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Abstract. The often daunting task of collecting and manually labelling
biometric databases can be a barrier to research. This is especially true
for a new or non-established biometric such as footsteps. The availabil-
ity of very large data sets often plays a role in the research of com-
plex modelling and normalisation algorithms and so an automatic, semi-
unsupervised approach to reduce the cost of manual labelling is poten-
tially of immense value.

This paper proposes a novel, iterative and adaptive approach to the au-
tomatic labelling of what is thought to be the first large scale footstep
database (more than 10,000 examples across 127 persons). The proce-
dure involves the simultaneous collection of a spoken, speaker-dependent
password which is used to label the footstep data automatically via a
pre-trained speaker recognition system. Subsets of labels are manually
checked by listening to the particular password utterance, or viewing the
associated talking face; both are recorded with the same time stamp as
the footstep sequence.

Experiments to assess the resulting label accuracy, based on manually
labelled subsets, suggest that the accuracy of the automatic labelling
is better than 0.1%, and thus sufficient to assess a biometric such as
footsteps, which is anticipated to have a much higher error rate.
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1 Introduction

When developing a new biometric one of the first considerations entails the col-
lection of a representative dataset of meaningful size. Data collection is notori-
ously expensive and problematic but instrumental to the success of a new project
and confidence in the results. Many fundamental questions need to be addressed.
Among them are: the number of samples; the number of clients; the enrolment
and labelling procedures. To get these wrong would devalue the database and
any results derived from it.

Doddington’s ‘rule of 30’ [1] gives some guidance regarding the number of
samples, the expected error rate and the confidence in the result. He states that
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‘to be 90 percent confident that the true error rate is within +/- 30 percent of
the observed error rate, there must be at least 30 errors’. Thus if we expect a
relatively higher error rate we may be satisfied with a smaller database than if
we expect a relatively lower error rate; there is a trade-off between database size
and expected error rate. Of course if we are researching a new biometric then
we cannot know the expected error rate; it is likely that one of the fundamental
goals of the research is to establish precisely this. We might opt to conduct an
initial trial on a small dataset to help us decide upon the required database
size, however to extract the best value the database should be sufficient for
both today’s and tomorrow’s research. Advances in biometrics research often
come from very large databases designed to facilitate the learning of complex
modelling and normalisation strategies which may not have been possible on
smaller datasets. Thus in order to prepare for the research of tomorrow it is in
any case always advantageous to collect as large a database as possible within
economic and practical constraints.

The financing of database collection can however be difficult to obtain espe-
cially when the research involves a new biometric for which a baseline error rate
does not exist and we cannot reliably predict the potential of the biometric under
investigation. It is sometimes possible to reduce the cost of collection through
automated collection systems and this can go someway to help the labelling of
the collected data, namely the assignment of ownership to each collected sample.

In the collection system described here there are two modes, supervised and
unsupervised. The initial enrolment of each person participating in the database
collection (donor) is supervised and hence the allocation of an identity label to
this enrolment data is also supervised. Subsequently, and for the large majority
of the data collection, the process is unsupervised. Thus a strategy is necessary
to assign the correct donor identity to each of the recorded signals. This pa-
per describes such a strategy using a combination of automation plus human
cross-checking. The automation itself uses a biometric approach based on per-
son specific spoken utterances captured at the same time as each of the footstep
signals is captured and recorded.

2 Concept of Automatic Labelling

The cost of human resources can represent a potential barrier to research: we
might have difficulty in justifying and financing the collection and manual la-
belling of a large database unless the commercial potential of a new biometric
is proven. However, we might not be able to demonstrate the true potential of
the biometric without a large database and we have something of a chicken and
egg situation. Over recent years we have been investigating a relatively new and
little researched biometric and in this paper we describe our approach to col-
lect a large database without the full cost of manual labelling. The idea is to
collect a multimodal biometric database, where the primary mode of interest is
footsteps and the secondary modes are speech, talking face and gait. Each set
(comprising footstep, speech, talking face and gait sequence) is assumed to be
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consistent, coming from just one person, by a time stamp assigned at the time of
capture from a single clock. Of course, in the absence of supervision, more than
one person could mischievously combine to give anomalous data sets but this is
thought to be a small risk under the given conditions. The secondary modes, par-
ticulary speech and talking face, are included specifically to assist in labelling
the database in order to subsequently carry out biometric research based on
footsteps. This labelling process is a combination of enrolment, automation and
human cross-checking. This paper describes the automation process based on
(acoustic) speaker recognition with the goal of accurately labelling the database.
Speech is chosen for convenience and is also one of very low proven error rates [2].
Speech also perhaps reduces the need for sequestering when compared to other
biometrics with lower EER, like fingerprints or iris. The assignment of a speaker
specific PIN gives a text-dependent characteristic and importantly provides a
means of human based cross-checking of the labels. The PIN is allocated at the
(supervised) enrolment stage.

Naturally, even when the speaker recognition has proven low error rates, there
will nonetheless be concerns over the labelling accuracy and its unpredictable
repercussions. This though, has to be seen in the context of (i) international
evaluation campaigns which have been shown to contain labelling anomalies,
and (ii) the trade-off between a large database (with a small number of labelling
errors) which provides the richness required for the development of complex
modelling and normalisation algorithms and a smaller database with (possibly)
no labelling errors. In any case for a larger database perhaps inevitably with
some labelling anomalies, we suppose that (i) the potential of the biometric can
be assessed and (ii) we have greater confidence in the results than we would
otherwise have for a smaller database. Even the sceptic has to accept that it
would be unwise to suppose that a database does not have labelling anomalies
and their potential for occurrence is a function of the size of the database. In
the approach described in this paper we accept that labelling errors are possible,
and this paper describes the efforts to minimize the number of errors using a
range of strategies.

Speech is used for the automatic labelling as shown in Figure 1. There is
a large data set captured in an unsupervised mode and hence unlabelled. This
is introduced into an speaker recognition system, which is trained on manually
labelled data as ground truth. Then a decision based on the speech signal is
taken to obtain new labels. These new labels apply not only to the speech but
also to the other contemporaneous signals in the data set, namely the footstep
signals together with the talking face and gait image sequences. We refer to one
example of these four signals as a set with the primary interest here being the
footsteps and the speech. The talking face has benefit in the manual labelling
and cross-checking for anomalies of a set.

At the time of carrying out the following experiments the database was com-
prised of a total of 11,537 sets. The collection of the database was unsupervised,
apart from the initial enrolment session of each person in the system, where
normally around 10 sets were manually labelled. Apart from the enrolment data



4 Ruben Vera-Rodriguez, John S.D. Mason and Nicholas W.D. Evans

\ Footsteps (+ talking face + gait ) >
Unlabelled ‘E@» Speaker :> - ‘
Data Xi Recognition S Declsion m»
System Y Labelled
Data
Manually Y,
Labelled
Data [ Training

Fig. 1. Speech-based automatic labelling system. The speaker recognition system
trained on labelled data receives unlabelled data. The decision process considers all
combination of scores from the data on the left and systematically labels the most
likely sets, passing them across to the right repeating the process until all data is
labelled or discarded.

(1,123 sets in total from 127 clients), more data was manually labelled (1,385 sets
in total). This labelling exercise took part during the collection stage itself and
proved the enormity of the task, amply demonstrating the need for automation.

In the speaker recognition system, each X; test data, left of Figure 1, being
i = 1....9,029, is tested against the Y; models, being j = 1....127, created from
the manually labelled data. This could be seen as a form of 1-in-N identifica-
tion if there was confidence that X; definitely came from one of the Y} persons
in the enrolled set. Alternatively, the task may be viewed as a specific case of
verification applying acceptance to the most likely pairing across all X, Y com-
binations. The benefit of this interpretation is (at least) two-fold, both being of
critical importance. The first covers the case when X, is outside of set Y. The
second is in terms of score normalization. Before any test-to-model score is as-
sessed it is normalized using standard techniques well established in the speaker
recognition world [8-10].

The key point is that, the assignment of any data set is prioritized in an order
of confidence. This means that the most likely assignments take place first. Also
once X is assigned, to say Y}, then it is possible to re-train the model for person
Y; in an adaptive manner, potentially improving the model as a representation
of person Y. Of course such adaptation can be dangerous in the case of false
acceptance. We address this issue in our experimental procedures (Sect. 5).

3 Speaker Recognition System

The speaker recognition system shown in Figure 1 is based on a linear frequency
cepstral coefficient (LFCC) front-end and a Gaussian mixture model (GMM)
system [4], using SPro® and ALIZE* open source toolkits. The GMM system

3 http://gforge.inria.fr /projects/spro/
4 http://www lia.univ-avignon.fr /heberges/ALIZE/
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is close to the description in [5]. The signal is characterised by 33 coefficients
including 16 LFCC, their first derivative coefficients and the energy derivative
(16LFCC + 16A + AE).

Unknown Tests

)
Training Models

Fig. 2. Representation of the score matrix after using the speaker verification system.
Test signal scores against trained models with manually labelled data (enrolment plus
human labelling).

The first experiment relates to 9,029 unlabelled sets tested against each of
the 127 models trained on the manually labelled sets (2,508). The recogniser
scores S; ; can form a score matrix as represented in Figure 2 with scores for
the 9,029 unlabelled sets plotted against the 127 models. The colour scale in
the figure shows the range of the scores. The 127 models are sorted according
to the amount of training data, with the largest on the left to models with the
smallest amount of training data on the right. The correlation with the amount
of training data and high scores is distinct, with almost half of the 127 models
having very few high scores. The 9,029 test signals have been sorted to have high
scores together per model, this way we could have an idea of the number of tests
that belong to each model. As Figure 2 shows, there are not many high scores
for models on the right; this suggests that there are not many test signals that
belong to those models. It is clear that score normalisation is essential in order
to remove the influence of the amount of data in the training models.

4 Score Normalisation

Score normalisation is widely used in biometrics, for example it is a key factor
when fusing different biometric modalities, and here in the context of speaker
recognition it is required to balance inherent test data and model variation. The
most popular methods for score normalisation are T-norm [8, 9] and Z-norm [10].
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4.1 Test Normalisation

First, a test normalisation is applied to the scores from each of the Y models for a
given test utterance (the rows of the score matrix in Figure 2). This normalisation
attempts to align test scores by using scores from impostor models. In the case
where a particular unknown test belongs to one of the models, only one of the
scores can be a true score while the rest correspond to impostor scores. Of course,
in the present context the one particular model is unknown, hence here all 127
scores are used with the one potentially true score assumed to be swamped by
the remaining 126 scores. A general equation for the test normalisation is given
by:

STni; = (Si,j — 1)/ o (1)

where STn; ; are the normalised scores and p; and o; the mean and standard
deviation of the impostor scores respectively for each test. Figure 3 (a) shows
an example of a test signal. The plot shows scores against the 127 models cor-
responding to a horizontal trajectory across Fig 2), and indicating a very high
likelihood of ownership of the given test signal by model number 105. The profile
after the test normalisation can be observed in Figure 3 (a) with red dashed line.
As observed, the effect of this normalisation makes a wider range for the scores
and also gives a common zero threshold. Figure 3 (b) shows the same but for
one of a bad test example where there is no score clearly higher than the rest.

4.2 Model Normalisation

Second, model normalisation is applied which attempts to align between-speaker
differences by producing statistical parameters for each model to align the scores
to zero. Figure 3 (c) shows an example of the score distribution for a good
model. As the figure shows there are some high scores on the right (zoom of
the distribution on the top of Figure 3 (c¢)) that are likely to correspond to true
scores for this model, and a large number of low scores on the left, which would
be likely to belong to other models or not within the 127 set. To carry out a
normalisation similar to Z-norm, it is necessary to obtain the distribution for
the out of class data to calculate its mean and standard deviation. Therefore,
the score distribution was approximated by two gaussian distributions, using the
one with lower mean and higher weight as the distribution of the out of class
data. A general equation for the model normalisation is given by:

SZTni; = (5Tni; — p;)/0; (2)

where SZTn; ; are the normalised scores and p; and o; are the mean and
standard deviation of the out of class scores respectively for each model. Fig-
ure 3 (e) shows the effect that this normalisation makes to the distribution, i.e.
aligning the out of class distribution to zero. Figure 3 (d) shows an example of
a bad model, one with either small amount of training data, or few high scores.
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Fig. 3. (a)Example of scores for a good test utterance against 127 models. Black solid
profile before normalisation. Red dashed profile after T-norm. Solid light blue profile
after ZT-norm. (b) Same as (a) but for a bad test utterance. (c)Example of score
distribution for a good model and 9,029 test sets before normalisation. (d) Same as (b)
but for a bad model. (e) Same model as (c) but after ZT-norm. (f) Same model as (d)
but after ZT-norm.

The effect of the model normalisation can be observed in Figure 3 (f). This nor-
malisation is called ZT-norm and in [11] a reduction of 20% EER is reported
when compared with standard Z-Norm.

5 Automatic Labelling, Implementation and Results

This section describes the iterative process followed to carry out the labelling of
the database. Figure 4 shows the structure of the database, which is a ragged
array with different amounts of data per person and per labelling class: enrol-
ment, manually labelled, automatically labelled (by speaker recognition) and
unlabelled. The diagram represents a state during the iterative recognition and
label allocation process. The enrolment session is the only one that is square as
there are consistently 10 data sets per model. Then, there is another extra set
of manually labelled data, followed by the automatically labelled set and finally
the unlabelled set. Unlabelled data on the top is iteratively moved down as it
becomes labelled by an iterative process. The automatic labelling process may
be summarised by the following steps:

Test all unlabelled data against all models (obtaining scores as per Figure 2).
— ZT-norm the scores.

For each unassigned set find the most likely model.

— Sort all unassigned sets.
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— Label the best set(s).
— Update model(s) using newly labelled data.

Unlabelled Data
(hypothesized shape)

Automatically Labelled Data . Automatic
1 Labelling

Manually Labelled Data

Data Sets

Enrolment Data

Training Models

Fig. 4. Database structure. Enrolment session data on the bottom, then manually
labelled data, assigned data and unlabelled data on the top. In each iteration the
best sets of the unlabelled data are assigned to the respective models according to the
criteria defined.

This process is repeated until the label confidence threshold is reached shown
as the knee point in Figure 5 (a). As indicated above, the assignment of the
unknown sets to the models is an iterative process. In each iteration unlabelled
data is tested against 127 models producing a score matrix as in Figure 2. Then a
ZT-norm is carried out as described in Section 4. At each iteration, data with the
highest overall score statistics (best sets) are assigned to their respective models,
and then are used to re-train the models in an adaptive manner. To prioritize
the tests to be assigned to the models in an order of confidence, the tests are
sorted considering statistics of the peak score and variance of the remaining 126
scores for each test (rows of Figure 2). In this way, tests with less confidence
remain until the last iterations. This strategy is independent to the number of
models, which in a dynamic database can be variable.

At each iteration it is possible to estimate a figure of the relative merit of the
assignment. Figure 5 (a) shows the EER for the tests assigned at each iteration.
The left part of the figure is a region with high confidence due to the sorting of
the tests assigned (tests have similar profiles as example in Figure 3 (a)). The
middle part of Figure 5 (a) is a region with less confidence, and the right part is
a region of very low confidence suitable for manual labelling or rejection, where
examples such as those in Figure 3 (b) can be found. Figure 5 (a) shows how the
EER stays in a range of 0.06% - 0.1% until the last 400 tests are assigned. Then
the error increases to 0.58%. This suggests that either this data are different
in some way to data previously assigned either due to within class variation
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or alternatively the data comes from outside of the set of the 127 speakers.
Therefore, this data in this region and to the right should be labelled manually
or rejected. Using the above strategy, 8,867 out of the 9,029 unlabelled sets were

each 1

In order to assess the labelling accuracy, a further speaker recognition exper-

abelled to one of the 127 models.

iment was conducted using manually labelled sets. This represents a meaningful

evaluation of the speaker recognition system and hence a reasonable assessment
of the automatic labelling of the database. The results are shown in Figure 5

(b). The profiles relate to two systems trained on a manually labelled set of
data common to both, namely a smaller set of further manually labelled data
and a much larger set (8,867) of automatically labelled data. most reassuringly,

the error rate for the later are smaller than for the manually labelled set. This
might be attributed to differences in the gender ratio: in the manually labelled
set a balance across gender was sought; in the automatically labelled set there
are proved to be more males than females given that is well known that speaker
recognition error rates tend to be higher for females. This could account for the

difference in the two profiles.
Finally, having lower confidence levels, data in the vicinity of the knee point in
Figure 5 (a) could be manually labelled. Even so, the numbers requiring manual

labelling have been massively reduced by the automatic procedure described

with a predicted error rate in the region of 0.1% well within limits for study of
footsteps as a biometric, the ultimate goal of this work.

07

0.6

0.5F]

o

e
EER %

02

0.1

04r

0.3

(i) High confidence region
(ii) Lower confidence region

(i) Manual labelling or rejection region

0 (i) (i)

S —

) kneg point )

. . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Tests Asigned

o

Miss probability (in %)

= = = Manually labelled data
— i labelled data

05

02

0.1

0.05

0.009.01002 005 0.1 02 05 1 2
False Alarm probability (in %)

Fig. 5. (a) EER against test assigned in the iterations. (b) DET curve estimating the
expected error of the speaker recognition system. Manually labelled data in dashed
profile, and automatically labelled data in solid profile.

6 Conclusions

This paper describes an automatic system to label a database designed to assess

footsteps as a biometric. The novel contribution is the way in which the data
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has been collected and labelled. A total of four modes were collected simultane-
ously namely footsteps, speech, talking face and gait. All four modes within a
set were linked by the same time stamp. Of principal importance are the foot-
steps, followed by the speech, the later included for labelling both manually and
automatically. The large majority of the 9,000 plus signals have been labelled
automatically using speech as a biometric. This has significantly reduced the
manual effort and therefore cost of creating the database. Most large scale col-
lections such as this one, are likely to have some form of data anomalies. Here
we estimate the labelling errors to be less than 1% and thus, sufficient for the
objectives of studying footsteps as a biometric. Finally it is clear that this sys-
tem could be applied to the collection of other large scale biometric databases,
where supervision and labelling is likely to prove expensive.
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