
All Your Contacts Are Belong to Us: Automated Identity
Theft Attacks on Social Networks

Leyla Bilge, Thorsten Strufe, Davide Balzarotti, Engin Kirda
EURECOM

Sophia Antipolis, France
bilge@eurecom.fr, strufe@eurecom.fr, balzarotti@eurecom.fr, kirda@eurecom.fr

ABSTRACT

Social networking sites have been increasingly gaining popu-
larity. Well-known sites such as Facebook have been report-
ing growth rates as high as 3% per week [5]. Many social
networking sites have millions of registered users who use
these sites to share photographs, contact long-lost friends,
establish new business contacts and to keep in touch. In
this paper, we investigate how easy it would be for a po-
tential attacker to launch automated crawling and identity
theft attacks against a number of popular social networking
sites in order to gain access to a large volume of personal
user information. The first attack we present is the auto-
mated identity theft of existing user profiles and sending of
friend requests to the contacts of the cloned victim. The
hope, from the attacker’s point of view, is that the con-
tacted users simply trust and accept the friend request. By
establishing a friendship relationship with the contacts of
a victim, the attacker is able to access the sensitive per-
sonal information provided by them. In the second, more
advanced attack we present, we show that it is effective and
feasible to launch an automated, cross-site profile cloning
attack. In this attack, we are able to automatically create
a forged profile in a network where the victim is not regis-
tered yet and contact the victim’s friends who are registered
on both networks. Our experimental results with real users
show that the automated attacks we present are effective
and feasible in practice.

Categories and Subject Descriptors

D.2.0 [Software]: Software Engineering : General; H.M
[Information Systems]: Miscellaneous

General Terms

Security

Keywords

Social Network Security, Identity Theft

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

1. INTRODUCTION
A social network is a social structure that is made up

of nodes representing individuals or organizations. These
nodes may be tied to each other by properties such as friend-
ship, common values, visions, ideas, business relationships
and general interests. Although the idea of social networks
has been around for a long time (e.g., see [14]), social net-
working web sites and services are a relatively new phe-
nomenon on the Internet. Business relationship-focused so-
cial networking sites such as XING [13] (previously known
as OpenBC) and LinkedIn [6], as well as friendship-focused
social networking sites such as Facebook [4], MySpace [8],
StudiVZ [11] and MeinVZ [7] have been gaining popularity
among Internet users. In fact, LinkedIn boasts on its web
site that it has 30 million registered users. XING, a business
networking site that is very popular in Switzerland, Ger-
many and Austria, claims to have 6 million registered users.
Although it has only been created four years ago, Facebook
now has more than 150 million active users and is reporting
growth rates of 3% per week. According to Facebook, it
registers 30 billion page views per month and is the largest
photo storage site on the web with over 1 billion uploaded
photos [5].

Unfortunately, as the interest for a new technology grows
on the Internet, miscreants are attracted as well. For exam-
ple, spam was not a major problem until the end of the ’90s.
However, as more and more people started using e-mail, un-
solicited (i.e, spam) e-mails started increasing in numbers.
In fact, spam has reached such high proportions that the
Spamhouse Project [12] now estimates that about 90% of
the incoming e-mail traffic in North America, Europa and
Australasia is spam. Also, the increase in the popularity of
e-mail also resulted in an increase in the numbers of mali-
cious e-mails (e.g., e-mails with worm attachments, phishing
e-mails, scam e-mails, etc.). Today, e-mail is a popular way
of spreading infections.

As the popularity of social networking sites increase, so
does their attractiveness for criminals. For example, worms
have recently emerged that specifically target MySpace and
Facebook users [9]. These worms make use of old ideas that
are applied to a new technology. Analogous to classic worms
such as LoveLetter [3] that used the contacts in a victim’s
Outlook address book to spread, these new social network-
ing worms use the friend lists of a victim to send a copy
of themselves to other social networking users. Although
such e-mail attachments may raise more suspicion now as
such tricks have already been seen by many e-mail users,
they are not as well-known on social networking sites. Fur-

thermore, note that incoming e-mails with attachments are
often scanned for malicious content and Bayesian filters are
applied to sort out unsolicited mails. In comparison, social
networking sites do not usually provide filtering mechanisms
or warnings for dangerous content, hence, making it easier,
in principle, for a potential attacker to send malicious appli-
cations and URLs to victims.

Fortunately, so far, social networking sites and services
have been spared from large-scale, high profile attacks. Nev-
ertheless, social networking sites are an attractive target for
attackers because of the nature of the sensitive information
that they contain on registered users. Typically, users enter
their real e-mail addresses and provide information on their
education, friends, professional background, activities they
are involved in, their current relationship status and some-
times even list their previous relationships (e.g., on Face-
book, one may read that Mr X. was together with Ms Y
until they broke up in 2006). Hence, from the attacker’s
point of view, access to this type of detailed, personal infor-
mation would be ideal for launching targeted, social engi-
neering attacks, now often referred to as spear phishing [2,
1]. Furthermore, the collected e-mail addresses and personal
information would be invaluable for spammers as they would
1) have access to e-mail addresses that belong to real peo-
ple (i.e., one problem spammers face is that they often do
not know if the e-mail addresses that they collect are indeed
being used by real people or they are just secondary ad-
dresses that are not regularly read) and 2) have information
about the people using these e-mail addresses allowing them
to efficiently personalize their marketing activities, tailored
according to the knowledge from the target’s profile. Also,
note that the ability to associate personal information with
an e-mail address is important to be able to successfully by-
pass spam filters [21]. Such filters usually generate a list of
“spammy” tokens versus “good” tokens after training with a
large set of previously received e-mails. As a result, e-mails
that contain the name of the user receiving the e-mail, or
names of people that he is acquainted with tend to receive
lower spam ratings than e-mails that are less personal. As
a result, if the spammer is able to include some personal in-
formation in the spam that he is sending, he would be able
to improve his chances of reaching the targeted user.

Typically, a prerequisite for being able to access personal
information in a social networking site is to have a confirmed
personal “relationship” with the person who is concerned.
The default setting in Facebook is to allow all confirmed
friends to have access to the personal information (e-mail
address, photographs, etc.), but not to provide it to uncon-
firmed third parties. In LinkedIn, the contacts of a person
can only be accessed if it is a confirmed business contact,
and therefore he/she has already accepted a request and
confirmed the relationship.

Hamiel and Moyer conducted an impersonation experi-
ment in which they created a fake profile on LinkedIn for
the well-known security expert Marcus Ranum. The au-
thors obtained the information to create a plausible profile
by manually surfing the web, visiting Ranum’s personal web
page, and his entry in Wikipedia [25]. By impersonating
a high-profile person, the authors showed how effective an
impersonization attack can be. The forged profile received
many friend requests, even from one of the target’s immedi-
ate family members.

In this paper, we investigate how easy it would be for a

potential attacker to launch this type of impersonization at-
tacks in an automated fashion against a number of popular
social networking sites in order to gain access to a large vol-
ume of personal user information. Unlike a Sybil attack [17]
where the attacker aims to subvert a reputation system of
a peer to peer or a social network by creating a large num-
ber of pseudonymous entities, the attacks presented in this
paper consist of the automated identity theft of real user
profiles. In the first attack we clone an already existing pro-
file in a social network and we send friend requests to the
contacts of the victim. Hence, we are able to“steal” the con-
tacts of a user by forging his identity and creating a second,
identical profile in the same social network. Having access
to the contacts of a victim, therefore, means that we can
access the sensitive personal information provided by these
contacts. Our experimental results show that a typical user
tends to accept a friend request from a forged identity who
is actually already a confirmed contact in their friend list.

In the second attack we present, we show that it is effec-
tive and feasible to launch an automated, cross-site profile
cloning attack. In this attack, we are able to automatically
identify users who are registered in one social network, but
who are not registered in another. We can then clone the
identity of a victim in the site where he is registered, and
forge it in a social networking site where he is not registered
yet. After we have successfully created the forged identity,
we can then automatically attempt to rebuild the social net-
work of the victim by contacting his friends that we have
identified to be registered on both social networking sites.
Our experimental results suggest that this attack is espe-
cially effective because profiles in this case only exist once
on the social networking site that is being targeted. As a
result, the friend requests that we send look perfectly legit-
imate and do not raise suspicion with the users who have
been contacted.

We implemented our attacks in a prototype system called
iCloner (identity Cloner). iCloner consists of several compo-
nents that are able to crawl popular social networking sites,
collect information on users, automatically create profiles,
send friend requests and personal messages. Furthermore,
iCloner also supports CAPTCHA [16] analysis and break-
ing capabilities that make our attacks feasible against social
networking sites that employ CAPTCHAs to prevent auto-
mated access.

It is important to note that the attacks we present in this
paper can potentially be launched on a large scale, allowing
an attacker to control hundred of thousands of cloned ac-
counts and thus reaching millions of real user profiles. Fur-
thermore, if the attacker has a high number of different IP
addresses at his disposal (such as a botnet that consists of
thousands of compromised hosts), the detection of an au-
tomated attack like the ones presented in this paper may
become more difficult.

The contributions of this paper are the following:

• We show that it is feasible in practice to launch auto-
mated attacks against five popular social networking
sites. In particular, we present two automated iden-
tity theft attacks: Profile cloning and cross-site profile
cloning.

• Even though some of the sites employ CAPTCHAs
to prevent automated access, in some cases, there is

Source
Social
Network

Target
Social
Network

Crawler

Profile
Creator

Message
Sender

CAPTCHA
Analyzer

DB
Identity
Matcher

Figure 1: An architectural overview of iCloner

significant room for improvement to make these CAP-
TCHAs more difficult to break.

• We present experimental results with real users and
show that the attacks we present are feasible in prac-
tice. Our results confirm empirically, as one would ex-
pect, that most social network users are not cautious
when accepting friend requests or clicking on links that
are sent to them. In fact, many are even willing to ac-
cept friend requests from people they do not know.

• We make suggestions on how social networking sites
can improve their security, and therefore, better pro-
tect the privacy of their users.

The rest of the paper is structured as follows. In Sec-
tion 2, we give a brief overview of iCloner, our prototype
attack system. In Section 3, we describe the two cloning at-
tacks that we used in our experiments to gain access to the
victims’ contacts. In Section 4, we discuss the results of our
experiments. In Section 5, we discuss how social networking
sites can improve their security. In Section 6, we discuss
related work and conclude the paper in Section 7.

2. ICLONER OVERVIEW
In this section, we give a brief overview on the architecture

of iCloner.

2.1 Architecture of the system
Our prototype attack system consists of four main com-

ponents: The crawler component is responsible for crawling
the target social networking site and collect information on
users that have chosen to make their profiles public. The
personal information of these users, therefore, can be ac-
cessed by all members of the social network. In some net-
works, such as Facebook, the default setting does not allow
anyone to see any other person’s personal information unless
they are friends. However, by default, friend lists are pub-
lic information on Facebook. In contrast, one needs to be
friends (i.e., business colleagues) with a person on LinkedIn
to be able to see their contacts. Our crawler component
is able to crawl through StudiVZ, MeinVZ, Facebook and
XING and collect information on contact lists and profiles
if these are accessible to the public. The crawler also keeps
track of which user profiles could not be retrieved (because
of more restrictive user access settings).

The identity matcher analyzes the information in the data-
base and tries to identify profiles in different social networks

that correspond to the same person. The profile creator
component can then use this information to create accounts
in a social network where the victims have not registered yet,
or to duplicate an existing profile inside the same network.

Finally, the message sender component is responsible to
login into the created accounts and automatically send friend
requests to the people that are known to be friends with
the victim. Depending on the social networking site that
is being targeted, CAPTCHAs might need to be solved to
create accounts, to send friend requests, and sometimes even
to access a user’s profile (if a user sends many requests, a
social networking site might request to verify that the user
is a real person and not a script).

The CAPTCHAs are analyzed by the CAPTCHA analysis
component in our system. In particular, we have analyzed
the CAPTCHAs that are displayed by SudiVZ, MeinVZ,
and Facebook and have designed techniques to break these
CAPTCHAs with a success rate that makes automated at-
tacks feasible in practice. Note that we have not encoun-
tered CAPTCHAs on LinkedIn, and did not need to solve
CAPTCHAs for our experiments with XING.

Figure 1 gives an architectural overview of iCloner and
depicts the dependencies between the various components.

2.2 Breaking CAPTCHAs
A CAPTCHA [16] (Completely Automated Public Tur-

ing test to tell Computers and Humans Apart) is a type of
challenge-response test that is commonly used to determine
whether or not the user of a certain application is a human
being. Therefore, the key feature of any CAPTCHA algo-
rithm is the ability to generate tests that are at the same
time easily solvable by humans, but very hard to solve for a
computer application. For instance, since most of the CAP-
TCHAs are based on the ability to recognized a text in pres-
ence of noise, a good CAPTCHA should be resistant against
Optical Character Recognition [24] (OCR) techniques.

Just like many other online web services, in social net-
works, CAPTCHAs are usually employed to prevent auto-
mated programs from accessing and abusing the provided
services. For example, without CAPTCHAs, it would be
trivial for miscreants to crawl the social network in order
to automatically collect personal information, and spam the
registered users.

Even though breaking CAPTCHAs is not in the focus
of this paper, in order to automate our attacks we had to
develop a number of CAPTCHA breaking techniques based
on a set of open source tools and custom-developed scripts.
We used ImageMagick [19] for image filtering, Tesseract [27]

for the text recognition using OCR, and wrote a number of
Python and Perl scripts to partition the CAPTCHAs and
to apply manipulations at the pixel level.

While far from being highly evolved, our tools are able
to break the CAPTCHAs efficiently enough to make auto-
mated attacks against the social networking sites StudiVZ,
MeinVZ, and Facebook possible. In the following, we briefly
describe the techniques we adopted in our CAPTCHA ana-
lyzer component.

2.2.1 MeinVZ and StudiVZ CAPTCHAs

Both MeinVZ and StudiVZ require the user to solve CAP-
TCHAs in order to create new accounts, and to be able to
send friend requests. In addition, when the social network
is crawled, CAPTCHAs are displayed at regular intervals.

After manually analyzing the CAPTCHAs, we observed
that each of them always contains exactly five letters. Each
letter is written in a different font, with differing foreground
and background colors, and furthermore, it is often tilted,
scaled, or blurred. In addition, a simple grid-based noise is
added to the image.

We wrote a Perl script to detect and remove the grid noise
and to replace the background with white pixels. A second
script, then, attempts to identify the connected areas and
partitions the image around them in order to isolate the sin-
gle letters. In case the number of connected regions is differ-
ent than five (e.g., because two or more letter are partially
overlapping), we discard the CAPTCHA and ask the service
for a new one. Note that overlappings are not common in
the generated CAPTCHAs and in fact, in our experiments
we observed overlapping letters in less then 5% of the cases.
After the letters in the CAPTCHA are isolated, they are all
scaled to the same size and converted to black and white to
simplify further analysis.

In the next step, we attempt to match each letter against a
set of known fonts. In particular, we compare each font char-
acter (tilted from -10 to +10 degrees) against the extracted
CAPTCHA letter and count the number of matching pixels.
If this number is larger than a certain threshold (dynami-
cally calculated as a percentage of the total number of pixels
in the character), we consider the match to be positive.

If the match is not positive, we generate six variations of
the unknown letter by applying a chain of ImageMagick’s
filters (adaptive-blur, contrast, contrast-stretch and black-
threshold in different combinations). We then run the Tesser-
act engine on each variation, and we consider a letter as
being recognized if we obtain at least three equal results.

Finally, if we have a positive match for each of the five
letters we have extracted from the CAPTCHA, we concate-
nate them to compose the answer to submit. In MeinVZ
and StudiVZ, it is possible to request a new CAPTCHA
an arbitrary number of times. However, only three errors
are permitted when submitting the answers. Therefore, we
adopt a conservative approach and discard all solutions that
contain letters that can be easily confused by the text recog-
nition process (e.g., “I” could be confused with “1”, “S” could
be confused with “5”, “0” can be confused with “O”, and “8”
can be confused with “B”).

In our experiments, our technique was not able to recog-
nize all letters in 71% of the CAPTCHAs that were given to
us. However, we were able to simply drop the CAPTCHA
and ask for a new one. By restricting the analysis to the
cases in which our tool was able to match all the letters, our

solution was correct 88.7% of the time. That is, considering
the fact that both MeinVZ and StudiVZ ban the user after
three mistakes, we can solve the CAPTCHA given to us with
99.8% probability in one of the three consecutive attempts.

2.2.2 Facebook CAPTCHAs

Facebook adopts the reCAPTCHA [28] solution. This is
a state-of-the-art approach developed at Carnegie Mellon
University. The approach consists of using words that are
encountered while digitizing books, but that cannot be cor-
rectly recognized by the OCR program. Using these words
as CAPTCHAs has two main advantages: first, since a com-
puter has failed to recognize them in the first place, they are
inherently more difficult to break by automated programs;
second, when a human solves a CAPTCHA by reading the
words, she contributes to the effort to increase the accuracy
of the text of the digitized book.

In order to verify that the user has properly deciphered
the CAPTCHA, two words are displayed at the same time.
One of the words is an unknown word which the system was
unable to read while digitizing a book. The other word is
a known word that a number of other users have already
been able to identify. When submitting the answer of the
CAPTCHA, if the user correctly recognizes the known word,
there are good chances that also the answer of the unknown
word is correct. In order to make the CAPTCHAs more
difficult to break, the words presented to the user are slightly
distorted and covered by a curved line.

Unlike the easier CAPTCHAs used by MeinVZ, StudiVZ,
or XING, reCAPTCHAs contain meaningful words com-
posed by a variable number of letters. Since partitioning
each character would be complicated, and not very helpful,
we decided to perform a word-based analysis.

The words displayed by reCAPTCHA are always distorted,
both as a consequence of the scanning process, and of the
introduction of intentional noise added to complicate the
automated text recognition. Therefore, the first step in our
technique consists of attempting to unbend the word back
to the original shape. In order to do this, our tool extracts
the middle line of each word (i.e., the sequence of pixels
that are half way between the top and the bottom of each
letter). Since this line is very irregular (e.g., it goes up for
letters such as “t” and “l” and down for letters such as “g”
and “p”), we smooth it by approximating it with a third de-
gree polynomial curve. After this process, we translate each
pixel column up or down so that the approximating curve
becomes a straight line.

The second phase of our analysis is similar to the one we
use for the MeinVZ and StudiVZ CAPTCHAs. We gener-
ate a number of different versions of the images containing
the CAPTCHA word by applying different combinations of
ImageMagick filters. We then run Tesseract on each one.

The text collected from the Tesseract output is then an-
alyzed by a lexical module. First, each word is compared
with the content of the English dictionary. If the word we
have extracted does not match any known word, the pro-
gram attempts again with an edit-distance spell correction
algorithm [23] to compensate for small errors in the text
extraction routine. Unfortunately, a large fraction of the
words used in reCAPTCHA are not present in the English
dictionary. This is either because these words corresponds
to person or geographical names, or because they belong to
a different language. Therefore, when the two previous tests

fail, we submit the word to Google. If the number of the
Google results is higher then a configurable threshold, we
consider the word to be correct. Otherwise, we attempt to
substitute it with the Google suggestion, if Google makes
one (i.e., we take the word that Google suggests to us with
the phrase “Did you mean?:”). If all our tests fail, we drop
the CAPTCHA and ask the reCAPTCHA service to give us
an alternative one. Note that just like the other CAPTCHAs
services we described, probably because of usability issues,
reCAPTCHA allows a user to ask for another CAPTCHA
if she has problem solving the suggested one.

reCAPTCHA represents the state of the art in CAPTCHA
design and, indeed, it is difficult to break on a large scale.
In our experiments, we manually verified the result of our
system when submitting 2000 reCAPTCHA words. On av-
erage, our tool was able to correctly recognize 14% of them.
That is, 26% of the CAPTCHAs we submitted correctly
identified at least one of the two words.

Unfortunately, from the point of view of the attacker, after
a number of failed attempts, reCAPTCHA seems to become
more resilient to our CAPTCHA breaking attempts. For
example, in the first 100 submitted CAPTCHAs for a given
account, the success rate varies between 4% and 7%. That
is, we can solve 4 to 7 CAPTCHAs out of a 100 suggested
to us. Note that even though the number of submitted an-
swers containing at least one correct word is still between
20% and 30%, our success rate drops in the second hundred
CAPTCHAs given to us for the same account. A possi-
ble explanation of this is that after a certain number of er-
rors, the system starts to send CAPTCHAs containing two
known words, thus verifying that both words are recognized
correctly.

However, since the number of CAPTCHAs that our at-
tacks require to break is fairly limited (i.e., we need to solve
CAPTCHAs only when creating accounts and sometimes
when sending friend requests), our attack is still feasible.
In fact, Facebook never banned our accounts even after sub-
mitting thousands of wrong answers during our experiments.
Also, note that an attacker could use a botnet to have access
to thousands of different IPs and distribute the CAPTCHA
breaking effort among many hosts. For example, if each
bot would be deployed to solve only 7 CAPTCHAs per day
(i.e., 100 tries), with a botnet consisting of 10,000 bots, the
attacker would still be able to send 70,000 friend request
messages every day.

3. CLONING ATTACKS
In this section, we present the two automated social engi-

neering attacks that we used in our experiments in order to
be able to access the contacts of a victim.

3.1 Profile cloning
Our premise for the profile cloning attack is that social

networking users are generally not cautious when accepting
friend requests. Our assumption, as an attacker, is that
many users will not get suspicious if a friend request comes
from someone they know, even if this person is already on
their contact list. In fact, some social networking users may
have hundreds of confirmed contacts in their friend lists and
they may have varying levels of communication with these
people. For example, one might exchange messages with a
primary school friend once a year, but have daily contact
with a friend who is in the same city. Because of the lower

degree of contact, the chance that the primary school friend
will get suspicious for the new duplicate contact request is
less than someone the victim is in regular contact with.

Typically, whenever a user receives a friend request, she
needs to confirm the relationship and accept the new con-
nection. Either a standard friendship message can be sent,
or a personal message can be added to it. For example, to
make the new friend request more convincing, the attacker
may add a social engineering message such as “Dear friends,
my computer broke down, I am reconstructing my friend list.
Please add me again!”. While a real attacker would proba-
bly use a personal message to increase her success rate, in
our experiments, we opted not to add any message to the
friend requests in order to evaluate the worst case scenario.

Of course, it is likely that after a while the victims will
notice the abnormality in their friend list and will remove
the fake friend. Even though this seems to be undesirable,
from the attacker’s point of view it is enough for a contact
to accept a friend request. Even if the contact decides to
remove the friend connection later on, the attacker already
had a chance to access and copy the victim’s personal infor-
mation.

The profile cloning attack consists of identifying a victim
and creating a new account with his real name and pho-
tograph inside the same social network. The profile pho-
tographs can be simply copied and used when registering a
new, cloned account. Furthermore, note that names are not
unique on social networks, and people may exist who have
identical names.

Once the cloned account has been created, our system
can automatically contact the friends of the victim and send
friend requests. Whenever a user receives a friend request,
she typically sees the photograph and the name of the person
who has sent the request. Our expectation, as the attacker,
is that the user will accept this request as it is from someone
they recognize and know.

Currently, iCloner supports profile cloning attacks on Face-
book.

3.2 Cross-site profile cloning
In the cross-site profile cloning attack, our aim is to iden-

tify victims who are registered in one social network, but
not in another. Our first aim, from the attacker’s point of
view, is to steal their identities and create accounts for them
in the network where they are not registered. Note that this
attack is more difficult to detect by the social network ser-
vice provider or the legitimate owner of the copied profile.
As far as the service provider is concerned, a new user is
registering to the network.

When creating an identical account in another social net-
work, we try to retrieve as much information as possible from
the victim’s original account in the other network. Clearly,
the type of the social network is relevant when forging ac-
counts. That is, it is much easier for an attacker to create
forged accounts in social networks of the same nature. For
example, both XING and LinkedIn are focused towards busi-
ness connections. Therefore, the type of information that
users provide in their profiles are of similar nature. Typ-
ically, users provide information on their education, their
previous jobs, their current jobs and the city and country
they live in. The current iCloner implementation is able to
automatically compare and forge accounts from XING to
LinkedIn.

Our second aim, after the stolen identity has been created,
is to identify the friends of the victim in the original network
and check which of them are registered in the target network.

To determine with certainty if a friend of the cloned con-
tact is already registered on a different social network is
not as straight-forward as it may seem. A simple search
for the name of the user may return multiple accounts. As
mentioned previously, people might exist on social networks
who have identical names as other people. Real names, after
all, are known not to be unique. For example, looking for
a person with the name “Hans Bauer”, a common German
name, on Facebook returns 62 different user accounts.

In order to determine with a high probability if a certain
user already exists on a social network, we need to look
at more information associated with that specific user. We
have created a simple scoring system and use a threshold
to decide if two accounts with the same name on different
networks correspond to the same person. In our comparison,
we assign 2 points if the education fields match. According
to our experience, it is not very likely that two different users
have the same name and the same educational background.
If the companies where the users are employed are identical,
we assign 2 more points. Finally we assign 1 point if the city
and the country where the users are living are also identical.
We sum up all the assigned points and if the total score is
at least 3, we conclude that the two profiles belong to the
same user.

One question we have not discussed yet is how we de-
termine if the information entered by a user in two social
networks is identical. In our experiments, we saw that some
users may enter differing names for the same type of in-
formation. For example, a user may choose to enter “TU
Wien” as the educational institution in social network A,
and enter “Vienna University of Technology” in social net-
work B. Both entries identify the same institution, but the
comparison would fail if we simply compare the two strings.
The solution we use is to start a Google search with both
terms. Then, we compare the first top three hits. If both
terms appear in the top three of the Google search hit list,
we decide that both entries are equivalent. Figure 2 depicts
the process we use to identify users on two different social
networking sites.

Once the contacts of a victim have been identified, our
system can then start sending automated friend requests
to these identified users. As far as the contacted users are
concerned, a friend request is coming from someone who is
not on their friend list yet. As a result, our expectation is
that most users will accept this request without becoming
suspicious. After all, it is the nature of social networks that
people get connected by receiving friend requests from time
to time from people that they know.

4. EVALUATION
In order to verify the feasibility of our attacks and tools,

we conducted real-world experiments with real users. The
best way to demonstrate our attacks would have been to
start large scale attacks on a large number of real users.
However, attacks of this magnitude would have been ethi-
cally questionable, and could have lead to legal consequences.

We first started and tested our crawler on two social net-
works with the aim of collecting large volumes of contact
lists and public user profile data. We then performed profile
cloning attacks and contacted more than 700 distinct users.

Social
Networking
Site A

Social
Networking
Site B

Cloner

Name, Surname

Education

Occupation

Name, Surname

Education

Occupation

RETRIEVE SEARCH

Google

Compare Top 3
Hits

Figure 2: Process used to identify an identical user
on two different social networking sites

In a third experiment, we launched cross-site profile cloning
attacks and contacted 78 distinct users who were registered
on two different social networks.

As we performed our experiments on real user profiles,
for each profile we cloned, we requested the permission of
the user who was concerned. Furthermore, we committed
to making every action we performed transparent to the
rightful owners of the profiles. After the experiments, we
informed the users who were contacted of our experiment,
and also disabled the cloned accounts that we had generated.

4.1 Crawling Experiments
In our crawling experiments, we created a small number

of accounts on StudiVZ, MeinVZ, and XING and ran the
crawler component of iCloner.

4.1.1 StudiVZ and MeinVZ

First, we created 16 user accounts in these social networks.
Then, in order to keep a low profile, we implemented small
delays for each page request. For each CAPTCHA request
we received, we used our CAPTCHA breaking tools.

Initially, we expected the crawlers to request roughly
100,000 web pages per day, thus retrieving the complete pro-
file information and contact lists of roughly 15.000 accounts
(as the contact lists are split and presented in groups of 15
contacts – with an average number of contacts per account
being around 100).

Each crawler instance requested and parsed around 6000
web pages per day and encountered on average around 215
CAPTCHAs to break. Because of the little effort needed
to break the CAPTCHAs, our crawlers were able to col-
lect information from 40.000 profiles per day, which by far
exceeded our expectations.

We stopped the experiment after we had crawled more
than 5 million public user profiles with contact information
and more than 1.2 million profiles with complete user infor-
mation.

4.1.2 XING

Our experimental setup for XING was similar to the setup
with StudiVZ and MeinVZ.

Interestingly, XING does not contain any CAPTCHA pro-
tection in order to prevent automated crawling. However,
the service providers were more efficient in disabling ac-
counts that were generating a high number of requests. Nev-

 0

 0.2

 0.4

 0.6

 0.8

 1

D1 D2 D3 D4 D5 F1 F2 F3 F4 F5

Fraction of accepted contact requests

Figure 3: The fraction of accepted contact requests
(D1..D5 are the forged profiles, and F1..F5 are the
fictitious profiles)

ertheless, we were able to crawl around 2000 profiles with
each account that we generated before our account was dis-
abled. Since the target is to access protected data through
cloning and an attacker in this process would constantly
create new accounts, this average of accessable profiles per
forged account is still more than sufficient.

For XING, we crawled around 118,000 profiles in total,
before we stopped the experiment.

4.2 Profile cloning
In the first set of profile cloning experiments we performed,

we first wanted to test how willing users would be to accept
friendship requests from forged profiles of people who were
already on their friendship lists as confirmed contacts. We
performed the profile cloning experiments in Facebook.

Using iCloner, we duplicated the profiles of five users
(D1,. . . , D5) who had given us their consent for the exper-
iments. For each user, we created a new account with the
same name, an arbitrary birth date and the same picture
from the original profile. After the profile creation, iCloner
sent contact requests to all contacts in the friendship list
of each victim. In total, our system contacted 705 distinct
users.

In order to measure how effective profile cloning is with
respect to requests that the contacted users might receive
from people that they do not know, we created a control set
of one fictitious profile for each forged profile. These profiles
consisted of random names and pictures of arbitrary people.
We contacted the same users from these accounts as with
the respective forged profiles.

Figure 3 shows the acceptance rate for the forged profiles.
Note that the friendship acceptance rate for the forged pro-
files was over 60% for all the forged accounts (in one case,
being as high as 90%). The acceptance rate from unknown
users was constantly below 30%, except for one test account
that achieved a 40% acceptance rate (this is probably ex-
plainable by the fact that this profile belonged to a fictitious,
good looking woman). These results confirm that by forging
profiles, an attacker can achieve a higher degree of success
in establishing contacts with honest users than when using
fictitious accounts.

In a second experiment, we wanted to see how much trust

 0

 0.2

 0.4

 0.6

 0.8

 1

D1 D2 D3 D4 D5 F1 F2 F3 F4 F5

Fraction of clicked spam links

Figure 4: Click through rate for messages sent
by forged profiles (D1,..,D5), and fictitious profiles
(F1,..,F5)

users would have in messages that they would receive from
their new contacts. To this end, we created a simple non-
personal message containing a suspicious link with the text:

Hey, I put some more pictures online. Check them

here!:

http://193.55.112.123/userspace/pix?user=<account>

&guest=<contact>&cred=3252kj5kj25kjk325hk}

Ciao, <account first-name>

Where <account> is the name of the generated account,
<account first-name> is the first name of the user sending
the message, and <contact> is the full name of the receiver
of the message.

We first sent the link to the users who had accepted con-
tact requests from our fictitious accounts. Then, we sent
the request to the contacts of the forged accounts that had
not yet received the link, as they had not accepted the con-
tact request from the fictitious profile. In both cases, about
50% of the users who received the link clicked on it. This
demonstrates that the attacks we describe can be effectively
used for spamming users and directing a large number of
users to web sites under the control of the attacker. In-
terestingly, the difference between the links sent by forged
accounts and those sent by the fictitious accounts is not sig-
nificant as shown in Figure 4.

We also analyzed the delay it took for the receivers to
actually click on the links that were sent to them.

Figures 5 and 6 show the Cumulative Density Function
(CDF) of the clicks on the links sent by forged accounts
and the clicks on the links sent by fictitious accounts. Both
graphs show a steep increase during the first ten hours,
which subsequently slows down. Hence, about 45% of the
users clicked the link in the first 20 hours. Therefore, even
though forged accounts would probably be eventually de-
tected and disabled in a large scale attack, the attacker
would have enough time to cause damage.

4.3 Cross-site profile cloning
The second profile cloning attack we have performed is

a cross-site profile cloning where a profile taken from a so-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

C
lic

k
s
 [

%
]

Time [hours]

Figure 5: CDF of clicks over time for forged accounts

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

C
lic

k
s
 [

%
]

Time [hours]

Figure 6: CDF of clicks over time for fictitious ac-
counts

cial network is cloned to another social network. Suppose
that the source social netwok is called N1 and the social net-
work where the profile will be created is called N2. A profile
P in N1 is chosen to be cloned only if P doesn’t exist in
N2 and reasonable amount of P ’s contacts have profiles in
both networks. Therefore, the success of the cross-site pro-
file cloning attack depends on the number of users that have
a profile in both the source and the target social network.
In our experiment, while the source social network (N1) is
XING, the target social network (N2) is LinkedIn. In or-
der to have a rough estimate for the success of the attack,
we have crawled 30.000 XING profiles and found that 3.700
users (12%) were also registered in LinkedIn. If we take into
account that XING has 6.000.000 registered users, the upper
bound to number of contacts an attacker can have would be
approximately 720.000 which is an attractive number for an
attack that aims to perform a massive malicious activity.

Obviously, the user is the most determining factor for the
success of the profile cloning attacks. That is to say, the
numbers we have estimated above are meaningless if the
contacts do not accept the friend requests. To add the user
factor to our evaluation, we obtained the consent of 5 XING
users to clone their accounts to LinkedIn. iCloner identified
that 78 out of their 443 XING (17.6%, cmp. Table 1) friend
contacts were also registered on LinkedIn and sent contact

Profiles LP SR
X1 18.2% 50.0%
X2 14.5% 66.6%
X3 22.8% 51.6%
X4 14.5% 100.0%
X5 15.6% 46.4%
Total 17.6% 56.4%

Table 1: Percentage of XING profiles found in
LinkedIn (LP) and the success rate (SR) of the con-
tact requests

requests to these accounts. Of the 78 contact requests that
we sent to the users in LinkedIn, 56%, in total 44, were
accepted.

4.4 Discussion
One factor we have not considered in our experiments is

what would have happened if the victims whose accounts
were being forged would have become suspicious and would
have contacted their friends. Clearly, in our experiments,
the victims were informed about the experiments we were
performing and did not immediately react to warnings by
some cautious users that their accounts were probably be-
ing cloned. In fact, 4 users sent messages to the original
owners of the forged accounts, informing them that some-
thing strange was maybe going on. Although such warnings
would effect the success of our attacks, we note that most
of the users who became suspicious sent warnings after they
had accepted our contact request. As a result, we were able
to access their personal information before they withdrew
their authorization.

In most cases, it was interesting for us to see that the users
who had added the forged accounts started interacting with
the fake accounts as if they were the real ones, and started
sending messages and postings.

5. SUGGESTIONS FOR IMPROVEMENTS

IN SOCIALNETWORKSITE SECURITY
Obviously, the user is the weakest link in social network-

ing sites. Many are not security-aware and there is often
too much implicit trust. However, even advanced users can
be tricked into accepting friend requests as it is not easy
to authenticate users. One solution that could improve the
security of contact requests would be to provide more in-
formation to the receiver on the authenticity of a request
and the user who is sending it. For example, the social site
could send extra information on where the request was is-
sued (e.g., country information based on the IP) and the
profile creation date. Note that sharing this type of infor-
mation does not pose a privacy threat to users as they are
willing to establish a trust relationship, and are therefore
willing to share their personal information.

Furthermore, there are simple strategies that can make
CAPTCHAs more difficult to break. Our observation is that
not all social networking sites put enough effort into making
automated crawling and access difficult.

In the CAPTCHAs used by StudiVZ, MeinVZ, and XING,
the attacker’s main objective is to separate each symbol and
subsequently detect each one using OCR. The process of
separating could be made more difficult by rendering the
image with at least some of the symbols overlapping each

other. In fact, some of the CAPTCHAs that we encountered
at these sites are actually rendered with two overlapping
symbols, and these are generally not broken. An extension
of this strategy is to render additional paths of randomly
connected lines spanning over many symbols.

With respect to reCAPTCHA, similar strategies could
help strengthen its security. An attacker will generally try to
partition the reCaptcha into the two parts and solve each of
them separately. Creating an overlap between the two sin-
gle challenges of the reCaptcha, as discussed before, could
again quite easily be done by rendering the paths of random
connected lines so as to span over both challenges. reCAP-
TCHA, without doubt, is a state-of-the-art CAPTCHA so-
lution. Our results show, however, that an attacker who
has access to a distributed computing infrastructure (e.g., a
botnet consisting of thousands of computers) can distribute
the CAPTCHA breaking process over many IPs and ma-
chine and succeed in automating access to services that use
reCAPTCHAs.

Although straight-forward, rate limiting could make the
process of CAPTCHA breaking more difficult. Often, CAP-
TCHA providers allow the user to request a new CAPTCHA
over many attempts and deliver these CAPTCHAs without
delay. Hence, it is possible for the attacker to request new
CAPTCHAs until the provider delivers a challenge that can
be automatically identified and broken. A simple, but effec-
tive defense technique would be to rate limit the number of
CAPTCHAs that are displayed to a user with a threshold
value of a few images per minute.

Finally, social network service providers could adopt (or
improve) behavior-based anomaly detection techniques in
order to promptly detect and block crawling and other suspi-
cious activities (such as sending hundreds of friend requests
in a row). Even though it would still be possible for an at-
tacker to mimic a real user behavior, the attack speed, and
therefore its economic viability, would be greatly reduced.

6. RELATED WORK
Social networks comprise of nodes that are connected to

each other via strong trusted links. That is, they rely on
the assumption that a significant fraction of the users in the
system are honest. The most well-known attack to compro-
mise the trust relationship in a social network that employs
a reputation system is the sybil attack [17]. In this attack,
the attacker creates multiple fake identities and pretends to
be distinct users in the network, using them to gain a dis-
proportionately large influence on the reputation system.

To date, in order to defend social networks against sybil
attacks, two systems were proposed: SybilGuard [29] and
SybilLimit [30]. The key insight used in both approaches
is that real-world social networks are fast mixing [15, 18]
that aids to distinguish the sybil nodes from normal nodes.
Fast mixing means that subsets of honest nodes have good
connectivity to the rest of the social network.

SybilGuard defines a social network as a graph whose ver-
tices represent users, and whose edges represent the human-
established trust relations in the real world. The idea is
that if an attacker creates too many sybil nodes and con-
nects them to the network by attack edges, the graph will
have a small set of edges whose removal will disconnect a
large fraction of the sybil nodes in the network.

Similarly, SybilLimit also assumes and shows that social
networks are fast mixing. In comparison to SybilGuard, it

ensures more optimal and acceptable limits for the number
of sybil nodes in the network.

Both SybilGuard and SybilLimit are good solutions for
detecting Sybil nodes. However, in our attacks the estab-
lished friendship connections are legitimate and the system
is establishing contact to a high number of existing “honest”
nodes. Therefore, our fake accounts would not be detected
by the previous approaches.

A study that is very related to the experiments we present
in this paper was conducted by Sophos in 2007 [10]. The
authors created a profile on Facebook [4] and manually sent
friend requests to 200 random users. The study reports that
41% of the users accepted the request. Furthermore, most
of the users did not restrict the access to the personal infor-
mation in their profile. Note that the results of our exper-
iments are consistent with the study conducted by Sophos
and demonstrate that many users are not cautious in social
networks. However, one of the main differences between our
work and the experiment performed by Sophos is that we are
able to automatically identify target users and send friend
requests and we show how the attack success rate can be
greatly improved by cloning real user accounts.

In [20], the authors present experiments that they have
performed on “social phishing”. They have crawled a num-
ber of social networking sites and have downloaded publicly
available information on users. Then, they manually con-
structed phishing e-mails that contained some personal in-
formation on the victims that they were able to retrieve from
the social networking sites. The results of the study show
that victims are more likely to fall for phishing attempts if
some information about their friends or about themselves is
included in the phishing mail. Our results, without relying
on email messages, confirm that there is a high degree of
trust in social networks. However, our focus is different as
we aim at accessing the personal information of users that
have not necessarily made their profile public.

One of the prerequisites for being able to launch the at-
tacks we present in this paper is the ability to break CAP-
TCHAs used by a site. Several projects in the area of com-
puter vision exist that provide libraries to break real-world
CAPTCHAs (e.g., [22, 26]). Note that our main focus is this
paper is not to advance the field of CAPTCHA breaking,
but to be able to break the CAPTCHAs efficiently enough
to be able to automate the attacks that we describe in the
paper. Obviously, some CAPTCHAs are easier to break
than others (e.g., StudiVZ and XING are simpler than the
reCAPTCHAs employed by Facebook).

To the best of our knowledge, this paper is the first that
presents automated cloning attacks against real-world so-
cial networking sites and experimentally shows that these
attacks are feasible in practice.

7. CONCLUSION
Social networking sites have been increasingly gaining pop-

ularity. Many social networking sites have millions of reg-
istered users now. Unfortunately, when a new technology
starts to attract a large number of Internet users, criminals
are attracted as well. Today, it is not uncommon for Internet
users to be participants in more than one social networking
site (e.g., LinkedIn for business, and Facebook for private
networks).

In this paper, we investigate how easy it would be for a
potential attacker to launch automated crawling and iden-

tity theft (i.e., cloning) attacks against five popular social
networking sites. We present and experimentally evaluate
two identity theft attacks. When the attacks succeed, the
attacker can establish a friendship connection with the vic-
tim’s contacts and hence, access their personal information.

The simplest attack we present consists of the cloning of
existing user accounts and the automated sending of friend
requests to the contacts of the cloned victim. In the sec-
ond, more advanced attack, we show that it is feasible to
launch an automated, cross-site profile cloning attack where
the victim’s contacts are stolen and reestablished in a social
network where she is not registered yet.

We analyzed and experimented with five social network-
ing sites: XING, StudiVZ, MeinVZ, Facebook and LinkedIn.
The first three social networking sites are popular in Aus-
tria, Germany and Switzerland and have millions of reg-
istered users. Facebook and LinkedIn are internationally
well-known and also have millions of users world-wide. Our
results show that not all social networking sites are well-
protected against automated crawling and access. Further-
more, our experimental results demonstrate that most users
in social networking sites are not cautious when accepting
friend requests or clicking on links that are sent to them.

Although social networking sites are useful, we believe it is
important to raise awareness among users about the privacy
and security risks that are involved.

8. ACKNOWLEDGEMENTS
This work has been supported in parts by the EU SO-

CIALNETS project under grant agreement number 217141,
the Austrian Science Foundation (FWF) under grant P-
18764, the Secure Business Austria (SBA), and the WOM-
BAT and FORWARD projects funded by the European Com-
mission in the 7th Framework. We thank Michael Roßberg
(TU Ilmenau) for fruitful discussions and contributions to
the CAPTCHA breaking process and all persons who will-
ing to participate in the experiment.

9. REFERENCES

[1] Modeling and Preventing Phishing Attacks.
http://www.informatics.indiana.edu/markus/

papers/phishing_jakobsson.pdf, 2005.

[2] Spear phishing: Highly targeted phishing scams.
http://www.microsoft.com/protect/yourself/

phishing/spear.mspx, 2006.

[3] CERT Advisory CA-2000-04 Love Letter Worm.
http://www.cert.org/advisories/CA-2000-04.html,
2008.

[4] Facebook. http://www.facebook.com, 2008.

[5] Facebook by the Numbers.
http://www.fastcompany.com/magazine/115/open_

features-hacker-dropout-ceo-facebook-numbers.

html, 2008.

[6] LinkedIn. http://www.linkedin.com, 2008.

[7] MeinVerzeichnis – MeinVZ. http://www.meinvz.net/,
2008.

[8] MySpace. http://www.myspace.com, 2008.

[9] New MySpace and Facebook Worm Target Social
Networks. http://www.darknet.org.uk/2008/08/
new-myspace-and-facebook-worm-target-social-networks,
2008.

[10] Sophos Facebook ID Probe.
http://www.sophos.com/pressoffice/news/

articles/2007/08/facebook.html, 2008.

[11] StudiVerzeichnis – StudVZ. http://www.studivz.net,
2008.

[12] The Spamhaus Project. http://www.spamhaus.org/,
2008.

[13] Xing – Global Networking for Professionals.
http://www.xing.com, 2008.

[14] S. D. Berkowitz. An Introduction to Structural
Analysis: The Network Approach to Social Research.
Butterworth, Toronto, ISBN 0409813621, 1982.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Gossip algorithms: Design, analysis and applications.
In IEEE INFOCOM, 2005.

[16] Carnegie Mellon University. The CAPTCHA Project.
http://www.captcha.net.

[17] J. R. Douceur. The Sybil Attack. In Electronic
Proceedings for the 1st International Workshop on
Peer-to-Peer Systems (IPTPS ’02), March 2002.

[18] A. D. Flaxman. Expansion and lack thereof in
randomly perturbed graphs. Manuscript under
submission, 2006.

[19] ImageMagick. Introduction to ImageMagick.
http://www.imagemagick.org/script/index.php.

[20] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and
F. Menczer. Social phishing. Commun. ACM,
50(10):94–100, 2007.

[21] C. Karlberger, G. Bayler, C. Kruegel, and E. Kirda.
Exploiting Redundancy in Natural Language to
Penetrate Bayesian Spam Filters. In First USENIX
Workshop on Offensive Technologies (WOOT ’07),
Boston, MA, August 2007.

[22] kloover.com. Breaking the ASP Security Image
Generator. http://www.kloover.com/2008/02/28/
breaking-the-asp-security-image-generator/.

[23] V. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Doklady Physics,
10(8):707–710, 1966.

[24] S. Mori, C. Y. Suen, and K. Yamamoto. Historical
review of OCR research and development. Document
image analysis, pages 244–273, 1995.

[25] S. Moyer and N. Hamiel. Satan is on My Friends List:
Attacking Social Networks. http://www.blackhat.
com/html/bh-usa-08/bh-usa-08-archive.html,
2008.

[26] PWNtcha. PWNtcha - captcha decoder.
http://sam.zoy.org/pwntcha/.

[27] Tesseract. Tesseract OCR.
http://sourceforge.net/projects/tesseract-ocr.

[28] L. von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. reCAPTCHA: Human-Based Character
Recognition via Web Security Measures. Science,
September 2008.

[29] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilGuard: Defending Against Sybil Attacks via
Social Networks. 2006.

[30] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilLimit: A Near-Optimal Social Network Defense
against Sybil Attacks. In IEEE Symposium on
Security and Privacy, 2008.

