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Asymptotic Capacity and Optimal Precoding In
MIMO Multi-Hop Relay Networks
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Abstract

A multi-hop relaying system is analyzed where data sent byu#fi-antenna source is relayed by
successive multi-antenna relays until it reaches a muotéfana destination. Assuming correlated fading
at each hop, each relay receives a faded version of the digmalthe previous level, performs linear
precoding and retransmits it to the next level. Using freebpbility theory and assuming that the
noise power at relaying levels— but not at destination— igligéble, the closed-form expression of the
asymptotic instantaneous end-to-end mutual informasaterived as the number of antennas at all levels
grows large. The so-obtained deterministic expressiondspendent from the channel realizations while
depending only on channel statistics. Moreover, it alsovesis the asymptotic value of the average
end-to-end mutual information. The optimal singular vestof the precoding matrices that maximize
the average mutual information with finite number of antenatall levels are also provided. It turns
out that the optimal precoding singular vectors are aligioetthe eigenvectors of the channel correlation
matrices. Thus they can be determined using only the knownredl statistics. As the optimal precoding

singular vectors are independent from the system size,ahewlso optimal in the asymptotic regime.
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Fig. 1. Multi-level Relaying System

. INTRODUCTION

Relay communication systems have recently attracted miteht@n due to their potential to substan-
tially improve the signal reception quality when the direommunication link between the source and
the destination is not reliable. Due to its major practicaportance as well as its significant technical
challenge, deriving the capacity - or bounds on the capaaiffyvarious relay communication schemes
is growing to an entire field of research. Of particular iestris the derivation of capacity bounds for
systems in which the source, the destination, and the releyy®quipped with multiple antennas.

Several works have focused on the capacity of two-hop reddyarks, such as [1]-[7]. Assuming fixed
channel conditions, lower and upper bounds on the capakcibedwo-hop multiple-input multiple output
(MIMO) relay channel were derived in [1]. In the same papeurds on the ergodic capacity were also
obtained when the communication links undergo i.i.d. Rigyléading. The capacity of a MIMO two-hop
relay system was studied in [2] in the asymptotic case whaegenumber of relay nodes grows large
while the number of transmit and receive antennas remaistanh The scaling behavior of the capacity
in two-hop amplify-and-forward (AF) networks was analyzed[3]-[5] when the numbers of single-
antenna sources, relays and destinations grow large. Tiiievable rates of a two-hop code-division
multiple-access (CDMA) decode-and-forward (DF) relaytegswere derived in [8] when the numbers
of transmit antennas and relays grow large. In [6], an ad ledbwark with several source-destination pairs
communicating through multiple AF-relays was studied andupperbound on the asymptotic capacity
in the low Signal-to-Noise Ratio (SNR) regime was obtainedhie case where the numbers of source,
relay and destination nodes grow large. The scaling behavithe capacity of a two-hop MIMO relay
channel was also studied in [7] for bi-directional transsigas. In [9] the optimal relay precoding matrix

was derived for a two-hop relay system with perfect knowkedfthe source-relay and relay-destination
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channel matrices at the relay.

Following the work in [10] on the asymptotic eigenvalue dizition of concatenated fading channels,
several analysis were proposed for more general multi-fedayrnetworks, including [11]-[15]. In
particular, considering multi-hop MIMO AF networks, thadeoffs between rate, diversity, and network
size were analyzed in [11], and the diversity-multiplexingdeoff was derived in [12]. The asymptotic
capacity of multi-hop MIMO AF relay systems was obtained 18][when all channel links experience
i.i.d. Rayleigh fading while the number of transmit and ieeeantennas, as well as the number of relays
at each hop grow large with the same rate. Finally hieraathialti-hop MIMO networks were studied
in [15] and the scaling laws of capacity were derived whenrtbivork density increases.

In this paper, we study aiv-hop MIMO relay communication system wherein data transioisfrom
ko source antennas tby destination antennas is made possible throngh- 1 relay levels, each of
which are equipped witlk;, ¢ = 1,..., N — 1 antennas. In this transmission chain with+ 1 levels
it is assumed that the direct communication link is only l@abetween two adjacent levels: each relay
receives a faded version of the multi-dimensional sigrehgmitted from the previous level and, after
linear precoding, retransmits it to the next level. We cdesithe case where all communication links
undergo Rayleigh flat fading and the fading channels at eagh(between two adjacent levels) may
be correlated while the fading channels of any two diffeteops are independent. We assume that the
channel at each hop is block-fading and that the channelrenbe-time is long enough — with respect
to codeword length — for the system to be in the non-ergodiocme. As a consequence, the channel is
a realization of a random matrix that is fixed during a coheednlock, and the instantaneous end-to-end
mutual information between the source and the destinaianrandom quantity.

Using tools from the free probability theory and assumireg the noise power at the relay levels, but
not at the destination, is negligible, we derive a closedifexpression of the asymptotic instantaneous
end-to-end mutual information between the source input theddestination output as the number of
antennas at all levels grows large. This asymptotic exjmes$s shown to be independent from the channel
realizations and to only depend on the channel statistiherefore, as long as the statistical properties
of the channel matrices at all hops do not change, the irstanus mutual information asymptotically
converges to the same deterministic expression for anyrampichannel realization. This property has
two major consequences. First, the mutual information enalymptotic regime is not a random variable
any more but a deterministic value representing an achievake. This means that when the channel is
random but fixed during the transmission and the system sif@de enough, the capacity in the sense

of Shannon is not zero, on the contrary to the capacity of Issie#¢ systems [16, Section 5.1]. Second,
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given the stationarity of channel statistical propertibg, asymptotic instantaneous mutual information
obtained in the non-ergodic regime also serves as the asjimpalue of the average end-to-end mutual
information between the source and the destination. Naiettie latter is the same as the asymptotic
ergodic end-to-end mutual information that would be ol#diif the channel was an ergodic process.

We also obtain the singular vectors of the optimal precodiadrices that maximize the average mutual
information of the system with a finite number of antennaslliatesels. It is proven that the singular
vectors of the optimal precoding matrices are also indepeinfttom the channel realizations and can
be determined only using statistical knowledge of chanratrices at source and relays. We show that
the so-obtained singular vectors are also optimal in thenpsytic regime of our concern. The derived
asymptotic mutual information expression and optimal pdétg singular vectors set the stage for our
future work on obtaining the optimal power allocation, ocguivalently, finding the optimal precoding
singular values. Finally, we apply the aforementioned ltssan the asymptotic mutual information and
the structure of the optimal precoding matrices to severmadraunications scenarios with different number
of hops, and types of channel correlation.

The rest of the paper is organized as follows. Notations hedystem model are presented in Sedfibn II.
The end-to-end instantaneous mutual information in thengsgtic regime is derived in Sectidnllll, while
the optimal singular vectors of the precoding matrices #fained in Section IV. Theorems derived in
Sectiond 1l and_1V are applied to several MIMO communicatigcenarios in Section]V. Numerical

results are provided in Sectign]VI and concluding remarlksdaawn in Sectio VII.

I[I. SYSTEM MODEL

Notation: log denotes the logarithm in bagewhile In is the logarithm in base. u(z) is the unit-
step function defined byi(z) = 0if x < 0;u(x) = 1if 2 > 0. K(m) £ f0§ V% is the
complete elliptic integral of the first kind [17]. Matricesiéh vectors are represented by boldface upper
and lower cases, respectiveld”, A*, A¥ stand for the transpose, the conjugate and the transpose
conjugate ofA, respectively. The trace and the determinanfAoére respectively denoted by(A) and
det(A). Aa(1),...,Aa(n) represent the eigenvalues of anx n matrix A. The operator norm oA
is defined by||A| £ /max; Aa# (i), while the Frobenius norm oA is ||[A||r £ /tr(AFA). The
(,7)-th entry of matrix Ay, is written al(f). Iy is the identity matrix of sizeV. E[-] is the statistical
expectation operatofi{(X) the entropy of a variabl&, andZ(X;Y’) the mutual information between
variablesX andY. Fg(-) is the empirical eigenvalue distribution of anx n square matrixQ2 with

real eigenvalues, whilén () and fo(-) are respectively its asymptotic eigenvalue distribution &s
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eigenvalue probability density function when its sizegrows large. We denote the matrix product by
QN A; = AjA,... Ay. Note that the matrix product is not commutative, therefive order of the

index in the product is important and in particule®’ | A;)" = Q1_, AL

A. Multi-hop MIMO relay network

Consider Fig[1l that shows a multi-hop relaying system withsource antennag;y destination
antennas and&v — 1 relaying levels. The—th relaying level is equipped witk; antennas. We assume
that the noise power is negligible at all relays while at tlestohation the noise power is such that

Elzz!] = ¢%1 = %I (1)

wherez is the circularly-symmetric zero-mean i.i.d. Gaussiarsaaiector at the destination. The simpli-
fying noise-free relay assumption is a first step towardguhee information-theoretic study of the more
complex noisy relay scenario. Note that several other asthave implicitly used a similar noise-free
relay assumption. For instance, in [12] a multi-hop AF refestwork is analyzed and it is proved that
the resulting colored noise at the destination can be vpgllaximated by white noise in the high SNR
regime. In a multi-hop MIMO relay system, it can be shown tthet white-noise assumption would be
equivalent to assuming negligible noise at relays, but megligible noise at the destination.

Throughout the paper, we assume that the correlated chamatelk at hop: € {1,..., N} can be
represented by the Kronecker model

H; £ C,’0,C,/’ 2)

where C, ;, C,.; are respectively the transmit and receive correlation ioesty®; are zero-mean i.i.d.

Gaussian matrices independent over indewith variance of thgk,[)-th entry

Q;

ki1

B[61%) = i=1,...,N 3)

wherea; = di‘ﬁ represents the pathloss attenuation witland d; denoting the pathloss exponent and
the length of the-th hop respectively. We also assume that channels matiges = 1,..., N remain
constant during a coherence block of lengtland vary independently from one channel coherence block
to the next.

Note that the i.i.d. Rayleigh fading channel is obtainedrfithe above Kronecker model when matrices
C.; andC, ; are set to identity.

Within one channel coherence block, the signal transmittedhe iy, source antennas at timec

{0,...,L—1} is given by the vectok(l) = Poyo(l — 1), wherePy is the source precoding matrix and
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yo IS a zero-mean random vector with

E{yoy('} = Ik, (4)

which implies that
E{xox{'} = PoP{. (5)
Assuming that relays work in full-duplex mode, at times {0,...,L — 1} the relay at level uses

a precoding matrixP; to linearly precode its received signg)(! — 1) = H;x;_1(l — 1) and form its
transmitted signal

Xi(l):Piyi(l—l) iZO,...,N—l (6)

The precoding matrices at source and relRysi =0,..., N — 1 are subject to the per-node long-term
average power constraints
tr(Blxx]) <kP;  i=0,...,N—1. @)

The fact thaty; = H;x;_1, along with the variancEUQ,g?P] = ﬁ of H; elements and with the power
constrainttr(E[x,-_lxiH_l]) < k;_1P;_1 onx;_1, render the system of our concern equivalent to a system
whose random channel elemem,%) would be i.i.d. with variance:;; and whose power constraint on
transmitted signak;_; would be finite and equal t@;_;. Having finite transmit power at each level,
this equivalent system shows that adding antennas, i.eedemg the system dimension, does not imply
increasing the transmit power. Nonetheless, in order torasdom matrix theory tools to derive the
asymptotic instantaneous mutual information in Sedtidinthle variance of random channel elements is
required to be normalized by the size of the channel matiiat1s why the normalized model— channel
variance[(B) and power constraifit (7)— was adopted.

It should also be noticed that choosing diagonal precodiatrioes would reduce the above scheme
to the simpler AF relaying strategy.

As can be observed from Figl 1, the signal received at thendisin at timel is given by
yn() = HyPy_1Hy_1Py_s... HoP HPoyo(l - N) +z
= Gyyo(l=N)+z (8)
where the end-to-end equivalent channel is
Gy = HyPy_1Hy_Py_o...H,P/H Py

= Cl/yONC/ePN_1C)y_ Oy 1C)y_ Py s...Cl @:C P1CIO,C Py (9)
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Let us introduce the matrices
1/2
M, = C/ P

M; = C/2PCl}  i=1,..,N-1

My = CMY2. (10)

)

Then [9) can be rewritten as
GN :MNQNMN—I(")N—I'--M2@2M1®1M0- (11)
For the sake of clarity, the dimensions of the matricesisdnvolved in our analysis are given below.

X; t k; x 1 yi ki x 1 P,k xk;
H; ki xkiw Criiki <k Cyiikiog X ki
O,k xki_1 M, :k xk;
In the sequel, we assume that the channel coherence timegis ¢mough to consider the non-
ergodic case and consequently, time indean be dropped. Finally, we define three channel-knowledge

assumptions:

« AssumptionAg, local statistical knowledge at source: the source has staistical channel state
information (CSI) of its forward channdily, i.e. the source knows the transmit correlation matrix
Cia.

« AssumptionA, local statistical knowledge at relay: at ti#& relaying level,i € {1,...,N — 1},
only statistical CSI of the backward chani&} and forward channdd, ., are available, i.e. relay
i knows the receive correlation matr,.; and the transmit correlation matr{®; ; ;.

« AssumptionAg4, end-to-end perfect knowledge at destination: the degtimgerfectly knows the

end-to-end equivalent chann@ly .

Throughout the paper, assumptidyy is always made. AssumptioA4 is the single assumption on
channel-knowledge necessary to derive the asymptotic ahutformation in Sectiofi IlI, while the two
extra assumption®\s and A, are also necessary in Sectibnl IV to obtain the singular veatd the

optimal precoding matrices.

B. Mutual Information

Consider the channel realizatidd;y in one channel coherence block. Under Assumptiog, the

instantaneous end-to-end mutual information betweenr@ianputy, and channel outputy y, Gx) In
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this channel coherence block is [16]

I(yo;yn|Gn = Gn) = H(yn|GNn = GN) — H(yn|yo, Gn = GN)
H(z) (12)

= H(yn|Gn = Gn) — H(2)
The entropy of the noise vector is known to Bgz) = log det(%elkN). Besidesyy is zero-mean with
varianceE[yoyl'] = Ix,, thus givenG y, the received signaf is zero-mean with varianc@NG]H\, +
Lk, By [16, Lemma 2], we have the inequality(yn |Gy = Gn) < log det(reGy G R + 514, ), and
the entropy is maximized when the latter inequality holdthveiquality. This occurs ify is circularly-
symmetric complex Gaussian, which is the case wkgns circularly-symmetric complex Gaussian.
Therefore throughout the rest of the paper we consigéo be zero-mean a circularly-symmetric complex

Gaussian vector. As such, the instantaneous mutual infmm@2) can be rewritten as

I(yo;yn|Gn = Gn) = logdet(Iy, + nGNGH). (13)

Under AssumptionAq4, the average end-to-end mutual information between chanpat y, and
channel outpuly n, Gy) is

I(yo; (yn.GN)) = Z(yo; yn|GN) + Z(yo; GN)
0

= Z(yo; yn|Gn) (14)
= Egy [Z(y0; yn|Gn = Gn)]
= Eq, [log det(I, 4+ nGyGH)].
To optimize the system, we are left with finding the precoderghat maximize the end-to-end mutual

information [14) subject to power constrairt$ (7). In otherds, we need to find the maximum average

end-to-end mutual information

C 2 Eq. [logdet(I GyGH
{Pi/tr(E[Xixf{}r)nSa];(Pi}ie{o ..... N—1} O [Og ¢ ( v +77 N N):| (15)

Note that the non-ergodic regime is considered, therefdd (epresents only an average mutual in-
formation over channel realizations, and the solution ) (does not necessarily represent the channel

capacity in the Shannon sense when the system size is small.
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1. ASYMPTOTIC MUTUAL INFORMATION

In this section, we consider the instantaneous mutual nmédion per source antenna between the

source and the destination

1
I o log det(Ty, +nGnGL) (16)
0
and derive its asymptotic value as the number of anteripak,, ..., ky grow large. The following

theorem holds.

Theorem 1: For the system described in sectloh Il, assume that

« channel knowledge assumptidyy holds;

o ko,ki,...,kny — oo while k;]

- —pifori=0,...,N;

e fori=0,...,N, ask; — oo, MZ M, has a limit eigenvalue distribution with a compact support.

Then the instantaneous mutual information per source aatérconverges almost surely to

N N
1 i 1
Io=—2> piF [log <1+n@h£vm>} - N5 (17)
PO =5 Pi U—
whereay; = 1 by conventionhyg, by, ...,hy are the solutions of the system of 4+ 1 equations
N
WA,

h; = piE | Lt i =0,...,N 18
i ez )

and the expectatiofc[-] in (I7) and [(IB) is overA; whose distribution is given by the asymptotic

eigenvalue distributiorfyy g, (A) of M7 M.

The detailed proof offheorem([I is presented in Appendxlll.

We would like to stress thdt (IL7) holds for any arbitrary dgirecoding matrice®;, i =0,..., N—1,
if MZM; has a compactly supported asymptotic eigenvalue disiibuvhen the system dimensions
grow large. We would like to point out that the power constiion signals transmitted by the source
or relays are not sufficient to guarantee the boundedneskeokigenvalues oM M. In fact, as
(I23) in Appendix(Ill shows, in the asymptotic regime the povconstraints impose upper-bounds
on the product of first-order moment of the eigenvalues ofrices PZ-CT,Z-PfI and M,{?Mk— in-
deedlimy, .o tr(P;C,;/Pf) = E[Ap,c, pr] andlimy, o 2 tr(Crrs1PrCriPE) = E[Ax]. Un-
fortunately, these upper-bounds do not prevent the eig@endistribution of MM, from having an
unbounded support. Thus, the assumption that matiid€MI; have a compactly supported asymptotic
eigenvalue distribution is a priori not an intrinsic profyeof the system model, and it was necessary to

make that assumption in order to usemma[2 to prove Theorem[1l
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Given a set of precoding matrices, it can be observed ffofndad [18) that the asymptotic expression
is a deterministic value that depends only on channel statiand not on a particular channel realization.
In other words, for a given set of precoding matrices, as lasighe statistical properties of the channel
matrices do not change, the instantaneous mutual infoomativays converges to the same deterministic
achievable rate, regardless of the channel realizations,Tés the numbers of antennas at all levels grow
large, the instantaneous mutual information is not a randarnable anymore and the precoding matrices
maximizing the asymptotic instantaneous mutual infororattan be found based only on knowledge of
the channel statistics, without requiring any informatiegarding the instantaneous channel realizations.
This further means that when the channel is random but fixethgluhe transmission and the system
size grows large enough, the Shannon capacity is not zeranang, on the contrary to the capacity of
small-size systems [16, Section 5.1].

Moreover, given the stationarity of channel statisticalgarties, the instantaneous mutual information
converges to the same deterministic expression for anytrampichannel realization. Therefore, the
asymptotic instantaneous mutual informatién] (17) obthiire the non-ergodic regime also represents
the asymptotic value of the average mutual information, sehexpression is the same as the asymptotic
ergodic end-to-end mutual information that would be ol#diif the channel was an ergodic process.

It should also be mentioned that, according to the experiaheasults illustrated in Sectidn VI, the
system under consideration behaves like in the asymptetione even when it is equipped with a
reasonable finite number of antennas at each level. Therdfl) can also be efficiently used to evaluate

the instantaneous mutual information of a finite-size syste

IV. OPTIMAL TRANSMISSION STRATEGY AT SOURCE AND RELAYS

In previous section, the asymptotic instantaneous mutdiatrnation [I7),[(IB) was derived considering
arbitrary precoding matrice®;,i € {0,...,N — 1}. In this section, we analyze the optimal linear
precoding strategie®;,i € {0,...,N — 1} at source and relays that allow to maximize the average
mutual information. We characterize the optimal transnmi¢ations determined by the singular vectors
of the precoding matrices at source and relays, for a systgmfinite ko, k1, ..., ky. It turns out that
those transmit direction are also the ones that maximizeaglyenptotic average mutual information. As
explained in Sectiofdll, in the asymptotic regime, the ager mutual information and the instantaneous
mutual information have the same asymptotic value, thegetbe singular vectors of the precoding
matrices maximizing the asymptotic average mutual infdionaare also optimal for the asymptotic

instantaneous mutual informatidn {17).
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In future work, using the results on the optimal directiofsransmission (singular vectors &f;) and
the asymptotic mutual informatiof (1 7)={18), we intend &igk the optimal power allocation (singular
values ofP;) that maximize the asymptotic instantaneous/average ahirtéormation [(1¥) using only
statistical knowledge of the channel at transmitting nodes

The main result of this section is given by the following theo:

Theorem 2: Consider the system described in Secfidn Il. Fer {1,...,N} let C;; = Ut,iAm-Uffi
andC,; = Um-Am-Ufi be the eigenvalue decompositions of the correlation nesic,; and C, ;,
whereU, ; andU,.; are unitary and\;; and A, ; are diagonal, with their respective eigenvalues ordered
in decreasing order. Then, under channel-knowledge astmpAg, A, and A4, the optimal linear
precoding matrices that maximize the average mutual irdtion under power constraints] (7) can be

written as

Py =U;1Ap,
(19)
P, =U,; 1 Ap Ul forie{1,....N -1}
whereA p, are diagonal matrices with non-negative real diagonal efesa Moreover, the singular vectors
of the precoding matriceE{119) are also the ones that magithiz asymptotic average mutual information.
Since the asymptotic average mutual information has theeseafue as the asymptotic instantaneous
mutual information, the singular vectors of the precodiragnioes[(19) are also optimal for the asymptotic

instantaneous mutual information.

For the proof ofTheorem[2, the reader is referred to Appendix]|il.

Theorem[Z indicates that to maximize the average mutual information

« the source should align the eigenvectors of the transmitrtanvce matrixQ = PP}l to the
eigenvectors of the transmit correlation mat@ ; of the first-hop channeH;. This alignment
requires only local statistical channel knowledde. Note that similar results were previously
obtained for both single-user [18] and multi-user [19] $Algop (without relays) MIMO system
with covariance knowledge at the source.

« relay should align the right singular vectors of its precoding nwaP; to the eigenvectors of the
receive correlation matriC, ;, and the left singular vectors &; to the eigenvectors of the transmit
correlation matrixC; ;1. These alignments require only local statistical knowtedg..

Moreover, it follows fromTheorem [ that the optimization of?; can be divided into two decoupled
problems: optimizing the transmit directions—singulactees— on one hand, and optimizing the transmit

powers—singular values— on the other hand.
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We would like to draw the reader’s attention to the fact tihat proof of this theorem does not rely on
the expression of the asymptotic mutual information giver{i2). In fact,Theorem[2 is first proved in
the non-asymptotic regime for an arbitrary set{éf},c(o,... n}- As such, regardless of the system size,
the singular vectors of the precoding matrices should advieyaligned to the eigenvectors of the channel
correlation matrices to maximize the average mutual in&giom. In particular, the singular vectors of
the precoding matrices that maximize the asymptotic aeeragtual information are also aligned to the
eigenvectors of channel correlation matrices a ih (19)e¥@ained in Sectiofll, the instantaneous and
the average mutual informations have the same value in yramstic regime. Therefore, the singular

vectors given in[(19) are also those that maximize the asyticphstantaneous mutual information.

V. APPLICATION TOMIMO COMMUNICATION SCENARIOS

In this section,Theorem[d and Theorem[2 are applied to four different communication scenarios. In
the first two scenarios, the special case of non-relay assMtMO (N=1) without path-lossd; = 1) is
considered, and we show holw[17) boils down to known resaltshfe MIMO channel with or without
correlation. In the third and fourth scenarios, a multi-MIO system is considered and the asymptotic

mutual information is developed in the uncorrelated andoegptial correlation cases respectively.

A. Uncorrelated single-hop MIMO with statistical CSl at source

Consider a simple single-hop uncorrelated MIMO system Withsame number of antennas at source
and destination i.epp = p; = 1, and an i.i.d. Rayleigh fading channel i€, ; = C,; = I. Assuming
equal power allocation at source antennas, the sourcegees®, = /Pyl. AsM, = Ctl,/fPo = VPl

andM,; = Ciff = I, we have that

(20)
Using the distributions in((20) to compute the expectation§l7) yields
1 loge &
Io=—> pE [log (1 + EthAiﬂ N2 n]]h
Po =5 Pi U (21)
= log (1 4+ nhoPy) + log(1 + nhy) —loge n hg hq
where, according td_(18}io andh; are the solutions of the system of two equations
1
ho =
1+nh
—|—;73 1 (22)
hy 0

- 1+ nhoPoy
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that are given by

2
hg= — o
T I F VI P, 23)
by — —1++/144nPy
1= 2 .
Using [23) in [21), we obtain
2
I.. = 2log (1 L’ 1; 477730) - i‘:ﬁf (Vitanpo-1) . (24)
0

It can be observed that the deterministic expresdioh (2pgmigs only on the system characteristics
and is independent from the channel realizations. More@eral power allocation is known to be the
capacity-achieving power allocation for a MIMO i.i.d. Raigh channel with statistical CSI at source
[20, Section 3.3.2], [16]. As such, the asymptotic mutuébrimation [24) also represents the asymptotic
capacity of the system. We should also mention thak (24)nslai to the expression of the asymptotic
capacity per dimension previously derived in [20, SectiohZ for the MIMO Rayleigh channel with

equal number of transmit and receive antennas and stati€lf8l at the transmitter.

B. Correlated single-hop MIMO with statistical CS at source

In this example, we consider the more general case of ctetkl®IMO channel with separable

correlation:H; = Ci{12®10i

,/12. Let us denote the eigenvalue decompositiorCef as
Ci1 = U 1A U (25)

whereA, ; is a diagonal matrix whose diagonal entries are the eigaasabfC, ; in the non-increasing
order and the unitary matrikJ, ; contains the corresponding eigenvectors. Defining thestn#incovari-
ance matrix

Q £ E [xox{| = PP{, (26)

it has been shown [18] that the capacity-achieving maiyixis given by
Q" =U;1Aq- U/, (27)

where Aq- is a diagonal matrix containing the capacity-achieving eowailocation. UsingTheorem [l

along with [25) and[(27), it can be readily shown that the gsyiic capacity per dimension is equal to

1 1
C = Eflog(1 + L Agho)] + —E[log(1 + A1 h1)] — 255 hohy (28)
P0 Po Po
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wherehy and h; are the solutions of the system

Ay
hg=E|———
0 |:1+77A1h1:|

Ao
1+ %tho

and the expectations are ovap and A; whose distributions are given by the asymptotic eigenvalue

(29)
hi =E

distributions ofA; 1 Aq- andC,., respectively. It should be mentioned that an equivaleptession was
obtained in [20, Theorem 3.7] for the capacity of the cotedlaMIMO channel with statistical CSI at

transmitter.

C. Uncorrelated multi-hop MIMO with statistical CS at source and relays

In this example, we consider an uncorrelated multi-hop MIgtem, i.e. all correlation matrices
are equal to identity. Then byheorem[Z the optimal precoding matrices should be diagonal. Assgmin
equal power allocation at source and relays, the precodiaugicaes are of the fornP; = a;I,, where
a; is real positive and chosen to respect the power constraints

Using the power constraint expressidn (123) in Appendixitican be shown by induction onthat

the coefficientsy; in the uncorrelated case are given by

apg =\Po

Pi
a;Pi—1

Vie{l,...,N—1} (31)

o; =

anN = 1.
Then the asymptotic mutual information for the uncorradateulti-hop MIMO system with equal

power allocation is given by

N Di nhNaii 102 loge N
Io=> “log <1+#> —N——n]] (32)
i—0 Po Pi £o i—0

1The small differences betweeh [28) and the capacity express [20, Theorem 3.7] are due to different normalization
assumptions in [20]. In particuldr(P8) is the mutual infation per source antenna while the expression in [20] is dpacity
per receive antenna. The equivalence between [20, TheorémaBd [28) is obtained according to the following notation
equivalence { [20]-notation} ~ {(28)-notatior}):

ho h1
C ~ pol ~ ~ '~ — T~ =
po ﬂ po SNR 7)077 Po PO

Ar ~ Ay , both with distribution given by the eigenvalue distritmutiof C.,. (30)

A~ % , both with distribution given by the eigenvalue distrilutiof A: 1 Aq+/Po
0
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wherehg, hq,...,hy are the solutions of the system &f + 1 multivariate polynomial equations
N
hNoZa; .
th:% ZZO,7N (33)
J=0 1+ ’ Pi )

Note that the asymptotic mutual information is a deterntimigsalue depending only on a few system
characteristics: signal pow@?;, noise powell /7, pathloss:;, number of hopsV and ratio of the number

of antennag;.

D. Exponentially correlated multi-hop MIMO with statistical CS at source and relays

In this example, the asymptotic mutual informatidn](17) sveloped in the case of exponential
correlation matrices and precoding matrices with optiniadjslar vectors.
Optimal precoding directions: Fori € {1,..., N}, the eigenvalue decompositions of channel correlation

matricesC, ; andC,.; can be written as

Cyi = UpiA UL,
(34)
C,i = UpA,, U]

whereU,; andU,.; are unitary, and\; ; andA, ; are diagonal with their respective eigenvalues ordered in
decreasing order. Followintheorem[Z, we consider precoding matrices of the foRpn = Ut,i+1APiU,IfZ-,
i.e. the singular vectors d?; are optimally aligned to the eigenvectors of channel cati@h matrices.
Consequently, we can rewrite matrick§” M, (10) as
MMy = Uf1A A1 Uy,
M/M; = UL A AB A1 Uyy i=1,..., N -1 (35)
MNMy = Uy A, v U, v

Thus, the eigenvalues of matriced” M, are contained in the following diagonal matrices

Ao = A} Ay
A=A Ab Ay i=1,...,N-1 (36)
An = AN

The asymptotic mutual information, given Hy 117) aqd] (18)0lves expectations of functions af;
whose distribution is given by the asymptotic eigenvalugridiution Fygxyg, (A) of MFHZM;. Equation
(36) shows that a function; (A;) can be written as a functiogb(A%i, Ari, Aiit1), where the variables
A%i, A;;, andA; ;1 are respectively characterized by the asymptotic eigeewdistributionstpxp, (A),

Fc, (M), and Fg, ,,, (\) of matricesPfP; , C,; and C, ;1 respectively. Therefore expectations in
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(I7) and [(IB) can be computed using the asymptotic jointikiigton of (A7, A,;, A1) instead of

the distributionFyyry, (V). To simplify notations, we rename the variables as follows
X=A}p Y=Ay Z=AMAs. (37)
Then, the expectation of a functign(A;) can be written

Elg:(A;)] = Elga(X. Y, 2)] = / / / 9oy, ) 2y, 2) de dy d=
oy (38)
- / / / 0229, 2) Fpyz @l 2) FrizWle) f2(2) de dy de.

Exponential Correlation Model: So far, general correlation matrices were considered. Weimmoduce
the exponential correlation model and further develod @8)the distributionsfy|;(y|z) and fz(z)
resulting from that particular correlation model.

We assume that Levélis equipped with a uniform linear array (ULA) of lengih, characterized by
its antenna spacing = L;/k; and its characteristic distancés ; and A, ; proportional to transmit and
receive spatial coherences respectively. Then the reegisldransmit correlation matrices at Leveian

respectively be modeled by the following Hermitian Wientas Toeplitz matrices [22]-[24]:

Loy 2, ! 1 rege1 TRy .- TE
reg 10 T T ; Ttit1 1
Cri=| #2, " . 2 andCrini = | 12, . . ad
1 ey ; 1 7
L Tffi_l cee Tz,i Tri 1 1 ks i Tﬁ;;i e T‘t27i+1 Tti+1 1

L

_(éfbx)ki
where the antenna correlation at receive (resp. transiai®s; = ¢ 2~ € [0,1) (resp.reit1 =
e_fﬁ € [0,1)) is an exponential function of antenna spacin@nd characteristic distanck, ; (resp.
Ay ; ) at relaying Level.

As k; grows large, the sequence of Toeplitz matri€gs; of sizek; x k; is fully characterized by the

2A sequence ofi x n Toeplitz MatricesT,, = [t,_;]nx~ is said to be in the Wiener class [21, Section 4.4] if the seqee

{tx} of first-column and first-row elements is absolutely summabe.lim, oo Y p__, |tx] < +o0.
If Jrpa| < 1, thenlimy, oo (Spigt ri 4+ 320, ro k) = 1717‘11’ + #/77‘;1 < 0o, and consequentl@, ; is in the Wiener

class.C;,; is obviously also in the Wiener classl|if; ;| < 1.
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continuous real functiorf, ;, defined forA € [0,27) by [21, Section 4.1]

. —k
fri(N) :k1—1>r-I|-loo (Z Tmﬁjk’\+ Z T Jk)\)

ke=—(ki—1)
2
! rrie”’ (40)
1 —rpelr 1 —r e iA
2
1— Ty

- |1 — 7‘7«7Z'€j>‘|2 '

We also denote the essential infimum and supremurf) pby my, , and My, , respectively [21, Section
4.1]. In a similar way, we can define the continuous real fioncy; ;.1 characterizing the sequence of
Toeplitz matricesC, ;41 by replacingr,; in @0Q) by r;;41, and we denote byny, .., and My, ., its
essential infimum and supremum respectively.

By Szegd Theorem [21, Theorem 9], recalled hereaftdrammal[6, for any real functiony(-) (resp.

h(-)) continuous onmy, ., My, .] (resp.[my, H],Mff 1)), We have

1 2T
[owhray s tim o Zh D=5 | U ax

(41)

2
/Zh(z)fz(z) dz2 lim iZh(AcW(k)) = %/0 h(friv1(v)) dv.

koo Ri i
Assuming that variable¥” = A,.; andZ = A, ;41 are independent, and applying Szegd Theorem to

(38), we can write

Emmm=gg<ém@%QMKAWJﬂﬂ!ﬁ@fﬂ@@W

93(y72)

:L(L%m@h@m@fﬂ@w

= / <2i 93 (fri(A), 2) d>\> fz(z) dz , by Szegd Theorenh (#1)
z A=0

. /27T ( )
_ L %(/QAﬁA»¢>faad§(m

o

@2 / / g3 (fri(N), frit1(v)) d\dv , by Szegd Theoreni (#1)
7T A=0 Jv=

(42)

Equal power allocation over optimal precoding directions:We further assume equal power allocation
over the optimal directions, i.e. the singular value®Pgfare chosen to be all equal:p, = «;1;,, where
«; 1s real positive and chosen to respect the power constf@inEqual power allocation may not be the

optimal power allocation scheme, but it is considered i tample for simplicity.
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Using the power constraint expression for general coicglamodels [(1213) in Appendik il and
considering precoding matricdd; = Ufi(ailki)UMH with optimal singular vectors as iftheorem
and equal singular values;, we can show by induction ofthat the coefficientsy; respecting the

power constraints for any correlation model are given by
ap = /Po

i tr( A= k; .
O%:\/ Pi tr(Ari-) Vie{l,...,N -1} (43)
a;

Pic1 tr(Ay;) tr(AgiArio1)
ay = 1.
Applying the exponential correlation model {0 143) and makihe dimensions of the system grow large,
it can be shown that in the asymptotic regime, dheespecting the power constraint for the exponentially
correlated system converge to the same vdluk (31) as fornbernelated system.
Then X = A}, = af is independent front” and Z, thus fxy z(z|y,z) = fx(z) = 6(z — af).
Consequently,

93y, 2) = /92(5671/, 2)8(x — of) do = ga(0f,y, 2) (44)

and [42) becomes
1 o o 1—7r2, 1—r7i
Elgi(A)] = ——— 2 L e d\ dv. 45
[91(A3)] 2n)? AZO /1/:092 <a“ |1 — 7?27 1 =y iq1e0V|? : )

Asymptotic Mutual Information : Using [45) in [17) withgs(x,y, 2) = log (1 +n%hfvxyz> gives

the expression of the asymptotic mutual information

N , o p2m ai02(1 — 12 (1 — r2. 1 N
Io=Y —12 2/ / log (14 Y 210l . 2”)( “*.1)2 ddv — N25 T b
i—0 p0(2ﬂ‘) A=0 Jv=0 pi|1 — Ty i€l | |1 - Tt,i+1ejl/| L0 0

0

(46)
where hg, h1, ..., hy are the solutions of the following system of + 1 equations, obtained by using
. . AVA;
(45) in (18) with ga(7,y,2) = &Tf%
ﬂ h _ i /27T /271’ . hival+1a$(1 — T37i)(1 - rt2,i+l) d)\ dV
e T 2m)? o Jumo pill = i€ 21 =1 2+ phNai02(1 =2 ) (1 =17 ) (47)
fori=0,...,N
(with the convention,., = r; n4+1 = 0). Using the changes of variables
A 1—¢2 2d
t=tan | = | ,thuscos(\) = —— and d\= Bl
2 1+¢2 1+¢2
) ) (48)
v 1—u 2du
u = tan (5) y thUS COS(V) = m and dv = m
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and performing some algebraic manipulations that are skigpr the sake of conciseneds,|(46) dnd (47)
can be rewritten

N +oo oo N 2 2 2 N

Pi nhi'aip10f (1+t%) (1+wu?) dt du loge

I = lo 1+cic 5 - N h;
; po? /t}oo ’ ( T (@A) (G +e?) ) T2 1+ Po gl

- i=0
(49)
wherehg, hi,...,hy are the solutions of the system of + 1 equations
N
2 AN a0
.~ i Wi+10G _
Hh] - T ThN ol . N o2 K(m,) (50)
:0 \/C Ct +1 + - it1% \/ n 3 i+1
I ek Pi Cr,iCt,it1 pi
and
1- Tri
Cr,;, =
o 1+ Tri
o = LT i
1+ Tti+1 (51)
Ctitl nhiNa; 10?2 Cri nhiNa; a2
m; =1 ( ens T pi > (thm + pi
v - .
hlai10f hi¥ai10f
(C”clt — 4 T > (Cr,ict’i+1 + %)

Those expressions show that only a few relevant paramefferst ahe performance of this complex
system: signal powef;, noise powerl/n, pathlossa;, number of hopsN, ratio of the number of

antennag;, and correlation ratios, ; andc ;.

VI. NUMERICAL RESULTS

In this section, we present numerical results to validdteorem[I] and to show that even with small
ki,i = 0,...,N, the behavior of the system is close to its behavior in thangsgtic regime, making

Theorem[I a useful tool for optimization of finite-size systems as vedllarge networks.

A. Uncorrelated multi-hop MIMO

The uncorrelated system described in Sedtion] V-C is firssiciemed.

Fig.[2 plots the asymptotic mutual information frohlmeorem 1 as well as the instantaneous mutual
information obtained for an arbitrary channel realizatishown as experimental curves in the figure).
This example considers a system withh antennas at source, destination and each relay level wih on
two or three hops. Fid.] 3 plots the same curves as in[Fig. 2 fystem with100 antennas at each level.
When increasing the number of hops the distance between source and destinafiég kept constant
and N — 1 relays are inserted between source and destination wital epacingl; = d/N between each

relaying level. In both examples, whose main purpose is maptimize the system, but to validate the
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asymptotic formula inTheorem[I, matricesP; are taken proportional to the identity matrix to simulate
equal power allocation. The channel correlation matrigesadso equal to the identity matrix to mimic

the uncorrelated channel. Moreover, the pathloss expahien® is considered. We would like to point

out that the experimental curves for different channelizatibns produced similar results. As such, the
experimental curve corresponding to a single channelza#din is shown for the sake of clarity and
conciseness.

Fig.[3 shows the perfect match between the instantaneousahioformation for an arbitrary channel
realization and the asymptotic mutual information, vatiaig Theorem[d for large network dimensions.
On the other hand Figl 2 shows that the instantaneous mufoafriation of a system with a small number
of antennas behaves very closely to the asymptotic reginstifyjing the usefulness of the asymptotic
formula even when evaluating the end-to-end mutual inféionaof a system with small size.

Finally, Fig.[4 plots the asymptotic mutual information fone, two, and three hops, as well as the
value of the instantaneous mutual information for randoranctel realizations when the number of
antennas at all levels increases. The concentration oh#taritaneous mutual information values around
the asymptotic limit when the system size increases showsdahvergence of the instantaneous mutual
information towards the asymptotic limit as the number ofeanas grows large at all levels with the

same rate.

B. One-sided exponentially correlated multi-hop MIMO

Based on the model discussed in Secfion]V-D, the one-sidednextially correlated system is consi-
dered in this section. In the case of one-sided correlaéiany,; = 0 andr;; > 0 foralli € {0,..., N},
the asymptotic mutual informatiof (562, (53) is reduced to

N +00 N 2 2 N
pi nhy' a0 (1+u?) du loge
I, = / log [ 1+ ¢y L L - N hi (52)
; POT J —o0 ¢ ( e pi (i +u?) | T+u? Po ﬁg)
wherehg, h1, ..., hy are the solutions of the system &f + 1 equations

N N 2
H B — h;' a;j110 ) (53)
o J \/C 4+ nhlaiyi107 \/ Lo nhlaivi0f
J= ti+1 Pi Ct,it1 Pi

One-sided correlation was considered to avoid the invob@uputation of the elliptic integrak (m;)
in the system of equationg (53), and therefore to simplifgudations.

Fig.[§ and 6 plot the asymptotic mutual information érand 100 antennas at each level respectively,
and one, two or three hops, as well as the instantaneous Iminfoanation obtained for an arbitrary

channel realization (shown as experimental curves in thed)g As in the uncorrelated case, the perfect
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match of the experimental and asymptotic curves in Hig. & Wi0 antennas validates the asymptotic
formula in Theorem[d in the presence of correlation. Fig. 5 shows that even for allsmumber of
antennas, the system behaves closely to the asymptotimedgithe correlated case.

Finally, Fig.[7 plots the instantaneous mutual informationrandom channel realizations against the
size of the system and shows its convergence towards thepastyormutual information when the number
of antennas increases. Comparing Fig. 7 to the correspgrdg([4 in the uncorrelated case, it appears

that convergence towards the asymptotic limit is slowethia ¢orrelated case.

VIlI. CONCLUSION

We studied a multi-hop MIMO relay network in the correlatadihg environment, where relays at each
level perform linear precoding on their received signabptd retransmitting it to the next level. Using
free probability theory, a closed-form expression of thstantaneous end-to-end mutual information
was derived in the asymptotic regime where the number ofnaate at all levels grows large. The
asymptotic instantaneous end-to-end mutual informationst out to be a deterministic quantity that
depends only on channel statistics and not on particulanrearealizations. Moreover, it also serves
as the asymptotic value of the average end-to-end mutuainiaition. Simulation results verified that,
even with a small number of antennas at each level, multidygtems behave closely to the asymptotic
regime. This observation makes the derived asymptotic ahutfiormation a powerful tool to optimize
the instantaneous mutual information of finite-size systenth only statistical knowledge of the channel.

We also showed that for any system size the left and rightusdmgrectors of the optimal precoding
matrices that maximize the average mutual information dgmned, at each level, with the eigenvectors
of the transmit and receive correlation matrices of the fodvand backward channels, respectively.
Thus, the singular vectors of the optimal precoding masgrican be determined with only local statistical
channel knowledge at each level.

In the sequel, the analysis of the end-to-end mutual infaonan the asymptotic regime will first
be extended to the case where noise impairs signal receatieach relaying level. Then, combining
the expression of the asymptotic mutual information with singular vectors of the optimal precoding
matrices, future work will focus on optimizing the powercalhtion determined by the singular values of
the precoding matrices. Finally future research diredtialso include the analysis of the relay-clustering
effect: given a total number of antennigsat leveli, instead of considering that the relaying level consists
of a single relay equipped with many antenna$, (we can consider that a relaying level containselays

equipped with §;/n;) antennas. Clustering has a direct impact on the structucereelation matrices:
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when thek; antennas at level are distributed among several relays, correlation matrimcome block-
diagonal matrices, whose blocks represent the correldt@ween antennas at a relay, while antennas
at different relays sufficiently separated in space are asgg uncorrelated. In the limit of a relaying
level containingk; relays equipped with a single antenna, we fall back to the casincorrelated fading
with correlation matrices equal to identity. The optimalesbf clusters in correlated fading is expected

to depend on the SNR regime.

APPENDIX |

TRANSFORMS AND LEMMAS

Transforms and lemmas used in the proofsTboeorems [I and[2 are provided and proved in this

appendix, while the proofs ofheorems[Il and[@ are detailed in Appendicéd Il and]lll, respectively.

A. Transforms

Let T be a square matrix of size with real eigenvaluesr(1),...,Ar(n). The empirical eigenvalue

distribution It of T is defined by

n

n AL l o .
Fi(z) & — ;u@c Ar(i)- (54)
We define the following transformations [10]

Sidtjes transform: G (s) é/Al dPr(\) (55)

— S

a SA
Ta(s) 2 [ Pary) (56)

) A 2+1
Stransform:  St(z) = T (2) (57)

z

where Y=Y (s)) = s.

B. Lemmas

We present here the lemmas used in the proofshebrems[dl and2 Lemmas[d} [3, 5 and7 are proved

in Appendix[I-G, whileLemmas[Z, [6, and[ are taken from [25], [21], and [26] respectively.

Lemma 1. Consider ann x p matrix A and ap x n matrix B, such that their producAB has

non-negative real eigenvalues. Dengte: 2. Then

San(z) = ‘ZESBA (g) . (58)
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Note thatLemma[ll is a more general form of the results derived in [27, Eq. {1[2D, Eq. (15)].

Lemma 2 ( [25, Prop. 4.4.9 and 4.4.11]): Forn € N, let p(n) € IN be such tha@ — £ asn — oo.
Let

+ ©(n) be ap(n) x n complex Gaussian random matrix with i.i.d. elements witharece .

« A(n) be an x n constant matrix such thatip,, [|A(n)|| < +oo and (A(n), A(n)) has the limit

eigenvalue distribution.

« B(n) be ap(n) x p(n) Hermitian random matrix, independent fro@(n), with an empirical

eigenvalue distribution converging almost surely to a caatly supported probability measure
Then, asn — oo,
« the empirical eigenvalue distribution &(n)” B(n)®(n) converges almost surely to the compound
free Poisson distributiom, ¢ [25]

« the family ({®(n)B(n)©(n)}, {A(n), A(n)}) is asymptotically free almost everywhere.
Thus the limiting eigenvalue distribution & (n)B(n)©(n)” A (n)A(n) is the free convolutionr, Xy
and itsStransform is

SeBenaan(z) = Sepen(2)Saax(2). (59)
Note that if the elements @(n) had variance;;; instead of;,, ({©(n)"B(n)®(n)}, {A(n), A(n)"})

would still be asymptotically free almost everywhere, andsequently, Equation_(59) would still hold.

Lemma 3: Consider am x p matrix A with zero-mean i.i.d. entries with variané‘pe Assume that the

dimensions go to infinity whilég — ¢, then

1 1
Saan(z) = P
(1+¢=)
1 1 (60)
SAHA(z):E (Z+C)

Lemma 4 ( [26, Theorem H.1.h]): Let A and B be two positive semi-definite hermitian matrices of
sizenxn. Let\a (7) andAg (i) be their decreasingly-ordered eigenvalues respectiVabn the following

inequality holds:

ZAA AB(n—i+1) < tr(AB) Z)\AB < > Aali)As(i). (61)
=1 ]

Lemma 5: Fori € {1,...,N}, let A; be an; x n;_; random matrix. Assume that

o Ay, ..., Ay are mutually independent,

+ n; goes to infinity while;*— — ¢,
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« asn; goes to infinity, the eigenvalue distribution &f; A’ converges almost surely in distribution
to a compactly supported measuig

e asny,...,ny Qo to infinity, the eigenvalue distribution c(f®}:N AZ-)(®}:N A;)" converges
almost surely in distribution to a measyig.

Then uy is compactly supported.

Lemma 6 ( [21, Theorem 9]): Let T,, be a sequence of Wiener-class Toeplitz matrices, chaizeder

by the functionf(\) with essential infimummn; and essential supremui ;. Let At (1),...,Ar, (n)
be the eigenvalues df,, and s be any positive integer. Then
: 1 k S 1 o S
lim Ekz_lxmic) =5 | fovx (62)

Furthermore, iff(\) is real, or equivalently, the matricéE,, are all Hermitian, then for any function
g(+) continuous orim ¢, My]

1

1 n 2m
T =S () = 5 [ a7 (63)

Lemma 7: Fori > 1, given a set of deterministic matric§\x } < (o,...;; and a set of independent

random matrice§®y, }req1,...i1, With i.i.d. zero-mean gaussian elements with variamﬁ;e

tr(E

C. Proofs of Lemmas

1 7 7
QR {AOL I AAT R{OF A }] ) = tr(AoAf)) [ [ ortr(ArAf). (64)
k=1 k=1 k=1

The proofs ofLemmas(I, [3, 5 and[7 are given hereafter.
Proof of Lemmall

Given two complex matriceA of sizem xn, andB of sizen x m, their productsAB andBA have the
samek non-zero eigenvaluesap(1l),..., \a(k) with the same respective multiplicities, . .., my.
However the multiplicitiesn, andmy, of the 0-eigenvalues oAB and BA respectively, are related as
follows:

mo +n = mg + m. (65)
Assuming thatAB, and therefordBA, has real eigenvalues, we show hereafter {hdt (58) holds.

The empirical eigenvalue distributions &fB and BA are defined by
k
- mo 1 .
Fi(A) = ——u() + — ;miu(k — AaB(i))
R (66)
m! 1 )
Fga(N) = 701&()\) +o ;miu()‘ — AaB(i)).
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Using [65), we get

FRp () = A () + (1= =) u(). (67)
From (67), it is direct to show that
Gan(z) = 2 Gra(z) ~ (1= 1) 2. (©9)
As T(s) = —1 —1G(1), from (€8), we obtain
Tan(s) = - Tna(s). (69)

Finally, using{z = Tap(s) = ZTpa(s)} < {Tak(z) = 5 = Tgh (n/—m)} and the definition of the

Stransform S(z) £ 2L 7-1(2) yields the desired result

z+1 z
= ) 70
sl = S son (77 ) 7o
This concludes the proof dfemma [l
[
Proof of Lemma[3
Consider ann x p matrix A with zero-mean i.i.d. entries with variancge Let X = %A denote

the normalized version oA with zero-mean i.i.d. entries of varian%e and defineY = I, and
Z = XXy = AA It is direct to show thatSy(z) = 1. Using the latter result along with [10,

Theorem 1], we obtain

1
SXXH(Z) = (1 + CZ)
1 1 (71)
SAAH (Z) = Sz(Z) = SXXH (Z)Sy(z) = m E
Applying Lemma [l to Sp#a(2) yields
z4+1 Z 1 1
NN = Saan [ =] =~ : 72
AnA(?) PRIV <C> il P (72)
This completes the proof dfemma[3
|

Proof of Lemma[Q

The proof ofLemma[H is done by induction onV. For N = 1, Lemma[H obviously holds. Assuming
that Lemma 8 holds for N, we now show that it also holds fav¥ + 1.

We first recall that the eigenvalues of Gramian matride&’’ are non-negative. Thus the support of

un11 is lower-bounded by, and we are left with showing that it is also upper-bounded.



DRAFT SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 26

DenotingBy = (R1_x Ai) (R Ay), we can write
Byi1 = Ay ByAY, . (73)

For a matrixA, let Aa max denote its largest eigenvalue. The largest eigenvalugof; is given by

A xf! By x
=max ————
By 1,max x XHX

H H
X AN+1BNAN+1 X

= max
x xHx

tr(By A]Hv+1XXHAN+1)
= max =
X XX

WX ABy (K) Aar . sxiay,, (B

o >okti ABy (k) II;N+1 Ana (K) by Lemmad
x . xHx (74)
ij:l )\AIH\I+1XXHAN+1 (k)

xHx
tr(AN  xx"An,1)

xHx

< max AB, max
xX

= )\BN ,max m}?X

H H
X AN+1AN+1X

= A max
By ,max o XHX

= /\BN,max AAANJrlAAH max-*

N+11

To simplify notations, we rename the random variables dsvisl:

X = ABy.,max Y = AB,,max Z = AAy 1A, max- (75)

N+1»

Then [74) can be rewritten

X<YZ (76)
Let a > 0, by (78) we have
Fx(a) =Pr{X <a} >Pr{YZ < a} = Fyz(a) (77)

which still holds for the asymptotic distributions as, ..., ny+1 — oo, while ;*— — ¢;. Denoting the

plane regiorD, = {z,y > 0/zy < a}, we can write

Fyz(a) 2// " Jy,z(y, z)dydz
y,2€D,

= // fv(y)fz(2)dydz , by independence of and Z
y,2€D,

- /y::o </Z:/Oy fz(Z)dz> fy (y)dy

_ /y :FZ (2) #rivas

(78)
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By assumption, the distributions otNHA%H and By converge almost surely to compactly sup-
ported measures. Thus, their largest eigenvalues are &styoafly upper-bounded and the support of the

asymptotic distributions o¥” and Z are upper-bounded, i.e.

Je, > 0 such thatvy > ¢, , Fy(y) =1 (fy(y) =0)
(79)
Je, > 0suchthatvz > ¢, , Fz(2) =1 (fz(2) =0).
Leta > ¢, c., then for all0 < y < ¢,, we have2 > £ > ¢, and F ( ) = 1, as the dimensions go

to infinity with constant rates. Therefore, in the asymp:toaglme, we have

Fyz(a) = /y:o Fy <§> Iy (y)dy

. (80)
~ [ 1w =Fre) -1
Yy

=0
Combining [7¥) and[{80), we gétx(a) = 1 for a > ¢, ¢,. Thus, there exists a constant such that
0 <c¢p <c¢yc, andVe > ¢, , Fix(x) = 1, which means that the support of the asymptotic distrilougb
X is upper-bounded. As a consequence, the support of the éstjengigenvalue distribution oB 41
is also upper-bounded. Therefore, the suppornt©f.; is upper-bounded, which concludes the proof.
|

Proof of Lemmal[7
The proof ofLemma[7] is done by induction.
We first prove thatemmal7 holds fori = 1. To that purpose, we define the matBx= A0, A¢ A @ AL
Then N
tr(E[A1©1 A0 A O AL']) = tx(E[B]) = } Elb;)] (81)
j=1

The expectation of thg'" diagonal element;; of matrix B is

Elbjl = > Ela)0y aipaltr 65" al,)

k,l,m,n,p
(12
= a;; |la;, " B0
kzl;n! 2 Plal) 2 El6) 2] ©2)

o3
1 0
=0 [alP Y lafo P
k I,m

where the second equality is due to the fact m@?eﬁ? = 020k 01 - It follows from (81) and[(8R)
that

=03 ld\) P Z|a = o?tr(A A tr(AgAL) (83)
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which shows that.emma[7 holds fori = 1.

Now, assuming that.emma [7] holds for: — 1, we show it also holds foi. We define the matrix

B; = ®i_{A:O} A Al ®:_ {©FAHY.

Then
b (84)
=> E[b].
j=1
The expectation of thg*" diagonal elemer\b(’) of matrix B; is
4 7 7)), (1—1 D)k (1)*
B = > Blal oo Vo al)]
k,lommn
2 1 (32
E[b E[|0
kZ ajpl ol (85)

i i—1
= D la P Bl )

k !
where the second equality is due to the independené®;cndB;_; and to the fact thaE[H,iQHfQ*] =

020k »01.n. Thus [8%) becomes

tw(E[Bi]) = o7 Y laf)* > Elby V] = oftr(AAx(E[B,-1))
J,k l

i1 (86)
—JMAMMMMOH@HMM%MM&OH%HMM)
k=1 k=1
which shows that ilLemmal[7] holds for: — 1, then it holds for:.
ThereforeLemma[7 holds for any: > 1, which concludes the proof. [ |

APPENDIXII

PrROOF OFTHEOREM[]

In this appendix, we first list the main steps of the proofTbéorem[I and then present the detailed
proof of each step. Note that the prooftdfeorem[I uses tools from the free probability theory introduced
in Appendix[]. The proof ofTheorem[ consists of the following four steps.

1) ObtainSg,gu(2).

2) UseSg,gu(2) to find Tg qu(2).

3) UseYq,qu(z) to obtaindI /dn.
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4) IntegratedI /dn to obtain itself.
« First Step: obtain Sg g (2)
Theorem 3: As k;,i = 0,..., N go to infinity with the same rate, the S-transform@f, G4 is given

by

N
Pi—1 1 z
Sanai(2) = Smony (2) [ | SmE M, _, ( > - (87)
oy (z+pic1) Pi—1

Proof: The proof is done by induction usingemmas(d [3, 2 First, we prove[(87) forV = 1. Note

that
GG =My, MM efmi (88)
therefore
Sa,qi(z) = Se,M,MzeIMIM, (%) , by Lemmal[ll
= Se.MomzeH (2)Svawm, (2) , by Lemma [2
= ZZ:% SM,MIe1e, (;Jf) Smrw, () , by Lemma [T

= zz—:_:i SMOM(I){ <zo> S(..)H(..)1 <ﬁ> SM{’Ml (Z) , by LemmaIZ

k1

= FuSuy (:) L Sy (:) . bylemmaB
k1 k1 %1 ko
= SM{{Ml (Z) Z—: Z'&Po SM HM, < ZO) , by Lemmaﬂl (89)

Now, we need to prove that if(87) holds fof = ¢, it also holds forN = ¢ + 1. Note that

Gg1GlL | = M 110,,1M,0,... MO MM oM ...e/MI'e], Ml . (90)
Therefore,
Sa,.an, (2) =5m,,, M (2)
= S@q+1M MHef+qu+qu+1 (Z) ' by Lemmaﬂl (91)

The empirical eigenvalue distribution of Wishart matri@®! converges almost surely to the Martenko-
Pastur law whose support is compact. Moreover, by assumptie empirical eigenvalue distribution of
MHAM;, i = 0,...,N + 1 converges to an asymptotic distribution with a compact sdpfhus, by

Lemma[5, the asymptotic eigenvalue distribution df, 0, . .. @fo has a compact support. Therefore
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Lemma[2 can be applied td_(91)to show that

S6q+1 G)é{+1 (Z)SM5+1MQ+1 (Z) ’ by Lernmm

Sa,.an, (2) =
z 4+ 1 z
= % SM,.MIO 0, (k—q> SMQHMQH(Z) , by Lemma [1
< + kq+1 kq+1
z+1 z z i
B 7SM M <T> S®q+1®q+1 <k—q> SMQ+1M4+1(Z) ! by Lemma 2
z+ kq+1 kg1 kgt1
z+1 z ¢ b 1 < 2 >
T | <—> I1- S | e ||
q a q - a; z + i—1 i—1700 i—1
z + kq+1 kq+1 i=1 v kq k?q k?q
kgt1
! ! S (2) , by Lemma[3
z), >
I
! kg+1
+1 By a e 1
z 2 z k z
- a2 s () s ()
ctpn g1 2+ 1 R/ =1 U 2 g Fumt
g+1 kia 1 .
k?q 1
=Szt v, () [T =25 — S me (r)
S a; z _|_ izl
i=1 Eqt1 kqt1
q+1 pi 1 .
=9 2 il T ( > . 92
MM )};[1 o (z4pia) MMy (92)
The proof is complete. |
« Second Step: uséSg g (2) to find Tq, g (z)
Theorem 4: Let us defineay 1 = 1. We have
T "
Pi GnGy
T, anl al Yot < ' (S’>. (93)
i+1 Pi

Proof: From [8T) it follows that

z z al pi—1 1 =Tl : ~
S H|\Z) = S H z = Pit Pi1 S < > 94
+1 GNGN( ) z+1 MNMN( )2131 a; Z+ pi-1 pil pil +1 TME M Pi—1 54
Using [57) in [[Q%), we obtain
1 . Pi—1 1 Z
TGNGg(Z) = MHMN TM M (pi—1> (95)
or, equivalently,
N
_ 1 Pi  ~ne Z
T a(2) = — =l <—> 96
GNGY (2) zNg aipr MEMA p 99
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Substitutingz = Tq g (s) in @8), Equation[(93) follows. This completes the proof. [ |
« Third Step: use Y, gu(2) to obtain dI /dn

Theorem 5: In the asymptotic regime, &, k1, ..., kx go to infinity while 2= — p;,i = 0,..., N,

kn
the derivative of the instantaneous mutual informationi‘ifserg by
dI
h; 97
dn po ln2 H 7
wherehg, hq, ..., hy are the solutions to the foIIowmg set &f + 1 equations
N
RN A;
hj=pE | ——— 1=0,...,N. (98)
jgo 4 ok A

The expectation in[{98) is oveh; whose probability distribution function is given &g, ()

(convention:ay4q = 1).

Proof:

First, we note that

I = k—logdet(HnGNGH)
0

kN

= —Zlog 1+ nAg,cz (i)
i=1

_ kv / log(l—i—n)\)dFkN 2 ()
k‘o GnNGY

1
0

1
- 5 / In(1 + g\ dFg, g (V) (99)

WhereFéN GH( ) is the (non-asymptotic) empirical eigenvalue distribatiof G yGE, that converges
almost-surely to the asymptotic empirical eigenvalueritistion g =, whose support is compact.
Indeed, the empirical eigenvalue distribution of Wishartrices ©,;0F converges almost surely to
the Mar€enko-Pastur law whose support is compact, and byngstion, fori € {0,...,N + 1} the
empirical eigenvalue distribution dv’M,; converges to an asymptotic distribution with a compact
support. Therefore, according tcemma [B, the asymptotic eigenvalue distribution 6yGX has a

compact support. Thieg function is continuous, thus bounded on the compact sughdite asymptotic
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eigenvalue distribution o6y G4. This enables the application of the bounded convergeremém to
obtain the almost-sure convergencel[inl (99).
It follows from (99) that

dI 1 A
—= = dFg, cn(\
dn poln2/1—|—7])\ avat (V)
1 —nA
= dF i (A
—porIn2 / = Fever )
1
= ——70 u(—m). 100
Ep—— Grai(—n) (100)
Let us denote
t = Tgygu(-n) (101)
t
9 = Yot <;> i=0,...,N (102)
and, for the sake of simplicity, let = py In 2. From [100), we have
t= —nozdI—oo. (103)
dn
Substitutings = —n in (@3) and using[(101) and (1102), it follows that
N 0
—ntN = g 104
K .11) ai+1 g ( )
Finally, from (102) and the very definition of in (56), we obtain
giA .
Substituting [(10B8) in[(104) and (105) yields
an\N X
N+1 _ v
_ Pl ; 106
o (o) =11 2 (106)
and
dIoo - QM _
_”<ad—n> —p,/l_gi)\dFMlaMi()\) i=0.....N. (107)
Letting ) )
() ()
Qi4+1 =1
it follows from (108) that
dle o
g = Hh (109)
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Using [108) and[(109) i (107), we obtain

N
—nh) .
—thjzpi/ = )hf\,aﬂ)\d Mon,(A) i=0,...,N (110)

or, equivalently,

N
RN A
I = Pi/idFM M, (A)

L. Li 4 phV A
7=0 Qit1
hVA;
= pB|——_ , =0,...,N. 111
12 af)jrl + ’I’]hNA ? ( )
This, along with equatior (109), complete the proof. [ |

« Fourth Step: integrate dI/dn to obtain I itself

The last step of the proof ofheorem[I is accomplished by computing the derivative bf, in (17)
with respect ton and showing that the derivative matchgs] (97). This shows (f[id) is one primitive
function of ‘g—;. Since primitive functions ofg—; differ by a constant, the constant was chosen such
that the mutual informatiori {17) is zero when SNRyoes to zerolim, .o I(7n) = 0.

We now proceed with computing the derivative .. If (L7)) holds, then we have (recall = py In 2)

N N
ol =Y piB [m <1 + %hfmiﬂ — N[ b (112)
; pi :
=0 =0
From [112) we have
N A, (hN + NnhN‘1h4> N NN
:Z:piE B (1 EERTA) —NUhi—Nn Zhinhj
=0 a+1 1=0 =0 j=0
) J#i
N N ’ N N
A; hN h, A; hN h
=N B | 4Ny SipE | | - NT[hi—-N —TTn
P el D DY merzired Rl | CRl] DIV 1

N N ;N
_ZHh +N77<Z Hh ~ N[ hi— N Z%th
i=0 i=0 " j=0

N
=1 % (113)

whereh, = ‘il—f;; and the third line is due td (18). Equatidn {97) immediataioivs from [113). This

completes the proof.
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APPENDIX I

PROOF OFTHEOREM[Z

In this appendix, we provide the proof dheorem[2 The proof of this theorem is based on [26,
Theorem H.1.h] that is reiterated iremma 4 Note that, [26, Theorem H.1.h] has been used before
to characterize the source precoder maximizing the avarageal information of single-user [18] and
multi-user [19] single-hop MIMO systems with covarianceotedge at source, and to obtain the relay
precoder maximizing the instantaneous mutual informatiba two-hop MIMO system with full CSI at
the relay [9]. We extend the results of [18], [19], [9] to stiie MIMO multi-hop relaying system of our
concern.

The proof consists of three following steps.

1/2
T,

. Step 1. Use the singular value decomposition (SVD)D,VH = Atl,ﬁlUfiHP,-Ur,iA and
show that unitary matricetJ; and V; impact the maximization of the average mutual information
through the power constraints only, while diagonal magibe affect both the mutual information
expression and the power constraints.

o Step 2: Represent the power constraint expression as a functio,oU;, V; and channel
correlation matrices only.

« Step 3: Show that the directions minimizing the trace in the powenstm@int are those given in

Theorem[Z regardless of the singular values containedin

Before detailing each step, we recall that the maximum aenautual information is given by

C 2 E [logdet(I;, + 7 GNGY)] (114)

and we define the conventions = 1, andC, o = I,. Note that the latter implies thdf, o = I;,, and

AT,O = Ik()'

o Step 1: clarify how the average mutual information depends o the transmit directions and
the transmit powers
Forie {1,...,N} we define
o] =Ue,U,, (115)

Since®; is zero-mean i.i.d. complex Gaussian, thus bi-unitariyairant, andU,.; and U, ; are unitary

matrices,®’ has the same distribution ;.
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Fori € {0,...,N — 1}, we consider the following SVD

1/2
UD, VI =A%,

1/2
UL, PU A, (116)
whereU;, V; are unitary matricedD; is a real diagonal matrix with non-negative diagonal eletsmiém
the non-increasing order of amplitude.
We now rewrite the average mutual information as a functibmatricesU;, V; and D;, in order
to take the maximization i (15) ovdd;, V; andD; instead ofP;. Using [115) and[(116) the average

mutual informationZ can be expressed in terms of matri®§ U;, V; andD; as

T £ E [log det(Iy, + 1 GNGY)]

_E [1og det(I, + 7 U, yAY O Uy Dy VI, ), ... U DV ©) UgD VY
VDUl e vipEul . el vy DY Ul e} A}/ﬁU )
(117)

®! being zero-mean i.i.d. complex Gaussian, multiplying itunitary matrices does not change its
distribution. Therefore®” = VHE®!U,_; has the same distribution @’ and the average mutual
information can be rewritten

T-R [logdet(IkN —|—77A1/2 /]</DN—1®/]<[_ Dle//DODHe//HD{{ @NH DH 1@//HA71"7/]\2[)

=E |logdet(I, +1 A5 @{@” i1} ®{D e/ AR
(118)
Therefore, the maximum average mutual information can ttenepresented as
C = max  E [logdet(Iy, +n Aly {@” i1} ®{D ey AN
Dian7Vz =N
(119)

tr(E[x;x]) < kP

Vie{0,...,N —1}
Expression[(118) shows that the average mutual informaficloes not depend on the matricEs and
V,, which determine the transmit directions at source and/selaut only depends on the singular values
contained in matrice®;. Nevertheless, as shown By (119), the maximum average iinfaemation C

depends on the matricds;, V,—and thus on the transmit directions— through the power tcaimss.

o Step 2: give the expression of the power constraints in funin of D;, U;, V; and channel

correlation matrices
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We show hereunder that the average power of transmittedlsigrat i-th relaying level is given by
i—1
tr(Exx!]) = aitr(P,C, P ] %tr(ct,k+1Pkcr,kPkH ). (120)
k
k=0

Proof: The average power of transmitted sigsalcan be written as

1 7
tr(Exx/]) = tr(B[(R){ArO: LA AT X {OF A1)
k=1 k=1
with
A; = P,C}/?
Ap =My, =C)2 PCY ke o, i1} (121)
2 ay
O‘ =
R ko

Applying Lemma[7 to tr(E{x;x’}) yields

tr(Bxix]) = tr(Cy1PoC,oP) H1 ka 1tr(Ct,k+1PkCT7kPkH ) j_"ltr(Picr,iP{f )
i_l’“ﬂ (122)
= atr(P,C P ] %tr(ct,kﬂpkcnkpf )
k=0 "k
which concludes the proof. [ |

Using [120) in the power constrainig (7), those constraiatsbe rewritten as a product of trace-factors:

tr(PoPé{) < koPo

i—1 (123)
aitr(PiCmPZH) H Z_ktr(ct,k-i-lPkCr,kPkH) S k‘ZPZ ' Vi € {1, e ,N — 1}.
k
k=0
In order to express (123) in function of matrickk, V,; andD;, we first rewrite [(116) as
P; = Ui A, [JUD VA PUT, (124)

and use[(124) in(123) to obtain

t2(P;CriPH) = 0(Upi A, [TUDVEAPUE, U AU U A PViDEURABUE )

= tr(A;}

t,z‘+1UiDz2UzH)

tr(Crp+1PLCriPfl) = tr(Dy DY)

= tr(D})
(125)
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where D? = D,D/ is a real diagonal matrix with non-negative diagonal elet®én non-increasing
order. This leads to the following expression of the powearsti@ints in function ofU;, D;

tr(A; 1 UoDgUY’) < koPo

kiP; (126)

aitr(A;} U, DUH) <  Vie{2,...,N—1}.

It was shown in Step 1 that matricd5; do not have an impact on the expression of the average mutual
informationZ (118), and surprisingly_ (126) now shows that matridésdo not have an impact on the
power constraints either. In fact, as can be observed ffd)(khe power constraints depend only on
matricesU; andD;. It should also be noticed that matr¥; has an impact on the power constraint of

the i-th relay only.

« Step 3: give the optimal transmit directions

To determine the optimal directions of transmission at seuwe applyLemmald to the source power
constraintIIIZIG)r(At‘,lonDgU({{) < koo, and conclude that for all choices of diagonal element®#f
the matrix U, that minimizes the tracer(AglonD%U({{) is Uy = I,. Therefore, the source precoder
becomes

Py = Uy A, "DV A *U = U, 1A, P DoV
(127)
= U1 AR VE.

This recalls the known resulf(27) in the single-hop MIMO &ashere the optimal precoding covariance

matrix at source was shown [18], [19] to be
Q* £ Exox{/] = PoP{| = U;1Aq- U/} (128)

Similarly, to determine the optimal direction of transnmssat :-th relaying level, we applyemma @4
to thei-th power constraint: for all choices of diagonal elemerftdd, the matrixU; that minimizes

the tracetr(A,},, U;D?UH) is U, = I;,. This leads to the precoding matrix at level

P; = Uy A, [iDiVIAPUM, (129)
Now since matriceV/;,i € {0,..., N — 1} have an impact neither on the expression of the average

mutual information nor on the power constraints, they carchi@sen to be equal to identity; = 1,i €

{0,...,N — 1} . This leads to the (non-unique but simple) optimal precgdimatrices

Po=U;1Ap, (130)

H
P, =UinAp U
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with the diagonal matriced p, = At_,ilﬁD,-A;ﬂ.l/2 containing the singular values &f;.
This completes the proof of Theordm 2. [ |
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Instantaneous Mutual Information vs SNR, K = 10 antennas, r=0
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Fig. 2. Uncorrelated case: Asymptotic Mutual Informatiorddnstantaneous Mutual Information versus SNR, with K = 10

antennas, for single-hop MIMO, 2 hops, and 3 hops
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Instantaneous Mutual Information vs SNR, K = 100 antennas, r =0
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Fig. 3. Uncorrelated case: Asymptotic Mutual Informatiorddnstantaneous Mutual Information versus SNR, with K = 100

antennas, for single-hop MIMO, 2 hops, and 3 hops
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Instantaneous Mutual Information vs Number Antennas, SNR =10dB,r=0
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Fig. 4. Uncorrelated case: Asymptotic Mutual Informatiorddnstantaneous Mutual Information verslds;, at SNR=10 dB,

for single-hop MIMO, 2 hops, and 3 hops
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Instantaneous Mutual Information vs SNR, K = 10 antennas, r = 0.3
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Fig. 5. One-sided exponential correlation case: Asymptitiitual Information and Instantaneous Mutual Informati@nsus
SNR, with K = 10 antennas, r=0.3, for single-hop MIMO, 2 hoasd 3 hops
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Instantaneous Mutual Information vs SNR, K = 100 antennas, r = 0.3
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Fig. 6. One-sided exponential correlation case: Asymptitiitual Information and Instantaneous Mutual Informati@nsus
SNR, with K = 100 antennas, r=0.3, for single-hop MIMO, 2 hogsd 3 hops
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Instantaneous Mutual Information vs Number Antennas, SNR =10 dB, r = 0.3
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Fig. 7. One-sided exponential correlation case: Asymptititual Information and Instantaneous Mutual Informati@nsus
K, at SNR=10 dB, r=0.3, for single-hop MIMO, 2 hops, and 3 hops
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