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Abstract—Power-Line is recently considered as a future
medium for the high rate transmissions. But the development
of Power Line Communications (PLC) highly depends on the
knowledge of the channel characterizations. For this reason, a
large number of attentions have been payed on the PLC channel
analysis using the measurements. This paper highlights an infor-
mation theoretic analysis for indoor PLC channel environment
investigation, wherein, the estimated channel entropy and the
power delay spectrum are expected to give us much useful
information to describe the indoor PLC channels. Moreover, the
study on the PLC channel degree of freedom distribution and
the discussion of choosing whether wide-band or multi-band are
included in this paper.

I. I NTRODUCTION

Nowadays, power-line has become a quite attractive medium
for the indoor home networks. Its wide-band services in the
2 − 30 Mhz frequency band turns out to achieve data trans-
mission rates up to200 Mb/s [?], whereby, it can be utilized
for multi-purposes, e.g. data transmission, home automation
products control and internet access. Moreover, the PLC
bandwidth is possibly to extend up to100 Mhz, in order to
further increase the data rates. Meanwhile, its lower economic
cost also makes economical sense. However, the realizationof
the access networks requires the PLC technology to provide a
satisfying quality of service. To realize so, a study of power-
line channel characterizations tends to be mandatory. Although
the extensive researches on characterizations of power-line
channels have been studied as for instance [?], [?], [?], these
studies are mainly focused on frequencies not beyond30 Mhz.

Recently, the indoor PLC channel measurements were col-
lected by Orange Labs, Lannion [?]. These measurements were
undertaken up to100 Mhz bands in various indoor channel
environments (country and urban, new and old, apartments
and houses). Further, it turns out that the PLC channels can
be classified into9 classes in terms of their capacities. Later
after, a time-frequency analysis based on these measurements
was reported in [?], where the estimated coherence bandwidth
and RMS delay spread were studied.

In this paper, we aim at investigating the channel character-
izations, from an information theory point of view, for these
different classes. It shows that the entropy analysis can already
give us much useful information on the channel knowledge
with respect to the different channel classes and the various
bandwidth. Moreover, based on the subspace analysis, we

intend to verify such information to further make the channel
characterizations be clearer. Furthermore, we point out that
the transmission over a wide-band might not be a good idea
comparing to multi-band conception.

The paper is organized as follows: Sec. II gives a brief
description of the measurement environment. In Sec. III, we
analyze the channel features based on the Maximum Entropy
Method (MEM). In Sec. IV, we further verify the remark,
obtained in the Sec. III, using a subspace analysis. In Sec. V,
we present the multi-band evaluation.

II. CHANNEL SOUNDER HARDWARE

In this section, we give a simple description of the devices
used in the measurements. The wide-band propagation mea-
surements were undertaken in the30 kHz-100 Mhz band in
various indoor channel environments (country and urban, new
and old, apartments and houses) and were executed by Orange
Labs, Lannion [?]. The transfer function measurements were
therefore carried out in the frequency domain by means of a
vectorial network analyzer, as shown in the block diagram of
Fig. 1.
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Fig. 1. Power-line channel measurement system.

The details presenting each of these boxes can be found in
[?]. After a large number of data collecting and analyzing, the
indoor PLC channel can be statistically classified into9 cate-
gories named1 − 9 classes. Further, a statistical study on the
measured transfer function peaks and notches is implemented
for each channel class. In turns, there come up with a PLC
magnitude generator and a phase generator. In this paper, we



will analyze the channel characteristics w.r.t the variousclasses
using these measurements.

III. M AXIMUM ENTROPY METHOD ANALYSIS

The principle of Maximum Entropy Method (MEM) was
originally used by Burg to analyze the signal spectrum based
on its second-order statistics [?]. Nevertheless, this approach
was further dually-applied to modelize the wireless channel
supposing that the covariance channel knowledge is available
[?]. In fact, when the modelling is based on measurements,
the estimate of the covariance channel knowledge is always as-
sumed to be available. Here, we aim at taking advantage of this
method to investigate the indoor PLC channel characteristics.
Let {hi}i∈Z

be the sequence of samples at frequenciesiδf , δf
is the frequency resolution, of the channel frequency response
and, then, the spectral autocorrelation function is definedas

R(k) = E[hih
∗
i+k], k = 0, · · · , N, for all i (1)

where E[·] denotes expectation; the superscript∗ stands for
conjugate. According to Burg’s theorem [?], the maximum
entropy of a random process fits theN -th order Autoregressive
(AR) model with its form as

hi = −

N
∑

k=1

akhi−k + Zi, (2)

where theZi are i.i.d. ∼ N(0, σ2) and a1, · · · , aN , σ2 are
chosen to satisfy (1). The coefficientsa1, · · · , aN , σ

2 can be
obtained by solving the Yule-Walker equations

R(0) = −

N
∑

k=1

akR(−k) + σ2,

R(q) = −
N

∑

k=1

akR(q − k), q = 1, · · · , N.

The power delay spectrum (PDS) of theN -th order AR
process (2) yields

P (τ) =
σ2

|1 +
∑N

k=1
ake−j2πkτ |2

, (3)

whereτ = τ̂
Ts

is the normalized delay and̂τ is the delay in
seconds;Ts is the symbol duration. In practice, the spectral
autocorrelation function is estimated from a finite set ofN
frequency measurements e.g.[hl

1, · · · , h
l
N ] over a bandwidth

of Nδf (l is the l-th channel realization). A sampled autocor-
relation function yields [?]

R̂N (k) =
1

LN

L
∑

l=1

N−k
∑

i=1

hl
i(h

l
i+k)∗, k ≥ 0,

whereL is the number of channel realizations. For a given
N , we estimated the autocorrelation function̂RN (k), the
coefficientsâN

k and the PDSP̂N (τ). As a consequence, the
estimated entropy is given by

ĤN = log(πe) +

∫ 1/2

−1/2

log
σ2

|1 +
∑N

k=1
âN

k e
−j2πkτ |2

dτ.
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Fig. 2. Estimated entropy and PDS for class 3.
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Fig. 3. Estimated entropy and PDS for class 6.
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Fig. 4. Estimated entropy and PDS for class 9.

The roots of the power delay spectrum (3) determine the
number of significant clusters. However, in practice, some
existing roots may not be significant and they are unnecessary
to model. The analysis on thêHN w.r.t N may demonstrate
this.

The estimated entropy and PDS for the class3, 6, 9 are
depicted in Fig. 2, 3 and 4, respectively. In each class, the esti-
mated entropy is plotted versus an ascending bandwidth up to
100 Mhz. The estimated PDSs with varied bandwidth are also
given in these figures (we take bandwidth of5, 10, 30, 50, 100
Mhz for comparison). Let us first see the entropy comparison.
The entropy of the class3 (see, Fig 2(a)) at a fixed bandwidth
is higher than that of the class6 and 9 at that bandwidth.
According to Burg’s saying that the higher entropy leads to a
wider spectrum [?], we can therefore expect a wider PDS for
the class3 than the class6 and9. This inference can be easily
verified by checking the estimated PDSs (the PDSs are plotted
with different scales) with a fixed bandwidth (e.g. comparing
Figs. 2(f), 3(f) and 4(f)). Thereby, we can reasonably deduce
that the channel impulse response (CIR) of the class3 is longer
than that of the class6 and9 (the class9 has the shortest CIR).
It alternatively says that the frequency transfer functionfor the
class9 is flatter than the other classes. Thus, our first viewpoint
yields that with increasing the class number, the length of
the CIR tends to be a descending order and the channel with
smaller class number suffers more frequency selectivity effect.

Next, we intend to investigate how does the entropy change
by increasing the bandwidth for each class. In the class3 case,
we find that in the narrow-band region (say,1 − 30 Mhz),
the entropy does not rapidly descend when we increase the
bandwidth. However, for the class9, the entropy slope appears
to be quite steep in this region. That means, by augmenting
the bandwidth up to30 Mhz, the class9 gains much more
information about the channel knowledge than the class3. But
if we move to the wide-band region (i.e. beyond30 Mhz), the
entropy of the class3 keeps descending, although again, it
descends slowly. The class9, on the contrary, shows a flat
floor tendency. For this situation, it seems that, in the wide-
band region, the class9 cannot gain very much information
from the wide-band but the class3 still does. (Note that,
the class6 places somewhere in between the class3 and
9). Actually, the estimated PDS may give the evidence to
confirm this deduction. Let us see the PDS in narrow-band
case (e.g.5, 10 Mhz) for each class. We find that from5
to 10 Mhz, the PDS of the class3 does not have a well
described shape, but, in the class9 case, its PDS has almost
a definitive shape. When we switch to wide-band region, the
PDS of the class9 barely changed comparing to the ones
in narrow-band region. However, the PDS of the class3
has pretty much refined its shape based on the information
obtained from the wide-band. Indeed, our viewpoint above
can give the explanation. That is: since the class3 has higher
selectivity behavior in frequency domain, it surely needs more
samples (in frequency) to estimate the model, on the contrary,
the class9 behaves more flatly in frequency, so even a small
amount of samples in frequency may be enough to describe the
channel. Alternatively, the estimated entropy can also confirm
such explanation, i.e. since higher entropy results in a higher
uncertainty for the channel knowledge, thus, a modelling for
the smaller class number channels with only a small number
of samples tends to be fairly hard.

On the other hand, for the channel behaving like the class9,
we usually suggest to use multi-band system instead of wide-
band. Thus, we can gain more capacity from the bands. The
multi-band evaluation will be discussed later on.

IV. D EGREE OFFREEDOM ANALYSIS FOR INDOORPLC
CHANNEL

In the preceding section, we investigated the indoor PLC
channel characteristics using a MEM approach. We find that
the smaller number of PLC channel class possesses the longer
delay spread and suffers worse frequency selectivity. More-
over, we remark that the channel of larger class number might
be more appropriate for multi-band system. In this section,
we further verify this remark by investigating the degree of
freedom (DoF) for the different channel classes. Our approach,
to do so, is based on the analysis of the channel subspace and
the eigendecomposition of the covariance matrix,Kc, of the
samples of channel time response, which can be obtained by
applying the inverse Fourier transform to the samples of the
observed channel process[h(0), · · · , h((N − 1)δf )]T , where
the superscriptT stands for the transpose operation, in the



frequency domain [?]. The covariance matrix of measured
channel samples,c, is written as

Kc = E
[

ccH
]

= E
[

ggH
]

= σ2I, (4)

where g is a vector of samples of the noise-free channel
process, andI is the identity matrix; The superscriptH denotes
paraconjugate operation. Assume that the noiseless channel
has lengthp, then the maximum-likelihood covariance matrix
estimate computed fromN statistically independent channel
observation with lengthN andp < N yields [?]

KN
c

=
1

N

N
∑

i=1

cic
H
i . (5)

The covariance matrix is Hermitian positive definite. Thus,
a unitary matrixUc exists such that the Karhunen-Loéve (KL)
expansion gives

KN
c

= UcΛcU
H
c

=

N
∑

i=1

λi(c)ψi(c)ψ
H
i (c), UH

c
Uc = IN ,

(6)
where λ1(c) ≥ λ2(c) ≥ · · · ≥ λN (c), ψi(c) is the i-
th column of Uc; λi(c) and ψi(c) are thei-th eigenvalues
and eigenvectors ofKN

c
, respectively. Decomposing (5) into

principal and noise components yields

Us,c = [ψ1(c), · · · , ψL(c)] ,

λ1(c) ≥ · · · ≥ λL(c),

Un,c = [ψL+1(c), · · · , ψN (c)] ,

λL+1(c) ≥ · · · ≥ λN (c),

where Us,c ⊥ Un,c. Us,c defines the subspace containing
both signal and noise components, whereasUn,c denotes the
noise only subspace.L is the number of significant eigenvalues
which also represents the channel DoFs [?], in the sense
that any set of observations can be characterized by a set of
approximatelyL independent random variables which excite
L modes (their corresponding eigenvectors).

The empirical results are shown as below. In our simulation,
the frequency resolution was100 Khz/sample. We first see
the Power Delay Profile (PDP) curves which are depicted in
Fig. 5. It confirms our viewpoint presented in the preceding
section. In Figs. 6, 7 and 8, we plot, for different classes, the
fraction of the captured energy forM considered eigenvalues
defined byEM =

∑M
i=1

λi(c)/
∑N

i=1
λi(c), whereN is the

total number of eigenvalues. We observe that, for the class
3 and 6, the majority of the channel energy (say,90%),
in narrower bandwidth case, is confined in a small number
of significant eigenvalues; whereas in the wide band-width
case, the channel energy is spread over a large number of
the eigenvalues. However, this situation is a bit differentfor
large class number (e.g. class9). In Fig. 8, the solid cures
represent the bandwidth less than50 Mhz and for the ones
beyond50 Mhz are plotted in dash lines. We find that when
the bandwidth is less than50 Mhz, the curves have a similar
disposition as in the class3 and6 cases. However, when the
bandwidth is beyond50 Mhz, the curves are displaying by an
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Fig. 5. Power Delay Profile in variant class case.
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Fig. 6. Fraction of the captured energy versus the number of significant
eigenvalues in class 3 case.

opposite order. Furthermore, for the class9, the majority of the
channel energy concentrates on the very beginning number of
eigenvalues, e.g., the first5 eigenvalues contain almost84%
channel energy for all bandwidth cases. If we further zoom
in the zone A (see, Fig. 9), it seems that the first extracted
DoFs, with smaller bandwidth cases, have the smaller energy
compared to the others extracted with larger bandwidth.

Fig. 10, plotted for95% captured energy, shows that the
number of significant eigenvalues increases with the channel
bandwidth. We see that, for the class3, the increase is linear
until bandwidth is less than50 Mhz, where a saturation
effect begins to occur. This critical bandwidth can be actually
seen as the threshold, below which, the signal bandwidth
does not effectively provide sufficient resolution to resolve
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all eigenvalues, or the complete number of multi-path com-
ponents. Beyond this point, on the other hand, the channel is
degenerated in the sense that all the paths can be resolved.
Therefore, it will be not necessary to continue enlarging the
bandwidth. It is obvious that the class9 begins to saturate at a
pretty smaller bandwidth threshold (around20 Mhz) and the
number of DoFs for the class9 is much less than that of the
class3. Thus, this can prove our remark that for larger class
number, multi-band system is more appropriate.

V. M ULTI -BANDS EVALUATION

In the section III, we remarked that the larger class number
PLC channel is more appropriate for multi-band system based
on the entropy analysis. Then, in the section IV, the subspace
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analysis gave us an evidence that the number of DoFs for the
larger class number is much less than the smaller class number
and, with increasing the bandwidth, the DoF cannot be signif-
icantly increased for the larger class number. The conclusions
of the previous two sections are actually consistent with each
other. Finally, in this section, we will numerically evaluate our
remark. For the sake of simplicity, we still choose these three
classes i.e. class3 6 and 9 for comparison. In what follows,
we will calculate the channel capacity of using multi-band and
wide-band for each class. The capacity calculation is based
on the Shannon’s capacity formula and for the same reference
noise and power spectral density (PSD) emission mask [?].
The calculation parameters are: Carrier width (δf = 100 Khz);
Transmitted PSD (Pe = −50 dBm/Hz); White noise PSD
(Pb = −140 dBm/Hz); Number of the carriersN is subject



to the bandwidth (i.e. wide-band:1 − 90 Mhz; multi-band:
1 − 30, 30 − 60, 60 − 90 Mhz). The capacityC formula for
one measurement is given by

C = ∆f
N

∑

i=1

log2

(

1 +
Pe · |h(iδf )|2

Pb

)

(bis/s) (7)

The results are layout in the Table.??, where the capacity is
averaged over a large set of measurements. The results proved
our remark, i.e. the capacity improvements for the class9, 6
and3, using multi-band instead of wide-band, are5.7, 4.6 and
3.3 Mbits/s, respectively. This improvement can also be called
multi-band gain.

TABLE I
CAPACITY COMPARISON.

Capacity (Gbits/s) class9 class6 class3

C1−30 0.8371 0.6952 0.5329
C30−60 0.8548 0.6873 0.4931
C60−90 0.8245 0.6335 0.4459
C1−90 2.5107 2.0115 1.4686

VI. CONCLUSION

In this paper, we analyzed the indoor PLC channel charac-
teristics from an information theory point of view for different
PLC classes. We first used the MEM approach to estimate the
entropy and PDS for each channel class. It turned out that
the small number class channels have relatively longer delay
spread than the larger number class ones. In addition, the small
number class channels behave more selectivity in frequency.
Moreover, from the hint of entropy analysis, we remarked
that larger number class channels are more appropriate for
multi-band system. Further, an eigendecomposition analysis
was applied to investigate the DoF for each class. It revealed
that the DoF of small number class channels are higher than
that of larger number class ones. Meanwhile, we observed that,
with increasing the band-width, the speed of DoF tending to
a saturation for larger number class is faster than the smaller

number classes, which further verified our remark. Finally,
we evaluated the multi-band benefits in terms of the channel
capacity to eventually prove our remark.
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