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Asymptotic Capacity and Optimal Precoding in

MIMO Multi-Hop Relay Networks
Nadia Fawaz, Keyvan Zarifi, Merouane Debbah, David Gesbert

Abstract

A multi-hop relaying system is analyzed where data sent by a multi-antenna source is relayed by

successive multi-antenna relays until it reaches a multi-antenna destination. Assuming correlated fading

at each hop, each relay receives a faded version of the signalfrom the previous level, performs linear

precoding and retransmits it to the next level. Using free probability theory and assuming that the

noise power at relaying levels— but not at destination— is negligible, the closed-form expression of the

asymptotic instantaneous end-to-end mutual information is derived as the number of antennas at all levels

grows large. The so-obtained deterministic expression is independent from the channel realizations while

depending only on channel statistics. Moreover, it also serves as the asymptotic value of the average

end-to-end mutual information. The optimal singular vectors of the precoding matrices that maximize

the average mutual information with finite number of antennas at all levels are also provided. It turns

out that the optimal precoding singular vectors are alignedto the eigenvectors of the channel correlation

matrices. Thus they can be determined using only the known channel statistics. As the optimal precoding

singular vectors are independent from the system size, theyare also optimal in the asymptotic regime.

Index Terms
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Fig. 1. Multi-level Relaying System

I. INTRODUCTION

Relay communication systems have recently attracted much attention due to their potential to substan-

tially improve the signal reception quality when the directcommunication link between the source and

the destination is not reliable. Due to its major practical importance as well as its significant technical

challenge, deriving the capacity - or bounds on the capacity- of various relay communication schemes

is growing to an entire field of research. Of particular interest is the derivation of capacity bounds for

systems in which the source, the destination, and the relaysare equipped with multiple antennas.

Several works have focused on the capacity of two-hop relay networks, such as [1]–[7]. Assuming fixed

channel conditions, lower and upper bounds on the capacity of the two-hop multiple-input multiple output

(MIMO) relay channel were derived in [1]. In the same paper, bounds on the ergodic capacity were also

obtained when the communication links undergo i.i.d. Rayleigh fading. The capacity of a MIMO two-hop

relay system was studied in [2] in the asymptotic case where the number of relay nodes grows large

while the number of transmit and receive antennas remain constant. The scaling behavior of the capacity

in two-hop amplify-and-forward (AF) networks was analyzedin [3]–[5] when the numbers of single-

antenna sources, relays and destinations grow large. The achievable rates of a two-hop code-division

multiple-access (CDMA) decode-and-forward (DF) relay system were derived in [8] when the numbers

of transmit antennas and relays grow large. In [6], an ad hoc network with several source-destination pairs

communicating through multiple AF-relays was studied and an upperbound on the asymptotic capacity

in the low Signal-to-Noise Ratio (SNR) regime was obtained in the case where the numbers of source,

relay and destination nodes grow large. The scaling behavior of the capacity of a two-hop MIMO relay

channel was also studied in [7] for bi-directional transmissions. In [9] the optimal relay precoding matrix

was derived for a two-hop relay system with perfect knowledge of the source-relay and relay-destination
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channel matrices at the relay.

Following the work in [10] on the asymptotic eigenvalue distribution of concatenated fading channels,

several analysis were proposed for more general multi-hop relay networks, including [11]–[15]. In

particular, considering multi-hop MIMO AF networks, the tradeoffs between rate, diversity, and network

size were analyzed in [11], and the diversity-multiplexingtradeoff was derived in [12]. The asymptotic

capacity of multi-hop MIMO AF relay systems was obtained in [13] when all channel links experience

i.i.d. Rayleigh fading while the number of transmit and receive antennas, as well as the number of relays

at each hop grow large with the same rate. Finally hierarchical multi-hop MIMO networks were studied

in [15] and the scaling laws of capacity were derived when thenetwork density increases.

In this paper, we study anN -hop MIMO relay communication system wherein data transmission from

k0 source antennas tokN destination antennas is made possible throughN − 1 relay levels, each of

which are equipped withki, i = 1, . . . , N − 1 antennas. In this transmission chain withN + 1 levels

it is assumed that the direct communication link is only viable between two adjacent levels: each relay

receives a faded version of the multi-dimensional signal transmitted from the previous level and, after

linear precoding, retransmits it to the next level. We consider the case where all communication links

undergo Rayleigh flat fading and the fading channels at each hop (between two adjacent levels) may

be correlated while the fading channels of any two differenthops are independent. We assume that the

channel at each hop is block-fading and that the channel coherence-time is long enough — with respect

to codeword length — for the system to be in the non-ergodic regime. As a consequence, the channel is

a realization of a random matrix that is fixed during a coherence block, and the instantaneous end-to-end

mutual information between the source and the destination is a random quantity.

Using tools from the free probability theory and assuming that the noise power at the relay levels, but

not at the destination, is negligible, we derive a closed-form expression of the asymptotic instantaneous

end-to-end mutual information between the source input andthe destination output as the number of

antennas at all levels grows large. This asymptotic expression is shown to be independent from the channel

realizations and to only depend on the channel statistics. Therefore, as long as the statistical properties

of the channel matrices at all hops do not change, the instantaneous mutual information asymptotically

converges to the same deterministic expression for any arbitrary channel realization. This property has

two major consequences. First, the mutual information in the asymptotic regime is not a random variable

any more but a deterministic value representing an achievable rate. This means that when the channel is

random but fixed during the transmission and the system size is large enough, the capacity in the sense

of Shannon is not zero, on the contrary to the capacity of small size systems [16, Section 5.1]. Second,
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given the stationarity of channel statistical properties,the asymptotic instantaneous mutual information

obtained in the non-ergodic regime also serves as the asymptotic value of the average end-to-end mutual

information between the source and the destination. Note that the latter is the same as the asymptotic

ergodic end-to-end mutual information that would be obtained if the channel was an ergodic process.

We also obtain the singular vectors of the optimal precodingmatrices that maximize the average mutual

information of the system with a finite number of antennas at all levels. It is proven that the singular

vectors of the optimal precoding matrices are also independent from the channel realizations and can

be determined only using statistical knowledge of channel matrices at source and relays. We show that

the so-obtained singular vectors are also optimal in the asymptotic regime of our concern. The derived

asymptotic mutual information expression and optimal precoding singular vectors set the stage for our

future work on obtaining the optimal power allocation, or, equivalently, finding the optimal precoding

singular values. Finally, we apply the aforementioned results on the asymptotic mutual information and

the structure of the optimal precoding matrices to several communications scenarios with different number

of hops, and types of channel correlation.

The rest of the paper is organized as follows. Notations and the system model are presented in Section II.

The end-to-end instantaneous mutual information in the asymptotic regime is derived in Section III, while

the optimal singular vectors of the precoding matrices are obtained in Section IV. Theorems derived in

Sections III and IV are applied to several MIMO communication scenarios in Section V. Numerical

results are provided in Section VI and concluding remarks are drawn in Section VII.

II. SYSTEM MODEL

Notation: log denotes the logarithm in base2 while ln is the logarithm in basee. u(x) is the unit-

step function defined byu(x) = 0 if x < 0 ; u(x) = 1 if x ≥ 0. K(m) ,
∫ π

2

0
dθ√

1−m sin2 θ
is the

complete elliptic integral of the first kind [17]. Matrices and vectors are represented by boldface upper

and lower cases, respectively.AT , A∗, AH stand for the transpose, the conjugate and the transpose

conjugate ofA, respectively. The trace and the determinant ofA are respectively denoted bytr(A) and

det(A). λA(1), . . . , λA(n) represent the eigenvalues of ann × n matrix A. The operator norm ofA

is defined by‖A‖ ,
√

maxi λAHA(i), while the Fröbenius norm ofA is ‖A‖F ,
√

tr(AHA). The

(i, j)-th entry of matrixAk is written a
(k)
ij . IN is the identity matrix of sizeN . E[·] is the statistical

expectation operator,H(X) the entropy of a variableX, andI(X;Y ) the mutual information between

variablesX and Y . Fn
Ω(·) is the empirical eigenvalue distribution of ann × n square matrixΩ with

real eigenvalues, whileFΩ(·) and fΩ(·) are respectively its asymptotic eigenvalue distribution and its
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eigenvalue probability density function when its sizen grows large. We denote the matrix product by
⊗N

i=1 Ai = A1A2 . . .AN . Note that the matrix product is not commutative, thereforethe order of the

index i in the product is important and in particular(
⊗N

i=1 Ai)
H =

⊗1
i=N AH

i .

A. Multi-hop MIMO relay network

Consider Fig. 1 that shows a multi-hop relaying system withk0 source antennas,kN destination

antennas andN − 1 relaying levels. Thei−th relaying level is equipped withki antennas. We assume

that the noise power is negligible at all relays while at the destination the noise power is such that

E[zzH ] = σ2I =
1

η
I (1)

wherez is the circularly-symmetric zero-mean i.i.d. Gaussian noise vector at the destination. The simpli-

fying noise-free relay assumption is a first step towards thefuture information-theoretic study of the more

complex noisy relay scenario. Note that several other authors have implicitly used a similar noise-free

relay assumption. For instance, in [12] a multi-hop AF relaynetwork is analyzed and it is proved that

the resulting colored noise at the destination can be well-approximated by white noise in the high SNR

regime. In a multi-hop MIMO relay system, it can be shown thatthe white-noise assumption would be

equivalent to assuming negligible noise at relays, but non-negligible noise at the destination.

Throughout the paper, we assume that the correlated channelmatrix at hopi ∈ {1, . . . , N} can be

represented by the Kronecker model

Hi , C
1/2
r,i ΘiC

1/2
t,i (2)

whereCt,i,Cr,i are respectively the transmit and receive correlation matrices,Θi are zero-mean i.i.d.

Gaussian matrices independent over indexi, with variance of the(k, l)-th entry

E[|θ(i)
kl |2] =

ai

ki−1
i = 1, . . . , N (3)

whereai = d−β
i represents the pathloss attenuation withβ and di denoting the pathloss exponent and

the length of thei-th hop respectively. We also assume that channels matricesHi, i = 1, . . . , N remain

constant during a coherence block of lengthL and vary independently from one channel coherence block

to the next.

Note that the i.i.d. Rayleigh fading channel is obtained from the above Kronecker model when matrices

Ct,i andCr,i are set to identity.

Within one channel coherence block, the signal transmittedby the k0 source antennas at timel ∈
{0, . . . , L− 1} is given by the vectorx0(l) = P0y0(l− 1), whereP0 is the source precoding matrix and
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y0 is a zero-mean random vector with

E{y0y
H
0 } = Ik0

(4)

which implies that

E{x0x
H
0 } = P0P

H
0 . (5)

Assuming that relays work in full-duplex mode, at timel ∈ {0, . . . , L − 1} the relay at leveli uses

a precoding matrixPi to linearly precode its received signalyi(l − 1) = Hixi−1(l − 1) and form its

transmitted signal

xi(l) = Piyi(l − 1) i = 0, . . . , N − 1 (6)

The precoding matrices at source and relaysPi, i = 0, . . . , N − 1 are subject to the per-node long-term

average power constraints

tr(E[xix
H
i ]) ≤ kiPi i = 0, . . . , N − 1. (7)

The fact thatyi = Hixi−1, along with the varianceE[|θ(i)
kl |2] = ai

ki−1
of Hi elements and with the power

constrainttr(E[xi−1x
H
i−1]) ≤ ki−1Pi−1 on xi−1, render the system of our concern equivalent to a system

whose random channel elementsθ
(i)
kl would be i.i.d. with varianceai and whose power constraint on

transmitted signalxi−1 would be finite and equal toPi−1. Having finite transmit power at each level,

this equivalent system shows that adding antennas, i.e. increasing the system dimension, does not imply

increasing the transmit power. Nonetheless, in order to userandom matrix theory tools to derive the

asymptotic instantaneous mutual information in Section III, the variance of random channel elements is

required to be normalized by the size of the channel matrix. That is why the normalized model— channel

variance (3) and power constraint (7)— was adopted.

It should also be noticed that choosing diagonal precoding matrices would reduce the above scheme

to the simpler AF relaying strategy.

As can be observed from Fig. 1, the signal received at the destination at timel is given by

yN (l) = HNPN−1HN−1PN−2 . . .H2P1H1P0y0(l − N) + z

= GNy0(l − N) + z (8)

where the end-to-end equivalent channel is

GN , HNPN−1HN−1PN−2 . . .H2P1H1P0

= C
1/2
r,NΘNC

1/2
t,NPN−1C

1/2
r,N−1ΘN−1C

1/2
t,N−1PN−2 . . .C

1/2
r,2 Θ2C

1/2
t,2 P1C

1/2
r,1 Θ1C

1/2
t,1 P0. (9)
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Let us introduce the matrices

M0 = C
1/2
t,1 P0

Mi = C
1/2
t,i+1PiC

1/2
r,i i = 1, . . . , N − 1

MN = C
1/2
r,N . (10)

Then (9) can be rewritten as

GN = MNΘNMN−1ΘN−1 . . .M2Θ2M1Θ1M0. (11)

For the sake of clarity, the dimensions of the matrices/vectors involved in our analysis are given below.

xi : ki × 1 yi : ki × 1 Pi : ki × ki

Hi : ki × ki−1 Cr,i : ki × ki Ct,i : ki−1 × ki−1

Θi : ki × ki−1 Mi : ki × ki

In the sequel, we assume that the channel coherence time is large enough to consider the non-

ergodic case and consequently, time indexl can be dropped. Finally, we define three channel-knowledge

assumptions:

• AssumptionAs, local statistical knowledge at source: the source has onlystatistical channel state

information (CSI) of its forward channelH1, i.e. the source knows the transmit correlation matrix

Ct,1.

• AssumptionAr, local statistical knowledge at relay: at theith relaying level,i ∈ {1, . . . , N − 1},

only statistical CSI of the backward channelHi and forward channelHi+1 are available, i.e. relay

i knows the receive correlation matrixCr,i and the transmit correlation matrixCt,i+1.

• AssumptionAd, end-to-end perfect knowledge at destination: the destination perfectly knows the

end-to-end equivalent channelGN .

Throughout the paper, assumptionAd is always made. AssumptionAd is the single assumption on

channel-knowledge necessary to derive the asymptotic mutual information in Section III, while the two

extra assumptionsAs and Ar are also necessary in Section IV to obtain the singular vectors of the

optimal precoding matrices.

B. Mutual Information

Consider the channel realizationGN in one channel coherence block. Under AssumptionAd, the

instantaneous end-to-end mutual information between channel inputy0 and channel output(yN ,GN ) in
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this channel coherence block is [16]

I(y0; yN |GN = GN ) = H(yN |GN = GN ) −H(yN |y0, GN = GN )
︸ ︷︷ ︸

H(z)

= H(yN |GN = GN ) −H(z)

(12)

The entropy of the noise vector is known to beH(z) = log det(πe
η IkN

). Besides,y0 is zero-mean with

varianceE[y0y
H
0 ] = Ik0

, thus givenGN , the received signalyN is zero-mean with varianceGNGH
N +

1
η IkN

. By [16, Lemma 2], we have the inequalityH(yN |GN = GN ) ≤ log det(πeGNGH
N + πe

η IkN
), and

the entropy is maximized when the latter inequality holds with equality. This occurs ifyN is circularly-

symmetric complex Gaussian, which is the case wheny0 is circularly-symmetric complex Gaussian.

Therefore throughout the rest of the paper we considery0 to be zero-mean a circularly-symmetric complex

Gaussian vector. As such, the instantaneous mutual information (12) can be rewritten as

I(y0; yN |GN = GN ) = log det(IkN
+ ηGNGH

N ). (13)

Under AssumptionAd, the average end-to-end mutual information between channel input y0 and

channel output(yN ,GN ) is

I(y0; (yN , GN )) = I(y0; yN |GN ) + I(y0;GN )
︸ ︷︷ ︸

0

= I(y0; yN |GN )

= EGN
[I(y0; yN |GN = GN )]

= EGN
[log det(IkN

+ ηGNGH
N )].

(14)

To optimize the system, we are left with finding the precodersPi that maximize the end-to-end mutual

information (14) subject to power constraints (7). In otherwords, we need to find the maximum average

end-to-end mutual information

C , max
{Pi/tr(E[xix

H
i ])≤kiPi}i∈{0,...,N−1}

EGN

[
log det(IkN

+ η GNGH
N )
]

(15)

Note that the non-ergodic regime is considered, therefore (14) represents only an average mutual in-

formation over channel realizations, and the solution to (15) does not necessarily represent the channel

capacity in the Shannon sense when the system size is small.
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III. A SYMPTOTIC MUTUAL INFORMATION

In this section, we consider the instantaneous mutual information per source antenna between the

source and the destination

I ,
1

k0
log det(IkN

+ ηGNGH
N ) (16)

and derive its asymptotic value as the number of antennask0, k1, . . . , kN grow large. The following

theorem holds.

Theorem 1: For the system described in section II, assume that

• channel knowledge assumptionAd holds;

• k0, k1, . . . , kN → ∞ while ki

kN
→ ρi for i = 0, . . . , N ;

• for i = 0, . . . , N , aski → ∞, MH
i Mi has a limit eigenvalue distribution with a compact support.

Then the instantaneous mutual information per source antenna I converges almost surely to

I∞ =
1

ρ0

N∑

i=0

ρiE

[

log

(

1 + η
ai+1

ρi
hN

i Λi

)]

− N
log e

ρ0
η

N∏

i=0

hi (17)

whereaN+1 = 1 by convention,h0, h1, . . . , hN are the solutions of the system ofN + 1 equations

N∏

j=0

hj = ρiE

[

hN
i Λi

ρi

ai+1
+ ηhN

i Λi

]

i = 0, . . . , N (18)

and the expectationE[·] in (17) and (18) is overΛi whose distribution is given by the asymptotic

eigenvalue distributionFMH
i Mi

(λ) of MH
i Mi.

The detailed proof ofTheorem 1 is presented in Appendix II.

We would like to stress that (17) holds for any arbitrary set of precoding matricesPi, i = 0, . . . , N−1,

if MH
i Mi has a compactly supported asymptotic eigenvalue distribution when the system dimensions

grow large. We would like to point out that the power constraints on signals transmitted by the source

or relays are not sufficient to guarantee the boundedness of the eigenvalues ofMH
i Mi. In fact, as

(123) in Appendix III shows, in the asymptotic regime the power constraints impose upper-bounds

on the product of first-order moment of the eigenvalues of matrices PiCr,iP
H
i and MH

k Mk— in-

deed limki→∞
1
ki

tr(PiCr,iP
H
i ) = E[λPiCr,iP

H
i
] and limkk→∞

1
kk

tr(Ct,k+1PkCr,kP
H
k ) = E[Λk]. Un-

fortunately, these upper-bounds do not prevent the eigenvalue distribution ofMH
i Mi from having an

unbounded support. Thus, the assumption that matricesMH
i Mi have a compactly supported asymptotic

eigenvalue distribution is a priori not an intrinsic property of the system model, and it was necessary to

make that assumption in order to useLemma 2 to proveTheorem 1.
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Given a set of precoding matrices, it can be observed from (17) and (18) that the asymptotic expression

is a deterministic value that depends only on channel statistics and not on a particular channel realization.

In other words, for a given set of precoding matrices, as longas the statistical properties of the channel

matrices do not change, the instantaneous mutual information always converges to the same deterministic

achievable rate, regardless of the channel realization. Thus, as the numbers of antennas at all levels grow

large, the instantaneous mutual information is not a randomvariable anymore and the precoding matrices

maximizing the asymptotic instantaneous mutual information can be found based only on knowledge of

the channel statistics, without requiring any informationregarding the instantaneous channel realizations.

This further means that when the channel is random but fixed during the transmission and the system

size grows large enough, the Shannon capacity is not zero anymore, on the contrary to the capacity of

small-size systems [16, Section 5.1].

Moreover, given the stationarity of channel statistical properties, the instantaneous mutual information

converges to the same deterministic expression for any arbitrary channel realization. Therefore, the

asymptotic instantaneous mutual information (17) obtained in the non-ergodic regime also represents

the asymptotic value of the average mutual information, whose expression is the same as the asymptotic

ergodic end-to-end mutual information that would be obtained if the channel was an ergodic process.

It should also be mentioned that, according to the experimental results illustrated in Section VI, the

system under consideration behaves like in the asymptotic regime even when it is equipped with a

reasonable finite number of antennas at each level. Therefore, (17) can also be efficiently used to evaluate

the instantaneous mutual information of a finite-size system.

IV. OPTIMAL TRANSMISSION STRATEGY AT SOURCE AND RELAYS

In previous section, the asymptotic instantaneous mutual information (17), (18) was derived considering

arbitrary precoding matricesPi, i ∈ {0, . . . , N − 1}. In this section, we analyze the optimal linear

precoding strategiesPi, i ∈ {0, . . . , N − 1} at source and relays that allow to maximize the average

mutual information. We characterize the optimal transmit directions determined by the singular vectors

of the precoding matrices at source and relays, for a system with finite k0, k1, . . . , kN . It turns out that

those transmit direction are also the ones that maximize theasymptotic average mutual information. As

explained in Section III, in the asymptotic regime, the average mutual information and the instantaneous

mutual information have the same asymptotic value, therefore the singular vectors of the precoding

matrices maximizing the asymptotic average mutual information are also optimal for the asymptotic

instantaneous mutual information (17).
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In future work, using the results on the optimal directions of transmission (singular vectors ofPi) and

the asymptotic mutual information (17)–(18), we intend to derive the optimal power allocation (singular

values ofPi) that maximize the asymptotic instantaneous/average mutual information (17) using only

statistical knowledge of the channel at transmitting nodes.

The main result of this section is given by the following theorem:

Theorem 2: Consider the system described in Section II. Fori ∈ {1, . . . , N} let Ct,i = Ut,iΛt,iU
H
t,i

and Cr,i = Ur,iΛr,iU
H
r,i be the eigenvalue decompositions of the correlation matrices Ct,i and Cr,i,

whereUt,i andUr,i are unitary andΛt,i andΛr,i are diagonal, with their respective eigenvalues ordered

in decreasing order. Then, under channel-knowledge assumptions As, Ar and Ad, the optimal linear

precoding matrices that maximize the average mutual information under power constraints (7) can be

written as

P0 = Ut,1ΛP0

Pi = Ut,i+1ΛPi
UH

r,i , for i ∈ {1, . . . , N − 1}
(19)

whereΛPi
are diagonal matrices with non-negative real diagonal elements. Moreover, the singular vectors

of the precoding matrices (19) are also the ones that maximize the asymptotic average mutual information.

Since the asymptotic average mutual information has the same value as the asymptotic instantaneous

mutual information, the singular vectors of the precoding matrices (19) are also optimal for the asymptotic

instantaneous mutual information.

For the proof ofTheorem 2, the reader is referred to Appendix III.

Theorem 2 indicates that to maximize the average mutual information

• the source should align the eigenvectors of the transmit covariance matrixQ = P0P
H
0 to the

eigenvectors of the transmit correlation matrixCt,1 of the first-hop channelH1. This alignment

requires only local statistical channel knowledgeAs. Note that similar results were previously

obtained for both single-user [18] and multi-user [19] single-hop (without relays) MIMO system

with covariance knowledge at the source.

• relay i should align the right singular vectors of its precoding matrix Pi to the eigenvectors of the

receive correlation matrixCr,i, and the left singular vectors ofPi to the eigenvectors of the transmit

correlation matrixCt,i+1. These alignments require only local statistical knowledge Ar.

Moreover, it follows fromTheorem 2 that the optimization ofPi can be divided into two decoupled

problems: optimizing the transmit directions—singular vectors— on one hand, and optimizing the transmit

powers—singular values— on the other hand.
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We would like to draw the reader’s attention to the fact that the proof of this theorem does not rely on

the expression of the asymptotic mutual information given in (17). In fact,Theorem 2 is first proved in

the non-asymptotic regime for an arbitrary set of{ki}i∈{0,...,N}. As such, regardless of the system size,

the singular vectors of the precoding matrices should always be aligned to the eigenvectors of the channel

correlation matrices to maximize the average mutual information. In particular, the singular vectors of

the precoding matrices that maximize the asymptotic average mutual information are also aligned to the

eigenvectors of channel correlation matrices as in (19). Asexplained in Section III, the instantaneous and

the average mutual informations have the same value in the asymptotic regime. Therefore, the singular

vectors given in (19) are also those that maximize the asymptotic instantaneous mutual information.

V. A PPLICATION TO MIMO COMMUNICATION SCENARIOS

In this section,Theorem 1 andTheorem 2 are applied to four different communication scenarios. In

the first two scenarios, the special case of non-relay assisted MIMO (N=1) without path-loss (a1 = 1) is

considered, and we show how (17) boils down to known results for the MIMO channel with or without

correlation. In the third and fourth scenarios, a multi-hopMIMO system is considered and the asymptotic

mutual information is developed in the uncorrelated and exponential correlation cases respectively.

A. Uncorrelated single-hop MIMO with statistical CSI at source

Consider a simple single-hop uncorrelated MIMO system withthe same number of antennas at source

and destination i.e.ρ0 = ρ1 = 1, and an i.i.d. Rayleigh fading channel i.e.Ct,1 = Cr,1 = I. Assuming

equal power allocation at source antennas, the source precoder isP0 =
√
P0I. AsM0 = C

1/2
t,1 P0 =

√
P0I

andM1 = C
1/2
r,1 = I, we have that

dFMH
0 M0

(λ) = δ (λ − P0) dλ

dFMH
1 M1

(λ) = δ(λ − 1)dλ.

(20)

Using the distributions in (20) to compute the expectationsin (17) yields

I∞ =
1

ρ0

N∑

i=0

ρiE

[

log

(

1 +
η

ρi
hN

i Λi

)]

− N
log e

ρ0
η

N∏

i=0

hi

= log (1 + ηh0P0) + log(1 + ηh1) − log e η h0 h1

(21)

where, according to (18),h0 andh1 are the solutions of the system of two equations

h0 =
1

1 + ηh1

h1 =
P0

1 + ηh0P0

(22)
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that are given by

h0 =
2

1 +
√

1 + 4ηP0

h1 =
−1 +

√
1 + 4ηP0

2η
.

(23)

Using (23) in (21), we obtain

I∞ = 2 log

(
1 +

√
1 + 4ηP0

2

)

− log e

4ηP0

(√

1 + 4ηP0 − 1
)2

. (24)

It can be observed that the deterministic expression (24) depends only on the system characteristics

and is independent from the channel realizations. Moreover, equal power allocation is known to be the

capacity-achieving power allocation for a MIMO i.i.d. Rayleigh channel with statistical CSI at source

[20, Section 3.3.2], [16]. As such, the asymptotic mutual information (24) also represents the asymptotic

capacity of the system. We should also mention that (24) is similar to the expression of the asymptotic

capacity per dimension previously derived in [20, Section 3.3.2] for the MIMO Rayleigh channel with

equal number of transmit and receive antennas and statistical CSI at the transmitter.

B. Correlated single-hop MIMO with statistical CSI at source

In this example, we consider the more general case of correlated MIMO channel with separable

correlation:H1 = C
1/2
r,1 Θ1C

1/2
t,1 . Let us denote the eigenvalue decomposition ofCt,1 as

Ct,1 = Ut,1Λt,1U
H
t,1 (25)

whereΛt,1 is a diagonal matrix whose diagonal entries are the eigenvalues ofCt,1 in the non-increasing

order and the unitary matrixUt,1 contains the corresponding eigenvectors. Defining the transmit covari-

ance matrix

Q , E
[
x0x

H
0

]
= P0P

H
0 , (26)

it has been shown [18] that the capacity-achieving matrixQ⋆ is given by

Q⋆ = Ut,1ΛQ⋆UH
t,1 (27)

whereΛQ⋆ is a diagonal matrix containing the capacity-achieving power allocation. UsingTheorem 1

along with (25) and (27), it can be readily shown that the asymptotic capacity per dimension is equal to

C = E[log(1 +
η

ρ0
Λ0h0)] +

1

ρ0
E[log(1 + ηΛ1h1)] −

log e

ρ0
η h0h1 (28)
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whereh0 andh1 are the solutions of the system

h0 = E

[
Λ1

1 + ηΛ1h1

]

h1 = E

[

Λ0

1 + η
ρ0

Λ0h0

] (29)

and the expectations are overΛ0 and Λ1 whose distributions are given by the asymptotic eigenvalue

distributions ofΛt,1ΛQ⋆ andCr, respectively. It should be mentioned that an equivalent expression1 was

obtained in [20, Theorem 3.7] for the capacity of the correlated MIMO channel with statistical CSI at

transmitter.

C. Uncorrelated multi-hop MIMO with statistical CSI at source and relays

In this example, we consider an uncorrelated multi-hop MIMOsystem, i.e. all correlation matrices

are equal to identity. Then byTheorem 2 the optimal precoding matrices should be diagonal. Assuming

equal power allocation at source and relays, the precoding matrices are of the formPi = αiIki
, where

αi is real positive and chosen to respect the power constraints.

Using the power constraint expression (123) in Appendix III, it can be shown by induction oni that

the coefficientsαi in the uncorrelated case are given by

α0 =
√

P0

αi =

√

Pi

aiPi−1
∀i ∈ {1, . . . , N − 1}

αN = 1.

(31)

Then the asymptotic mutual information for the uncorrelated multi-hop MIMO system with equal

power allocation is given by

I∞ =

N∑

i=0

ρi

ρ0
log

(

1 +
ηhN

i ai+1α
2
i

ρi

)

− N
log e

ρ0
η

N∏

i=0

hi (32)

1The small differences between (28) and the capacity expression in [20, Theorem 3.7] are due to different normalization

assumptions in [20]. In particular (28) is the mutual information per source antenna while the expression in [20] is the capacity

per receive antenna. The equivalence between [20, Theorem 3.7] and (28) is obtained according to the following notation

equivalence ({ [20]-notation} ∼ {(28)-notation}):

C ∼ ρ0I∞ β ∼ ρ0 SNR ∼ P0η Γ ∼
h0

ρ0

Υ ∼
h1

P0

ΛR ∼ Λ1 , both with distribution given by the eigenvalue distribution of Cr

Λ ∼
Λ0

P0

, both with distribution given by the eigenvalue distribution of Λt,1ΛQ⋆/P0

(30)
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whereh0, h1, . . . , hN are the solutions of the system ofN + 1 multivariate polynomial equations

N∏

j=0

hj =
hN

i α2
i ai+1

1 +
ηhN

i ai+1α2
i

ρi

i = 0, . . . , N. (33)

Note that the asymptotic mutual information is a deterministic value depending only on a few system

characteristics: signal powerPi, noise power1/η, pathlossai, number of hopsN and ratio of the number

of antennasρi.

D. Exponentially correlated multi-hop MIMO with statistical CSI at source and relays

In this example, the asymptotic mutual information (17) is developed in the case of exponential

correlation matrices and precoding matrices with optimal singular vectors.

Optimal precoding directions: For i ∈ {1, . . . , N}, the eigenvalue decompositions of channel correlation

matricesCt,i andCr,i can be written as

Ct,i = Ut,iΛt,iU
H
t,i

Cr,i = Ur,iΛr,iU
H
r,i

(34)

whereUt,i andUr,i are unitary, andΛt,i andΛr,i are diagonal with their respective eigenvalues ordered in

decreasing order. FollowingTheorem 2, we consider precoding matrices of the formPi = Ut,i+1ΛPi
UH

r,i,

i.e. the singular vectors ofPi are optimally aligned to the eigenvectors of channel correlation matrices.

Consequently, we can rewrite matricesMH
i Mi (10) as

MH
0 M0 = UH

t,1Λ
2
P0

Λt,1Ut,1

MH
i Mi = UH

r,iΛr,iΛ
2
Pi

Λt,i+1Ur,i i = 1, . . . , N − 1

MH
NMN = UH

r,NΛr,NUr,N .

(35)

Thus, the eigenvalues of matricesMH
i Mi are contained in the following diagonal matrices

Λ0 = Λ2
P0

Λt,1

Λi = Λr,iΛ
2
Pi

Λt,i+1 i = 1, . . . , N − 1

ΛN = Λr,N .

(36)

The asymptotic mutual information, given by (17) and (18), involves expectations of functions ofΛi

whose distribution is given by the asymptotic eigenvalue distribution FMH
i Mi

(λ) of MH
i Mi. Equation

(36) shows that a functiong1(Λi) can be written as a functiong2(Λ
2
Pi

, Λr,i, Λt,i+1), where the variables

Λ2
Pi

, Λr,i, andΛt,i+1 are respectively characterized by the asymptotic eigenvalue distributionsFPH
i Pi

(λ),

FCr,i
(λ), and FCt,i+1

(λ) of matricesPH
i Pi , Cr,i and Ct,i+1 respectively. Therefore expectations in
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(17) and (18) can be computed using the asymptotic joint distribution of (Λ2
Pi

, Λr,i, Λt,i+1) instead of

the distributionFMH
i Mi

(λ). To simplify notations, we rename the variables as follows

X = Λ2
Pi

Y = Λr,i Z = Λt,i+1. (37)

Then, the expectation of a functiong1(Λi) can be written

E[g1(Λi)] = E[g2(X,Y,Z)] =

∫

z

∫

y

∫

x
g2(x, y, z)fX,Y,Z(x, y, z) dx dy dz

=

∫

z

∫

y

∫

x
g2(x, y, z)fX|Y,Z(x|y, z) fY |Z(y|z) fZ(z) dx dy dz.

(38)

Exponential Correlation Model: So far, general correlation matrices were considered. We now introduce

the exponential correlation model and further develop (38)for the distributionsfY |Z(y|z) and fZ(z)

resulting from that particular correlation model.

We assume that Leveli is equipped with a uniform linear array (ULA) of lengthLi, characterized by

its antenna spacingli = Li/ki and its characteristic distances∆t,i and∆r,i proportional to transmit and

receive spatial coherences respectively. Then the receiveand transmit correlation matrices at Leveli can

respectively be modeled by the following Hermitian Wiener-class2 Toeplitz matrices [22]–[24]:

Cr,i =















1 rr,i r2
r,i . . . rki−1

r,i

rr,i 1
. . . . . .

...

r2
r,i

. . . . . . . . . r2
r,i

...
. . . . . . 1 rr,i

rki−1
r,i . . . r2

r,i rr,i 1















ki×ki

andCt,i+1 =















1 rt,i+1 r2
t,i+1 . . . rki−1

t,i+1

rt,i+1 1
. . . . . .

...

r2
t,i+1

. . . . . . . . . r2
t,i+1

...
. . . . . . 1 rt,i+1

rki−1
t,i+1 . . . r2

t,i+1 rt,i+1 1















ki×ki

(39)

where the antenna correlation at receive (resp. transmit) side rr,i = e
− li

∆r,i ∈ [0, 1) (resp. rt,i+1 =

e
− li

∆t,i ∈ [0, 1)) is an exponential function of antenna spacingli and characteristic distance∆r,i (resp.

∆t,i ) at relaying Leveli.

As ki grows large, the sequence of Toeplitz matricesCr,i of sizeki × ki is fully characterized by the

2A sequence ofn × n Toeplitz MatricesTn = [tk−j ]n×n is said to be in the Wiener class [21, Section 4.4] if the sequence

{tk} of first-column and first-row elements is absolutely summable, i.e. limn→+∞

Pn
k=−n |tk| < +∞.

If |rr,i| < 1, thenlimki→+∞(
Pki−1

k=0
rk

r,i +
P

−1

k=−ki−1
r−k

r,i ) = 1

1−rr,i
+

1/rr,i

1−1/rr,i
< ∞, and consequentlyCr,i is in the Wiener

class.Ct,i is obviously also in the Wiener class if|rt,i| < 1.
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continuous real functionfr,i, defined forλ ∈ [0, 2π) by [21, Section 4.1]

fr,i(λ) = lim
ki→+∞





ki−1∑

k=0

rk
r,ie

jkλ +
−1∑

k=−(ki−1)

r−k
r,i ejkλ





=
1

1 − rr,iejλ
+

rr,ie
−jλ

1 − rr,ie−jλ

=
1 − r2

r,i

|1 − rr,iejλ|2 .

(40)

We also denote the essential infimum and supremum offr,i by mfr,i
andMfr,i

respectively [21, Section

4.1]. In a similar way, we can define the continuous real function ft,i+1 characterizing the sequence of

Toeplitz matricesCt,i+1 by replacingrr,i in (40) by rt,i+1, and we denote bymft,i+1
and Mft,i+1

its

essential infimum and supremum respectively.

By Szegö Theorem [21, Theorem 9], recalled hereafter inLemma 6, for any real functiong(·) (resp.

h(·)) continuous on[mfr,i
,Mfr,i

] (resp.[mft,i+1
,Mft,i+1

]), we have

∫

y
g(y)fY (y) dy , lim

ki→+∞
1

ki

ki∑

k=1

g
(
λCr,i

(k)
)

=
1

2π

∫ 2π

0
g (fr,i(λ)) dλ

∫

z
h(z)fZ(z) dz , lim

ki→+∞
1

ki

ki∑

k=1

h
(
λCt,i+1

(k)
)

=
1

2π

∫ 2π

0
h (ft,i+1(ν)) dν.

(41)

Assuming that variablesY = Λr,i andZ = Λt,i+1 are independent, and applying Szegö Theorem to

(38), we can write

E[g1(Λi)] =

∫

z

∫

y

(∫

x
g2(x, y, z)fX|Y,Z(x|y, z) dx

)

︸ ︷︷ ︸

g3(y,z)

fY (y) fZ(z) dy dz

=

∫

z

(∫

y
g3(y, z)fY (y) dy

)

fZ(z) dz

=

∫

z

(
1

2π

∫ 2π

λ=0
g3 (fr,i(λ), z) dλ

)

fZ(z) dz , by Szegö Theorem (41)

=
1

2π

∫ 2π

λ=0

(∫

z
g3 (fr,i(λ), z) fZ(z) dz

)

dλ

=
1

(2π)2

∫ 2π

λ=0

∫ 2π

ν=0
g3 (fr,i(λ), ft,i+1(ν)) dλ dν , by Szegö Theorem (41).

(42)

Equal power allocation over optimal precoding directions:We further assume equal power allocation

over the optimal directions, i.e. the singular values ofPi are chosen to be all equal:ΛPi
= αiIki

, where

αi is real positive and chosen to respect the power constraint (7). Equal power allocation may not be the

optimal power allocation scheme, but it is considered in this example for simplicity.
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Using the power constraint expression for general correlation models (123) in Appendix III and

considering precoding matricesPi = UH
r,i(αiIki

)Ut,i+1 with optimal singular vectors as inTheorem

2 and equal singular valuesαi, we can show by induction oni that the coefficientsαi respecting the

power constraints for any correlation model are given by

α0 =
√

P0

αi =

√

Pi

aiPi−1

tr(Λr,i−1)

tr(Λr,i)

ki

tr(Λt,iΛr,i−1)
∀i ∈ {1, . . . , N − 1}

αN = 1.

(43)

Applying the exponential correlation model to (43) and making the dimensions of the system grow large,

it can be shown that in the asymptotic regime, theαi respecting the power constraint for the exponentially

correlated system converge to the same value (31) as for the uncorrelated system.

Then X = Λ2
Pi

= α2
i is independent fromY and Z, thus fX|Y,Z(x|y, z) = fX(x) = δ(x − α2

i ).

Consequently,

g3(y, z) =

∫

x
g2(x, y, z)δ(x − α2

i ) dx = g2(α
2
i , y, z) (44)

and (42) becomes

E[g1(Λi)] =
1

(2π)2

∫ 2π

λ=0

∫ 2π

ν=0
g2

(

α2
i ,

1 − r2
r,i

|1 − rr,iejλ|2 ,
1 − r2

t,i+1

|1 − rt,i+1ejν |2

)

dλ dν. (45)

Asymptotic Mutual Information : Using (45) in (17) withg2(x, y, z) = log
(

1 + η ai+1

ρi
hN

i xyz
)

gives

the expression of the asymptotic mutual information

I∞ =
N∑

i=0

ρi

ρ0(2π)2

∫ 2π

λ=0

∫ 2π

ν=0
log

(

1 + hN
i

ηai+1α
2
i (1 − r2

r,i)(1 − r2
t,i+1)

ρi|1 − rr,iejλ|2|1 − rt,i+1ejν |2

)

dλ dν − N
log e

ρ0
η

N∏

i=0

hi

(46)

whereh0, h1, . . . , hN are the solutions of the following system ofN + 1 equations, obtained by using

(45) in (18) withg2(x, y, z) = hN
i Λixyz

ρi

ai+1
+ηhN

i xyz

N∏

j=0

hj =
ρi

(2π)2

∫ 2π

λ=0

∫ 2π

ν=0

hN
i ai+1α

2
i (1 − r2

r,i)(1 − r2
t,i+1)

ρi|1 − rr,iejλ|2|1 − rt,i+1ejν |2 + ηhN
i ai+1α2

i (1 − r2
r,i)(1 − r2

t,i+1
)

dλ dν

for i = 0, . . . , N

(47)

(with the conventionrr,0 = rt,N+1 = 0). Using the changes of variables

t = tan

(
λ

2

)

, thus cos(λ) =
1 − t2

1 + t2
and dλ =

2du

1 + t2

u = tan
(ν

2

)

, thus cos(ν) =
1 − u2

1 + u2
and dν =

2du

1 + u2

(48)
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and performing some algebraic manipulations that are skipped for the sake of conciseness, (46) and (47)

can be rewritten

I∞ =

N∑

i=0

ρi

ρ0π2

∫ +∞

t=−∞

∫ +∞

u=−∞

log

(

1 + cr,ict,i+1

ηhN
i ai+1α

2
i

ρi

(1 + t2)

(c2
r,i + t2)

(1 + u2)

(c2
t,i+1

+ u2)

)

dt

1 + t2
du

1 + u2
− N

log e

ρ0

η

N∏

i=0

hi

(49)

whereh0, h1, . . . , hN are the solutions of the system ofN + 1 equations

N∏

j=0

hj =
2

π

hN
i ai+1α

2
i

√

cr,ict,i+1 +
ηhN

i ai+1α2
i

ρi

√
1

cr,ict,i+1
+

ηhN
i ai+1α2

i

ρi

K(mi) (50)

and

cr,i =
1 − rr,i

1 + rr,i

ct,i+1 =
1 − rt,i+1

1 + rt,i+1

mi = 1 −

(
ct,i+1

cr,i
+ ηhN

i ai+1α2
i

ρi

)(
cr,i

ct,i+1
+ ηhN

i ai+1α2
i

ρi

)

(
1

cr,ict,i+1
+ ηhN

i ai+1α2
i

ρi

)(

cr,ict,i+1 + ηhN
i ai+1α2

i

ρi

) .

(51)

Those expressions show that only a few relevant parameters affect the performance of this complex

system: signal powerPi, noise power1/η, pathlossai, number of hopsN , ratio of the number of

antennasρi, and correlation ratioscr,i andct,i.

VI. N UMERICAL RESULTS

In this section, we present numerical results to validateTheorem 1 and to show that even with small

ki, i = 0, . . . , N , the behavior of the system is close to its behavior in the asymptotic regime, making

Theorem 1 a useful tool for optimization of finite-size systems as wellas large networks.

A. Uncorrelated multi-hop MIMO

The uncorrelated system described in Section V-C is first considered.

Fig. 2 plots the asymptotic mutual information fromTheorem 1 as well as the instantaneous mutual

information obtained for an arbitrary channel realization(shown as experimental curves in the figure).

This example considers a system with10 antennas at source, destination and each relay level with one,

two or three hops. Fig. 3 plots the same curves as in Fig. 2 for asystem with100 antennas at each level.

When increasing the number of hopsN , the distance between source and destinationd is kept constant

andN −1 relays are inserted between source and destination with equal spacingdi = d/N between each

relaying level. In both examples, whose main purpose is not to optimize the system, but to validate the
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asymptotic formula inTheorem 1, matricesPi are taken proportional to the identity matrix to simulate

equal power allocation. The channel correlation matrices are also equal to the identity matrix to mimic

the uncorrelated channel. Moreover, the pathloss exponentβ = 2 is considered. We would like to point

out that the experimental curves for different channel realizations produced similar results. As such, the

experimental curve corresponding to a single channel realization is shown for the sake of clarity and

conciseness.

Fig. 3 shows the perfect match between the instantaneous mutual information for an arbitrary channel

realization and the asymptotic mutual information, validating Theorem 1 for large network dimensions.

On the other hand Fig. 2 shows that the instantaneous mutual information of a system with a small number

of antennas behaves very closely to the asymptotic regime, justifying the usefulness of the asymptotic

formula even when evaluating the end-to-end mutual information of a system with small size.

Finally, Fig. 4 plots the asymptotic mutual information forone, two, and three hops, as well as the

value of the instantaneous mutual information for random channel realizations when the number of

antennas at all levels increases. The concentration of the instantaneous mutual information values around

the asymptotic limit when the system size increases shows the convergence of the instantaneous mutual

information towards the asymptotic limit as the number of antennas grows large at all levels with the

same rate.

B. One-sided exponentially correlated multi-hop MIMO

Based on the model discussed in Section V-D, the one-sided exponentially correlated system is consi-

dered in this section. In the case of one-sided correlation,e.g.rr,i = 0 andrt,i ≥ 0 for all i ∈ {0, . . . , N},

the asymptotic mutual information (52), (53) is reduced to

I∞ =

N∑

i=0

ρi

ρ0π

∫ +∞

−∞

log

(

1 + ct,i+1

ηhN
i ai+1α

2
i

ρi

(1 + u2)

(c2
t,i+1

+ u2)

)

du

1 + u2
− N

log e

ρ0

η

N∏

i=0

hi (52)

whereh0, h1, . . . , hN are the solutions of the system ofN + 1 equations

N∏

j=0

hj =
hN

i ai+1α
2
i

√

ct,i+1 +
ηhN

i ai+1α2
i

ρi

√
1

ct,i+1
+

ηhN
i ai+1α2

i

ρi

. (53)

One-sided correlation was considered to avoid the involvedcomputation of the elliptic integralK(mi)

in the system of equations (53), and therefore to simplify simulations.

Fig. 5 and 6 plot the asymptotic mutual information for10 and100 antennas at each level respectively,

and one, two or three hops, as well as the instantaneous mutual information obtained for an arbitrary

channel realization (shown as experimental curves in the figure). As in the uncorrelated case, the perfect
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match of the experimental and asymptotic curves in Fig. 6 with 100 antennas validates the asymptotic

formula in Theorem 1 in the presence of correlation. Fig. 5 shows that even for a small number of

antennas, the system behaves closely to the asymptotic regime in the correlated case.

Finally, Fig. 7 plots the instantaneous mutual informationfor random channel realizations against the

size of the system and shows its convergence towards the asymptotic mutual information when the number

of antennas increases. Comparing Fig. 7 to the corresponding Fig. 4 in the uncorrelated case, it appears

that convergence towards the asymptotic limit is slower in the correlated case.

VII. C ONCLUSION

We studied a multi-hop MIMO relay network in the correlated fading environment, where relays at each

level perform linear precoding on their received signal prior to retransmitting it to the next level. Using

free probability theory, a closed-form expression of the instantaneous end-to-end mutual information

was derived in the asymptotic regime where the number of antennas at all levels grows large. The

asymptotic instantaneous end-to-end mutual information turns out to be a deterministic quantity that

depends only on channel statistics and not on particular channel realizations. Moreover, it also serves

as the asymptotic value of the average end-to-end mutual information. Simulation results verified that,

even with a small number of antennas at each level, multi-hopsystems behave closely to the asymptotic

regime. This observation makes the derived asymptotic mutual information a powerful tool to optimize

the instantaneous mutual information of finite-size systems with only statistical knowledge of the channel.

We also showed that for any system size the left and right singular vectors of the optimal precoding

matrices that maximize the average mutual information are aligned, at each level, with the eigenvectors

of the transmit and receive correlation matrices of the forward and backward channels, respectively.

Thus, the singular vectors of the optimal precoding matrices can be determined with only local statistical

channel knowledge at each level.

In the sequel, the analysis of the end-to-end mutual information in the asymptotic regime will first

be extended to the case where noise impairs signal receptionat each relaying level. Then, combining

the expression of the asymptotic mutual information with the singular vectors of the optimal precoding

matrices, future work will focus on optimizing the power allocation determined by the singular values of

the precoding matrices. Finally future research directions also include the analysis of the relay-clustering

effect: given a total number of antennaski at leveli, instead of considering that the relaying level consists

of a single relay equipped with many antennas (ki), we can consider that a relaying level containsni relays

equipped with (ki/ni) antennas. Clustering has a direct impact on the structure of correlation matrices:
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when theki antennas at leveli are distributed among several relays, correlation matrices become block-

diagonal matrices, whose blocks represent the correlationbetween antennas at a relay, while antennas

at different relays sufficiently separated in space are supposed uncorrelated. In the limit of a relaying

level containingki relays equipped with a single antenna, we fall back to the case of uncorrelated fading

with correlation matrices equal to identity. The optimal size of clusters in correlated fading is expected

to depend on the SNR regime.

APPENDIX I

TRANSFORMS AND LEMMAS

Transforms and lemmas used in the proofs ofTheorems 1 and 2 are provided and proved in this

appendix, while the proofs ofTheorems 1 and2 are detailed in Appendices II and III, respectively.

A. Transforms

Let T be a square matrix of sizen with real eigenvaluesλT(1), . . . , λT(n). The empirical eigenvalue

distributionFn
T of T is defined by

Fn
T(x) ,

1

n

n∑

i=1

u(x − λT(i)). (54)

We define the following transformations [10]

Stieltjes transform: GT(s) ,

∫
1

λ − s
dFT(λ) (55)

ΥT(s) ,

∫
sλ

1 − sλ
dFT(λ) (56)

S-transform: ST(z) ,
z + 1

z
Υ−1

T (z) (57)

whereΥ−1(Υ(s)) = s.

B. Lemmas

We present here the lemmas used in the proofs ofTheorems 1 and2. Lemmas 1, 3, 5 and7 are proved

in Appendix I-C, whileLemmas 2, 6, and4 are taken from [25], [21], and [26] respectively.

Lemma 1: Consider ann × p matrix A and ap × n matrix B, such that their productAB has

non-negative real eigenvalues. Denoteξ = p
n . Then

SAB(z) =
z + 1

z + ξ
SBA

(
z

ξ

)

. (58)
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Note thatLemma 1 is a more general form of the results derived in [27, Eq. (1.2)], [10, Eq. (15)].

Lemma 2 ( [25, Prop. 4.4.9 and 4.4.11]): For n ∈ N, let p(n) ∈ N be such thatp(n)
n → ξ asn → ∞.

Let

• Θ(n) be ap(n) × n complex Gaussian random matrix with i.i.d. elements with variance 1
n .

• A(n) be an × n constant matrix such thatsupn ‖A(n)‖ < +∞ and (A(n),A(n)H) has the limit

eigenvalue distributionµ.

• B(n) be a p(n) × p(n) Hermitian random matrix, independent fromΘ(n), with an empirical

eigenvalue distribution converging almost surely to a compactly supported probability measureν.

Then, asn → ∞,

• the empirical eigenvalue distribution ofΘ(n)HB(n)Θ(n) converges almost surely to the compound

free Poisson distributionπν,ξ [25]

• the family ({Θ(n)HB(n)Θ(n)}, {A(n),A(n)H}) is asymptotically free almost everywhere.

Thus the limiting eigenvalue distribution ofΘ(n)B(n)Θ(n)HA(n)A(n)H is the free convolutionπν,ξ⊠µ

and itsS-transform is

SΘBΘHAAH (z) = SΘBΘH (z)SAAH (z). (59)

Note that if the elements ofΘ(n) had variance 1
p(n) instead of1n , ({Θ(n)HB(n)Θ(n)}, {A(n),A(n)H})

would still be asymptotically free almost everywhere, and consequently, Equation (59) would still hold.

Lemma 3: Consider ann× p matrix A with zero-mean i.i.d. entries with varianceap . Assume that the

dimensions go to infinity whilenp → ζ, then

SAAH (z) =
1

a

1

(1 + ζz)

SAHA(z) =
1

a

1

(z + ζ)
.

(60)

Lemma 4 ( [26, Theorem H.1.h]): Let A andB be two positive semi-definite hermitian matrices of

sizen×n. LetλA(i) andλB(i) be their decreasingly-ordered eigenvalues respectively.Then the following

inequality holds:
n∑

i=1

λA(i)λB(n − i + 1) ≤ tr(AB) =

n∑

i=1

λAB(i) ≤
n∑

i=1

λA(i)λB(i). (61)

Lemma 5: For i ∈ {1, . . . , N}, let Ai be ani × ni−1 random matrix. Assume that

• A1, . . . ,AN are mutually independent,

• ni goes to infinity while ni

ni−1
→ ζi,
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• asni goes to infinity, the eigenvalue distribution ofAiA
H
i converges almost surely in distribution

to a compactly supported measureνi,

• as n1, . . . , nN go to infinity, the eigenvalue distribution of(
⊗1

i=N Ai)(
⊗1

i=N Ai)
H converges

almost surely in distribution to a measureµN .

ThenµN is compactly supported.

Lemma 6 ( [21, Theorem 9]): Let Tn be a sequence of Wiener-class Toeplitz matrices, characterized

by the functionf(λ) with essential infimummf and essential supremumMf . Let λTn
(1), . . . , λTn

(n)

be the eigenvalues ofTn ands be any positive integer. Then

lim
n→∞

1

n

n∑

k=1

λs
Tn

(k) =
1

2π

∫ 2π

0
f(λ)sdλ. (62)

Furthermore, iff(λ) is real, or equivalently, the matricesTn are all Hermitian, then for any function

g(·) continuous on[mf ,Mf ]

lim
n→∞

1

n

n∑

k=1

g(λTn
(k)) =

1

2π

∫ 2π

0
g(f(λ))dλ. (63)

Lemma 7: For i ≥ 1, given a set of deterministic matrices{Ak}k∈{0,...,i} and a set of independent

random matrices{Θk}k∈{1,...,i}, with i.i.d. zero-mean gaussian elements with varianceσ2
k,

tr

(

E

[
1⊗

k=i

{AkΘk}A0A
H
0

i⊗

k=1

{ΘH
k AH

k }
] )

= tr(A0A
H
0 )

i∏

k=1

σ2
ktr(AkA

H
k ). (64)

C. Proofs of Lemmas

The proofs ofLemmas 1, 3, 5 and7 are given hereafter.

Proof of Lemma 1

Given two complex matricesA of sizem×n, andB of sizen×m, their productsAB andBA have the

samek non-zero eigenvaluesλAB(1), . . . , λAB(k) with the same respective multiplicitiesm1, . . . ,mk.

However the multiplicitiesm0 andm′
0 of the 0-eigenvalues ofAB andBA respectively, are related as

follows:

m0 + n = m′
0 + m. (65)

Assuming thatAB, and thereforeBA, has real eigenvalues, we show hereafter that (58) holds.

The empirical eigenvalue distributions ofAB andBA are defined by

Fm
AB(λ) =

m0

m
u(λ) +

1

m

k∑

i=1

miu(λ − λAB(i))

Fn
BA(λ) =

m′
0

n
u(λ) +

1

n

k∑

i=1

miu(λ − λAB(i)).

(66)
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Using (65), we get

Fm
AB(λ) =

n

m
Fn

BA(λ) +
(

1 − n

m

)

u(λ). (67)

From (67), it is direct to show that

GAB(z) =
n

m
GBA(z) −

(

1 − n

m

) 1

z
. (68)

As Υ(s) = −1 − 1
sG(1

s ), from (68), we obtain

ΥAB(s) =
n

m
ΥBA(s). (69)

Finally, using{z = ΥAB(s) = n
mΥBA(s)} ⇔ {Υ−1

AB(z) = s = Υ−1
BA

(
z

n/m

)

} and the definition of the

S-transform S(z) , z+1
z Υ−1(z) yields the desired result

SAB(z) =
z + 1

z + n
m

SBA

(
z

n/m

)

. (70)

This concludes the proof ofLemma 1.

�

Proof of Lemma 3

Consider ann × p matrix A with zero-mean i.i.d. entries with varianceap . Let X = 1√
a
A denote

the normalized version ofA with zero-mean i.i.d. entries of variance1p and defineY = aIn and

Z = XXHY = AAH . It is direct to show thatSY(z) = 1
a . Using the latter result along with [10,

Theorem 1], we obtain

SXXH (z) =
1

(1 + ζz)

SAAH (z) = SZ(z) = SXXH (z)SY(z) =
1

(1 + ζz)

1

a
.

(71)

Applying Lemma 1 to SAHA(z) yields

SAHA(z) =
z + 1

z + ζ
SAAH

(
z

ζ

)

=
1

a

1

(z + ζ)
. (72)

This completes the proof ofLemma 3.

�

Proof of Lemma 5

The proof ofLemma 5 is done by induction onN . For N = 1, Lemma 5 obviously holds. Assuming

that Lemma 5 holds forN , we now show that it also holds forN + 1.

We first recall that the eigenvalues of Gramian matricesAAH are non-negative. Thus the support of

µN+1 is lower-bounded by0, and we are left with showing that it is also upper-bounded.
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DenotingBN = (
⊗1

i=N Ai)(
⊗1

i=N Ai)
H , we can write

BN+1 = AN+1BNAH
N+1. (73)

For a matrixA, let λA,max denote its largest eigenvalue. The largest eigenvalue ofBN+1 is given by

λBN+1,max = max
x

xH BN+1 x

xHx

= max
x

xH AN+1BNAH
N+1 x

xHx

= max
x

tr(BN AH
N+1xxHAN+1)

xHx

≤ max
x

∑nN

k=1 λBN
(k) λAH

N+1xxHAN+1
(k)

xHx
, by Lemma 4

≤ max
x

λBN ,max

∑nN

k=1 λAH
N+1xxHAN+1

(k)

xHx

= λBN ,max max
x

tr(AH
N+1xxHAN+1)

xHx

= λBN ,max max
x

xHAN+1A
H
N+1x

xHx

= λBN ,max λAN+1A
H
N+1,max.

(74)

To simplify notations, we rename the random variables as follows:

X = λBN+1,max Y = λBN ,max Z = λAN+1A
H
N+1,max. (75)

Then (74) can be rewritten

X ≤ Y Z. (76)

Let a ≥ 0, by (76) we have

FX(a) = Pr{X < a} ≥ Pr{Y Z < a} = FY Z(a) (77)

which still holds for the asymptotic distributions asn1, . . . , nN+1 → ∞, while ni

ni−1
→ ζi. Denoting the

plane regionDa = {x, y ≥ 0/xy < a}, we can write

FY Z(a) =

∫∫

y,z∈Da

fY,Z(y, z)dydz

=

∫∫

y,z∈Da

fY (y)fZ(z)dydz , by independence ofY andZ

=

∫ +∞

y=0

(
∫ a/y

z=0
fZ(z)dz

)

fY (y)dy

=

∫ +∞

y=0
FZ

(
a

y

)

fY (y)dy.

(78)
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By assumption, the distributions ofAN+1A
H
N+1 andBN converge almost surely to compactly sup-

ported measures. Thus, their largest eigenvalues are asymptotically upper-bounded and the support of the

asymptotic distributions ofY andZ are upper-bounded, i.e.

∃cy ≥ 0 such that∀y ≥ cy , FY (y) = 1 (fY (y) = 0)

∃cz ≥ 0 such that∀z ≥ cz , FZ(z) = 1 (fZ(z) = 0).

(79)

Let a ≥ cy cz, then for all0 < y ≤ cy, we havea
y ≥ a

cy
≥ cz andFZ

(
a
y

)

= 1, as the dimensions go

to infinity with constant rates. Therefore, in the asymptotic regime, we have

FY Z(a) =

∫ cy

y=0
FZ

(
a

y

)

fY (y)dy

=

∫ cy

y=0
1fY (y)dy = FY (cy) = 1.

(80)

Combining (77) and (80), we getFX(a) = 1 for a > cy cz . Thus, there exists a constantcx such that

0 ≤ cx ≤ cy cz and∀x ≥ cx , FX(x) = 1, which means that the support of the asymptotic distribution of

X is upper-bounded. As a consequence, the support of the asymptotic eigenvalue distribution ofBN+1

is also upper-bounded. Therefore, the support ofµN+1 is upper-bounded, which concludes the proof.

�

Proof of Lemma 7

The proof ofLemma 7 is done by induction.

We first prove thatLemma 7 holds fori = 1. To that purpose, we define the matrixB = A1Θ1A0A
H
0 ΘH

1 AH
1 .

Then

tr(E[A1Θ1A0A
H
0 ΘH

1 AH
1 ]) = tr(E[B]) =

k1∑

j=1

E[bjj] (81)

The expectation of thejth diagonal elementbjj of matrix B is

E[bjj] =
∑

k,l,m,n,p

E[a
(1)
jk θ

(1)
kl a

(0)
lma(0)∗

nm θ(1)∗
pn a

(1)∗
jp ]

=
∑

k,l,m

|a(1)
jk |2|a

(0)
lm |2 E[|θ(1)

kl |2]
︸ ︷︷ ︸

σ2
1

= σ2
1

∑

k

|a(1)
jk |2

∑

l,m

|a(0)
lm |2.

(82)

where the second equality is due to the fact thatE[θ
(1)
kl θ

(1)∗
pn ] = σ2

1δk,pδl,n. It follows from (81) and (82)

that

tr(E[B]) = σ2
1

∑

j,k

|a(1)
jk |2

∑

l,m

|a(0)
lm |2 = σ2

1tr(A1A
H
1 )tr(A0A

H
0 ) (83)
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which shows thatLemma 7 holds for i = 1.

Now, assuming thatLemma 7 holds for i − 1, we show it also holds fori. We define the matrix

Bi =
⊗1

k=i{AkΘk}A0A
H
0

⊗i
k=1{ΘH

k AH
k }.

Then

tr(E[Bi]) = tr(E[AiΘiBi−1Θ
H
i AH

i ])

=

k1∑

j=1

E[b
(i)
jj ].

(84)

The expectation of thejth diagonal elementb(i)
jj of matrix Bi is

E[b
(i)
jj ] =

∑

k,l,m,n

E[a
(i)
jk θ

(i)
kl b

(i−1)
lm θ(i)∗

nm a
(i)∗
jn ]

=
∑

k,l

|a(i)
jk |2E[b

(i−1)
ll ] E[|θ(i)

kl |2]
︸ ︷︷ ︸

σ2
i

= σ2
i

∑

k

|a(i)
jk |2

∑

l

E[b
(i−1)
ll ]

(85)

where the second equality is due to the independence ofΘi andBi−1 and to the fact thatE[θ
(i)
knθ

(i)∗
lm ] =

σ2
i δk,pδl,n. Thus (84) becomes

tr(E[Bi]) = σ2
i

∑

j,k

|a(i)
jk |2

∑

l

E[b
(i−1)
ll ] = σ2

i tr(AiA
H
i )tr(E[Bi−1])

= σ2
i tr(AiA

H
i )tr(A0A

H
0 )

i−1∏

k=1

σ2
ktr(AkA

H
k ) = tr(A0A

H
0 )

i∏

k=1

σ2
ktr(AkA

H
k )

(86)

which shows that ifLemma 7 holds for i − 1, then it holds fori.

ThereforeLemma 7 holds for anyi ≥ 1, which concludes the proof. �

APPENDIX II

PROOF OFTHEOREM 1

In this appendix, we first list the main steps of the proof ofTheorem 1 and then present the detailed

proof of each step. Note that the proof ofTheorem 1 uses tools from the free probability theory introduced

in Appendix I. The proof ofTheorem 1 consists of the following four steps.

1) ObtainSGNGH
N
(z).

2) UseSGNGH
N
(z) to find ΥGNGH

N
(z).

3) UseΥGNGH
N
(z) to obtaindI/dη.
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4) IntegratedI/dη to obtainI itself.

• First Step: obtain SGNGH
N
(z)

Theorem 3: As ki, i = 0, . . . , N go to infinity with the same rate, the S-transform ofGNGH
N is given

by

SGNGH
N
(z) = SMH

NMN
(z)

N∏

i=1

ρi−1

ai

1

(z + ρi−1)
SMH

i−1Mi−1

(
z

ρi−1

)

. (87)

Proof: The proof is done by induction usingLemmas 1, 3, 2.First, we prove (87) forN = 1. Note

that

G1G
H
1 = M1Θ1M0M

H
0 ΘH

1 MH
1 (88)

therefore

SG1G
H
1
(z) = SΘ1M0M

H
0 ΘH

1 MH
1 M1

(z) , by Lemma 1

= SΘ1M0M
H
0 ΘH

1
(z)SMH

1 M1
(z) , by Lemma 2

= z+1
z+

k0

k1

SM0M
H
0 ΘH

1 Θ1

(

z
k0

k1

)

SMH
1 M1

(z) , by Lemma 1

= z+1
z+

k0

k1

SM0M
H
0

(

z
k0

k1

)

SΘH
1 Θ1

(

z
k0

k1

)

SMH
1 M1

(z) , by Lemma 2

= z+1
z+

k0

k1

SM0M
H
0

(

z
k0

k1

)

1
a1

1
z

k0
k1

+
k1

k0

SMH
1 M1

(z) , by Lemma 3

= SMH
1 M1

(z) ρ0

a1

1
z+ρ0

SMH
0 M0

(
z
ρ0

)

, by Lemma 1. (89)

Now, we need to prove that if (87) holds forN = q, it also holds forN = q + 1. Note that

Gq+1G
H
q+1 = Mq+1Θq+1MqΘq . . .M1Θ1M0M

H
0 ΘH

1 MH
1 . . .ΘH

q MH
q ΘH

q+1M
H
q+1. (90)

Therefore,

SGq+1G
H
q+1

(z) = SMq+1...MH
q+1

(z)

= SΘq+1Mq...MH
q ΘH

q+1M
H
q+1Mq+1

(z) , by Lemma 1. (91)

The empirical eigenvalue distribution of Wishart matricesΘiΘ
H
i converges almost surely to the Marčenko-

Pastur law whose support is compact. Moreover, by assumption, the empirical eigenvalue distribution of

MH
i Mi, i = 0, . . . , N + 1 converges to an asymptotic distribution with a compact support. Thus, by

Lemma 5, the asymptotic eigenvalue distribution ofMqΘq . . . ΘH
q MH

q has a compact support. Therefore
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Lemma 2 can be applied to (91)to show that

SGq+1G
H
q+1

(z) = SΘq+1...ΘH
q+1

(z)SMH
q+1Mq+1

(z) , by Lemma 2

=
z + 1

z + kq

kq+1

SMq...MH
q ΘH

q+1Θq+1

(

z
kq

kq+1

)

SMH
q+1Mq+1

(z) , by Lemma 1

=
z + 1

z + kq

kq+1

SMq...MH
q

(

z
kq

kq+1

)

SΘH
q+1Θq+1

(

z
kq

kq+1

)

SMH
q+1Mq+1

(z) , by Lemma 2

=
z + 1

z + kq

kq+1








SMH
q Mq

(

z
kq

kq+1

)
q
∏

i=1

ki−1

kq

ai

1
z

kq

kq+1

+ ki−1

kq

SMH
i−1Mi−1








(

z
kq

kq+1

)

ki−1

kq















×

1

aq+1

1
kq+1

kq
+ z

kq

kq+1

SMH
q+1Mq+1

(z) , by Lemma 3

=
z + 1

z + kq

kq+1

SMH
q+1Mq+1

(z)

kq

kq+1

aq+1

1

z + 1
SMH

q Mq

(

z
kq

kq+1

)
q
∏

i=1

ki−1

kq+1

ai

1

z + ki−1

kq+1

SMH
i−1Mi−1

(

z
ki−1

kq+1

)

= SMH
q+1Mq+1

(z)

q+1
∏

i=1

ki−1

kq+1

ai

1

z + ki−1

kq+1

SMH
i−1Mi−1

(

z
ki−1

kq+1

)

= SMH
q+1Mq+1

(z)

q+1
∏

i=1

ρi−1

ai

1

(z + ρi−1)
SMH

i−1Mi−1

(
z

ρi−1

)

. (92)

The proof is complete.

• Second Step: useSGNGH
N
(z) to find ΥGNGH

N
(z)

Theorem 4: Let us defineaN+1 = 1. We have

sΥN
GNGH

N
(s) =

N∏

i=0

ρi

ai+1
Υ−1

MH
i Mi

(
ΥGNGH

N (s)

ρi

)

. (93)

Proof: From (87) it follows that

z

z + 1
SGNGH

N
(z) =

z

z + 1
SMH

NMN
(z)

N∏

i=1

ρi−1

ai

1

z + ρi−1

z
ρi−1

+ 1
z

ρi−1

z
ρi−1

z
ρi−1

+ 1
SMH

i−1Mi−1

(
z

ρi−1

)

. (94)

Using (57) in (94), we obtain

Υ−1
GNGH

N

(z) =
1

zN
Υ−1

MH
N MN

(z)
N∏

i=1

ρi−1

ai
Υ−1

MH
i−1Mi−1

(
z

ρi−1

)

(95)

or, equivalently,

Υ−1
GNGH

N

(z) =
1

zN

N∏

i=0

ρi

ai+1
Υ−1

MH
i Mi

(
z

ρi

)

. (96)



DRAFT SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 31

Substitutingz = ΥGNGH
N
(s) in (96), Equation (93) follows. This completes the proof.

• Third Step: use ΥGNGH
N
(z) to obtain dI/dη

Theorem 5: In the asymptotic regime, ask0, k1, . . . , kN go to infinity while ki

kN
→ ρi, i = 0, . . . , N ,

the derivative of the instantaneous mutual information is given by

dI∞
dη

=
1

ρ0 ln 2

N∏

i=0

hi (97)

whereh0, h1, . . . , hN are the solutions to the following set ofN + 1 equations

N∏

j=0

hj = ρiE

[

hN
i Λi

ρi

ai+1 + ηhN
i Λi

]

i = 0, . . . , N. (98)

The expectation in (98) is overΛi whose probability distribution function is given byFMH
i Mi

(λ)

(convention:aN+1 = 1).

Proof:

First, we note that

I =
1

k0
log det(I + ηGNGH

N )

=
1

k0

kN∑

i=1

log(1 + ηλGNGH
N
(i))

=
kN

k0

1

kN

kN∑

i=1

log(1 + ηλGNGH
N
(i))

=
kN

k0

∫

log(1 + ηλ)dF kN

GNGH
N

(λ)

a.s.→ 1

ρ0

∫

log(1 + ηλ)dFGNGH
N
(λ)

=
1

ρ0 ln 2

∫

ln(1 + ηλ)dFGN GH
N
(λ) (99)

whereF kN

GNGH
N

(λ) is the (non-asymptotic) empirical eigenvalue distribution of GNGH
N , that converges

almost-surely to the asymptotic empirical eigenvalue distribution FGNGH
N

, whose support is compact.

Indeed, the empirical eigenvalue distribution of Wishart matricesΘiΘ
H
i converges almost surely to

the Marčenko-Pastur law whose support is compact, and by assumption, fori ∈ {0, . . . , N + 1} the

empirical eigenvalue distribution ofMH
i Mi converges to an asymptotic distribution with a compact

support. Therefore, according toLemma 5, the asymptotic eigenvalue distribution ofGNGH
N has a

compact support. Thelog function is continuous, thus bounded on the compact supportof the asymptotic
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eigenvalue distribution ofGNGH
N . This enables the application of the bounded convergence theorem to

obtain the almost-sure convergence in (99).

It follows from (99) that

dI∞
dη

=
1

ρ0 ln 2

∫
λ

1 + ηλ
dFGNGH

N
(λ)

=
1

−ρ0η ln 2

∫ −ηλ

1 − (−η)λ
dFGNGH

N
(λ)

=
1

−ρ0η ln 2
ΥGNGH

N
(−η). (100)

Let us denote

t = ΥGNGH
N
(−η) (101)

gi = Υ−1
MH

i Mi

(
t

ρi

)

i = 0, . . . , N (102)

and, for the sake of simplicity, letα = ρ0 ln 2. From (100), we have

t = −ηα
dI∞
dη

. (103)

Substitutings = −η in (93) and using (101) and (102), it follows that

− ηtN =

N∏

i=0

ρi

ai+1
gi. (104)

Finally, from (102) and the very definition ofΥ in (56), we obtain

t = ρi

∫
giλ

1 − giλ
dFMH

i Mi
(λ) i = 0, . . . , N. (105)

Substituting (103) in (104) and (105) yields

(−η)N+1

(

α
dI

dη

)N

=
N∏

i=0

ρi

ai+1
gi (106)

and

− η

(

α
dI∞
dη

)

= ρi

∫
giλ

1 − giλ
dFMH

i Mi
(λ) i = 0, . . . , N. (107)

Letting

hi =

(
ρi

ai+1

) 1

N

(
gi

−η

) 1

N

(108)

it follows from (106) that

α
dI∞
dη

=
N∏

i=0

hi. (109)
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Using (108) and (109) in (107), we obtain

− η

N∏

j=0

hj = ρi

∫ −ηhN
i

ai+1

ρi
λ

1 − (−η)hN
i

ai+1

ρi
λ

dFMH
i Mi

(λ) i = 0, . . . , N (110)

or, equivalently,
N∏

j=0

hj = ρi

∫
hN

i λ
ρi

ai+1
+ ηhN

i λ
dFMH

i Mi
(λ)

= ρiE

[

hN
i Λi

ρi

ai+1
+ ηhN

i Λi

]

i = 0, . . . , N. (111)

This, along with equation (109), complete the proof.

• Fourth Step: integrate dI/dη to obtain I itself

The last step of the proof ofTheorem 1 is accomplished by computing the derivative ofI∞ in (17)

with respect toη and showing that the derivative matches (97). This shows that (17) is one primitive

function of dI∞

dη . Since primitive functions ofdI∞

dη differ by a constant, the constant was chosen such

that the mutual information (17) is zero when SNRη goes to zero:limη→0 I∞(η) = 0.

We now proceed with computing the derivative ofI∞. If (17) holds, then we have (recallα = ρ0 ln 2)

αI∞ =

N∑

i=0

ρiE

[

ln

(

1 +
ηai+1

ρi
hN

i Λi

)]

− Nη

N∏

i=0

hi. (112)

From (112) we have

α
dI∞
dη

=

N∑

i=0

ρiE




Λi

(

hN
i + NηhN−1

i h
′

i

)

ρi

ai+1
(1 + ηai+1

ρi
hN

i Λi)



− N

N∏

i=0

hi − Nη







N∑

i=0

h
′

i

N∏

j=0
j 6=i

hj







=

N∑

i=0

ρiE

[

Λih
N
i

ρi

ai+1
+ ηhN

i Λi

]

+ Nη

N∑

i=0

h
′

i

hi
ρiE

[

Λih
N
i

ρi

ai+1
+ ηhN

i Λi

]

− N

N∏

i=0

hi − Nη





N∑

i=0

h
′

i

hi

N∏

j=0

hj





=

N∑

i=0

N∏

j=0

hj + Nη





N∑

i=0

h
′

i

hi

N∏

j=0

hj



− N

N∏

i=0

hi − Nη





N∑

i=0

h
′

i

hi

N∏

j=0

hj





= (N + 1)

N∏

j=0

hj − N

N∏

j=0

hj

=
N∏

j=0

hj (113)

whereh
′

i , dhi

dη and the third line is due to (18). Equation (97) immediately follows from (113). This

completes the proof.

�
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APPENDIX III

PROOF OFTHEOREM 2

In this appendix, we provide the proof ofTheorem 2. The proof of this theorem is based on [26,

Theorem H.1.h] that is reiterated inLemma 4. Note that, [26, Theorem H.1.h] has been used before

to characterize the source precoder maximizing the averagemutual information of single-user [18] and

multi-user [19] single-hop MIMO systems with covariance knowledge at source, and to obtain the relay

precoder maximizing the instantaneous mutual informationof a two-hop MIMO system with full CSI at

the relay [9]. We extend the results of [18], [19], [9] to suitthe MIMO multi-hop relaying system of our

concern.

The proof consists of three following steps.

• Step 1: Use the singular value decomposition (SVD)UiDiV
H
i = Λ

1/2
t,i+1U

H
t,i+1PiUr,iΛ

1/2
r,i and

show that unitary matricesUi andVi impact the maximization of the average mutual information

through the power constraints only, while diagonal matrices Di affect both the mutual information

expression and the power constraints.

• Step 2: Represent the power constraint expression as a function ofDi,Ui,Vi and channel

correlation matrices only.

• Step 3: Show that the directions minimizing the trace in the power constraint are those given in

Theorem 2, regardless of the singular values contained inDi.

Before detailing each step, we recall that the maximum average mutual information is given by

C , max
{Pi/tr(E[xix

H
i ])≤kiPi}i∈{0,...,N−1}

E
[
log det(IkN

+ η GNGH
N )
]

(114)

and we define the conventionsa0 = 1, andCr,0 = Ik0
. Note that the latter implies thatUr,0 = Ik0

and

Λr,0 = Ik0
.

• Step 1: clarify how the average mutual information depends on the transmit directions and

the transmit powers

For i ∈ {1, . . . , N} we define

Θ′
i = UH

r,iΘiUt,i (115)

SinceΘi is zero-mean i.i.d. complex Gaussian, thus bi-unitarily invariant, andUr,i andUt,i are unitary

matrices,Θ′
i has the same distribution asΘi.
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For i ∈ {0, . . . , N − 1}, we consider the following SVD

UiDiV
H
i = Λ

1/2
t,i+1U

H
t,i+1PiUr,iΛ

1/2
r,i (116)

whereUi, Vi are unitary matrices,Di is a real diagonal matrix with non-negative diagonal elements in

the non-increasing order of amplitude.

We now rewrite the average mutual information as a function of matricesUi, Vi and Di, in order

to take the maximization in (15) overUi, Vi andDi instead ofPi. Using (115) and (116) the average

mutual informationI can be expressed in terms of matricesΘ′
i, Ui, Vi andDi as

I , E
[
log det(IkN

+ η GNGH
N )
]

= E
[

log det(IkN
+ η Ur,NΛ

1/2
r,N Θ′

N UN−1DN−1V
H
N−1 Θ′

N−1 . . .U1D1V
H
1 Θ′

1 U0D0V
H
0

V0D
H
0 UH

0 Θ
′H
1 V1D

H
1 UH

1 . . .Θ
′H
N−1 VN−1D

H
N−1U

H
N−1 Θ

′H
N Λ

1/2
r,NUH

r,N )
]

(117)

Θ′
i being zero-mean i.i.d. complex Gaussian, multiplying it byunitary matrices does not change its

distribution. Therefore,Θ′′
i = VH

i Θ′
iUi−1 has the same distribution asΘ′

i and the average mutual

information can be rewritten

I = E
[

log det(IkN
+ η Λ

1/2
r,NΘ′′

NDN−1Θ
′′
N−1 . . .D1Θ

′′
1D0D

H
0 Θ

′′H
1 DH

1 . . .Θ
′′H
N−1D

H
N−1Θ

′′H
N Λ

1/2
r,N )

]

= E

[

log det(IkN
+ η Λ

1/2
r,N

1⊗

i=N

{Θ′′
i Di−1}

N⊗

i=1

{DH
i−1Θ

′′H
i } Λ

1/2
r,N )

]

.

(118)

Therefore, the maximum average mutual information can thenbe represented as

C = max

Di,Ui,Vi

tr(E[xix
H
i ]) ≤ kiPi

∀i ∈ {0, . . . , N − 1}

E

[

log det(IkN
+ η Λ

1/2
r,N

1⊗

i=N

{Θ′′
i Di−1}

N⊗

i=1

{DH
i−1Θ

′′H
i } Λ

1/2
r,N )

]

.

(119)

Expression (118) shows that the average mutual informationI does not depend on the matricesUi and

Vi, which determine the transmit directions at source and relays, but only depends on the singular values

contained in matricesDi. Nevertheless, as shown by (119), the maximum average mutual informationC

depends on the matricesUi,Vi—and thus on the transmit directions— through the power constraints.

• Step 2: give the expression of the power constraints in function of Di,Ui,Vi and channel

correlation matrices
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We show hereunder that the average power of transmitted signal xi at i-th relaying level is given by

tr(E[xix
H
i ]) = aitr(PiCr,iP

H
i )

i−1∏

k=0

ak

kk
tr(Ct,k+1PkCr,kP

H
k ). (120)

Proof: The average power of transmitted signalxi can be written as

tr(E[xix
H
i ]) = tr(E[

1⊗

k=i

{AkΘk}A0A
H
0

i⊗

k=1

{ΘH
k AH

k }])

with

Ai = PiC
1/2
r,i

Ak = Mk = C
1/2
t,k+1PkC

1/2
r,k , ∀k ∈ {0, . . . , i − 1}

σ2
k =

ak

kk−1

(121)

Applying Lemma 7 to tr(E{xix
H
i }) yields

tr(E[xix
H
i ]) = tr(Ct,1P0Cr,0P

H
0 )

i−1∏

k=1

ak

kk−1
tr(Ct,k+1PkCr,kP

H
k )

ai

ki−1
tr(PiCr,iP

H
i )

= aitr(PiCr,iP
H
i )

i−1∏

k=0

ak

kk
tr(Ct,k+1PkCr,kP

H
k )

(122)

which concludes the proof.

Using (120) in the power constraints (7), those constraintscan be rewritten as a product of trace-factors:

tr(P0P
H
0 ) ≤ k0P0

aitr(PiCr,iP
H
i )

i−1∏

k=0

ak

kk
tr(Ct,k+1PkCr,kP

H
k ) ≤ kiPi , ∀i ∈ {1, . . . , N − 1}.

(123)

In order to express (123) in function of matricesUi, Vi andDi, we first rewrite (116) as

Pi = Ut,i+1Λ
−1/2
t,i+1UiDiV

H
i Λ

−1/2
r,i UH

r,i (124)

and use (124) in (123) to obtain

tr(PiCr,iP
H
i ) = tr(Ut,i+1Λ

−1/2
t,i+1UiDiV

H
i Λ

−1/2
r,i UH

r,i Ur,iΛr,iU
H
r,i Ur,iΛ

−1/2
r,i ViD

H
i UH

i Λ
−1/2
t,i+1U

H
t,i+1)

= tr(Λ−1
t,i+1UiD

2
i U

H
i )

tr(Ct,k+1PkCr,kP
H
k ) = tr(DkD

H
k )

= tr(D2
k)

(125)
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whereD2
i = DiD

H
i is a real diagonal matrix with non-negative diagonal elements in non-increasing

order. This leads to the following expression of the power constraints in function ofUi,Di

tr(Λ−1
t,1 U0D

2
0U

H
0 ) ≤ k0P0

aitr(Λ
−1
t,i+1UiD

2
i U

H
i ) ≤ kiPi

∏i−1
k=0

ak

kk
tr(D2

k)
, ∀i ∈ {2, . . . , N − 1}.

(126)

It was shown in Step 1 that matricesVi do not have an impact on the expression of the average mutual

informationI (118), and surprisingly (126) now shows that matricesVi do not have an impact on the

power constraints either. In fact, as can be observed from (126), the power constraints depend only on

matricesUi andDi. It should also be noticed that matrixUi has an impact on the power constraint of

the i-th relay only.

• Step 3: give the optimal transmit directions

To determine the optimal directions of transmission at source, we applyLemma 4 to the source power

constraint (126)tr(Λ−1
t,1 U0D

2
0U

H
0 ) ≤ k0P0, and conclude that for all choices of diagonal elements ofD2

0,

the matrixU0 that minimizes the tracetr(Λ−1
t,1 U0D

2
0U

H
0 ) is U0 = Ik0

. Therefore, the source precoder

becomes

P0 = Ut,1Λ
−1/2
t,1 D0V

H
0 Λ

−1/2
r,0 UH

r,0 = Ut,1Λ
−1/2
t,1 D0V

H
0

= Ut,1ΛP0
VH

0 .

(127)

This recalls the known result (27) in the single-hop MIMO case, where the optimal precoding covariance

matrix at source was shown [18], [19] to be

Q⋆ , E[x0x
H
0 ] = P0P

H
0 = Ut,1ΛQ⋆UH

t,1. (128)

Similarly, to determine the optimal direction of transmission at i-th relaying level, we applyLemma 4

to the i-th power constraint: for all choices of diagonal elements of D2
i , the matrixUi that minimizes

the tracetr(Λ−1
t,i+1UiD

2
i U

H
i ) is Ui = Iki

. This leads to the precoding matrix at leveli

Pi = Ut,i+1Λ
−1/2
t,i+1DiV

H
i Λ

−1/2
r,i UH

r,i. (129)

Now since matricesVi, i ∈ {0, . . . , N − 1} have an impact neither on the expression of the average

mutual information nor on the power constraints, they can bechosen to be equal to identity:Vi = I, i ∈
{0, . . . , N − 1} . This leads to the (non-unique but simple) optimal precoding matrices

P0 = Ut,1ΛP0

Pi = Ut,i+1ΛPi
UH

r,i

(130)
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with the diagonal matricesΛPi
= Λ

−1/2
t,i+1DiΛ

−1/2
r,i containing the singular values ofPi.

This completes the proof of Theorem 2. �
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Fig. 2. Uncorrelated case: Asymptotic Mutual Information and Instantaneous Mutual Information versus SNR, with K = 10

antennas, for single-hop MIMO, 2 hops, and 3 hops
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Fig. 3. Uncorrelated case: Asymptotic Mutual Information and Instantaneous Mutual Information versus SNR, with K = 100

antennas, for single-hop MIMO, 2 hops, and 3 hops
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Fig. 4. Uncorrelated case: Asymptotic Mutual Information and Instantaneous Mutual Information versusKN , at SNR=10 dB,

for single-hop MIMO, 2 hops, and 3 hops
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Fig. 5. One-sided exponential correlation case: Asymptotic Mutual Information and Instantaneous Mutual Informationversus

SNR, with K = 10 antennas, r=0.3, for single-hop MIMO, 2 hops,and 3 hops
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Fig. 6. One-sided exponential correlation case: Asymptotic Mutual Information and Instantaneous Mutual Informationversus

SNR, with K = 100 antennas, r=0.3, for single-hop MIMO, 2 hops, and 3 hops
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Fig. 7. One-sided exponential correlation case: Asymptotic Mutual Information and Instantaneous Mutual Informationversus

KN , at SNR=10 dB, r=0.3, for single-hop MIMO, 2 hops, and 3 hops
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