally, we compare the performance of power allocatioie power allocation algorithm. Through numerical results

and user scheduling in Fig. 10 fd&fr = 1,5 and 10. We the proposed power allocation algorithms exhibited sigaift

see a gain in absolute capacity values when employing usem-rate gains over no power allocation.
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Fig. 10. Effect of power allocation and user scheduling oerage network
capacity. Incorporating user scheduling makes full reuseenpmobable in
terms of optimality for sum-rate maximization.



