
SWAP: Mitigating XSS Attacks using a Reverse Proxy

Peter Wurzinger§, Christian Platzer§, Christian Ludl§, Engin Kirda¶, and Christopher Kruegel‖

§ Secure Systems Lab

Technical University Vienna

{pw,cplatzer,chl}@seclab.tuwien.ac.at

¶Institute Eurecom

France

kirda@eurecom.fr

‖University of California, Santa Barbara

chris@cs.ucsb.edu

Abstract

Due to the increasing amount of Web sites offering fea-

tures to contribute rich content, and the frequent failure of

Web developers to properly sanitize user input, cross-site

scripting prevails as the most significant security threat to

Web applications. Using cross-site scripting techniques,

miscreants can hijack Web sessions, and craft credible

phishing sites. Previous work towards protecting against

cross-site scripting attacks suffers from various drawbacks,

such as practical infeasibility of deployment due to the

need for client-side modifications, inability to reliably de-

tect all injected scripts, and complex, error-prone parame-

terization. In this paper, we introduce SWAP (Secure Web

Application Proxy), a server-side solution for detecting and

preventing cross-site scripting attacks. SWAP comprises a

reverse proxy that intercepts all HTML responses, as well

as a modified Web browser which is utilized to detect script

content. SWAP can be deployed transparently for the client,

and requires only a simple automated transformation of the

originalWeb application. Using SWAP, we were able to cor-

rectly detect exploits on several authentic vulnerabilities in

popular Web applications.

1 Introduction

Ever since its conception, the World Wide Web has

evolved towards an increasingly feature-rich, interactive,

and heterogeneous medium. Unlike early Web sites, which

were merely meant to deliver text in a practical fashion,

nowadays’ Web 2.0 sites are not only capable of hosting

rich content, such as images, videos, and audio material,

but also provide platforms for users to contribute such data

and share it with the rest of the world. As long as the input

provided by users is benign and the Web applications are

used as intended, the challenges are easily met by devel-

opers and service providers. However, for various reasons,

such as simple curiosity, destructive intentions, or hope for

financial profit, there will always be people who aim to ex-

ploit Web sites and their users to their advantage. Therefore,

even though users expect modern Web services to integrate

their content seamlessly and effortlessly into the provided

applications, protection of their local computer systems is

required, when viewing Web content created and submitted

by potentially malicious entities.

Cross-site scripting (XSS) [7, 8] continuously leads the

most wide-spreadWeb application vulnerabilities lists (e.g.,

WhiteHat Website Security Statistics Report [29], OWASP

Top Ten [19]). Estimates in [29] suggest that 67 per-

cent of all current Web sites are vulnerable to XSS. In

fact, not even search giant Google is spared from such

attacks. With an XSS vulnerability in Google’s online

spreadsheet application [5] it was possible to steal a user’s

cookie (which was valid for all of google.com’s subdo-

mains, e.g., mail.google.com, code.google.com,

spreadsheets.google.com). Frequently, online

banking applications, which make a very attractive target

for XSS in order to set up phishing sites, are vulnerable to

XSS, as has been demonstrated by Phishmarkt [1, 2].

Technically, XSS attacks leverage insufficient input/out-

put validation in the attacked Web application to inject

JavaScript code, which is then executed on the victim’s ma-

chine within the exploited Web site’s context, thus bypass-

ing the same origin policy. The attacker can craft the in-

jected script such, that it discloses the victim’s confidential

information, e.g., a session ID. Then, by hijacking the ses-

sion, the victim can be impersonated. Also, XSS enables

the construction of very powerful phishing pages, since the

page content is actually delivered by the correct, trusted site.



The first line of defense against XSS is input/output san-

itization. Malicious content can be filtered by checking for,

and then escaping or disallowing, JavaScript-specific sub-

strings in the user-provided content. However, sanitization

can prove to be very difficult. The trend towards more pow-

erful, more interactive, and therefore, more complex Web

applications also means an increase in the effort and com-

plexity in avoiding XSS vulnerabilities. From the attacker’s

point of view, it is enough to discover a single XSS vul-

nerability to be able to control the content a site serves.

Unfortunately, for the developer, finding and patching ev-

ery single vulnerability may cause significantly more effort.

Even worse, not every developer is aware of the threat that

XSS poses. As a result, in many cases, no filtering tech-

niques are implemented at all. From a user’s perspective,

even expertise and caution while surfing the Web do not re-

liably protect from XSS, since just visiting a Web site can

be sufficient for falling prey to an attack.

Since a conceptual solution for the XSS problem seems

infeasible, counter measures currently focus on mitigation

techniques to make up for the vulnerabilities still present.

Some of the previously proposed mitigation techniques

(such as BEEP [26] or Noncespaces [9]) use promising ap-

proaches to disable XSS attempts. However, they have to

deal with an important problem: They require modifications

not only on the server software, but also on the client’s Web

browser. That is, they need to be installed by users, most of

which are oblivious to the damage XSS can cause, or un-

willing to deal with the additional effort for properly secur-

ing their computer systems. An ideal XSS solution would

solve the problem on the server and would not require the

user to install any extra components.

In this paper, we present a novel approach to protect

users against XSS attacks, that offers the same level of

protection as previous work, but without the necessity for

client-side modifications. To avoid the disadvantage of in-

volving the end-user, we position a Web browser on a re-

verse proxy before the server. Our idea is based upon the

fact that a Web browser on the client’s machine is the ulti-

mate receiver of JavaScript, and therefore a straightedge for

script interpretation capabilities. Thus, by utilizing a Web

browser, we are able to distinguish between benign (i.e., im-

plemented originally into the Web application) and injected

JavaScript code. First, we encode all benign JavaScript calls

to syntactically invalid identifiers (script IDs). Second, we

load each requested page in theWeb browser attached to the

reverse proxy, and watch out for scripts trying to execute.

Clearly, all remaining scripts have not been encoded before-

hand, and are, therefore, not expected, benign scripts, but

injected, malicious ones. Third, after verifying that there

is indeed no (malicious) script in the page, we decode all

previously generated script IDs to restore the original code,

and deliver the page to the client.

The main contributions of this paper are summarized as

follows:

• We introduce SWAP, a solution for mitigating XSS at-

tacks, by utilizing a reverse proxy equippedwith aWeb

browser in order to detect malicious JavaScript con-

tent.

• In contrast to previously proposed solutions, SWAP

does not require client-side modifications. Thus, each

Web site can be protected from XSS exploits transpar-

ently for its visitors.

• We describe our implementation of SWAP, and demon-

strate its efficacy in successfully detecting and prevent-

ing authentic attacks on three popular Web applica-

tion’s XSS vulnerabilities.

2 Related Work

Server-side mitigation. In order to spot XSS vulnera-

bilities in Web applications, a number of automatic testing

tools have been proposed. Black-box Web application test-

ing tools ([21, 28, 4, 12, 16]), as well as white-box vulner-

ability scanners ([6, 11, 25, 30, 14]) have been suggested

in previous research, and are successfully used in practice.

While such tools can greatly help in identifying XSS vul-

nerabilities, it is likely that some remain undetected, which

clearly recommends additional safeguards. Also, for the

owner of a Web site running a third party Web application

to fix the identified bugs, requires the commitment of the

developers of the Web application, which often have other

priorities that seem more economically rewarding.

In [23], an application-level firewall is suggested, which

is located on a security gateway between server and client,

and which applies all security relevant checks and transfor-

mations (such as character escaping). By separating the se-

curity relevant part of the code from the rest of the appli-

cation, as well as providing a specialized Security Policy

Description Language to design it, the system helps Web

developers to apply measures against XSS in a less error-

prone fashion. Comparably to this work, we also use a re-

verse Web proxy to implement XSS mitigation strategies.

However, while the security gateway operates on the incom-

ing requests, our reverse proxy inspects the server’s replies.

This is preferable because it protects visitors of the page

even if an attacker found a way to inject his malicious con-

tent in spite of the security gateway’s checks. Additionally,

by using an actual Web browser in order to identify scripts

instead of a complex policy that targets various kinds of san-

itization (not all relevant for XSS), our approach asks less

from Web masters who wish to deploy it, and leaves less

room for mistakes.



Client-side mitigation. Complementary to mitigating

XSS on the server-side, there are several client-side solu-

tions. In [10], a strictly client-side mechanism for detect-

ing malicious JavaScripts is proposed. The system consists

of a browser-embedded script auditing component, and an

IDS that processes the audit logs and compares them to sig-

natures of known malicious behavior or attacks. With this

system, it is possible to detect various kinds of malicious

scripts, not only XSS attacks. However, for each type of at-

tack a signature must be crafted, meaning that the system is

defeated by original attacks not anticipated by the signature

authors.

Noxes [13] is a client-sideWeb-proxy that relays all Web

traffic and serves as an application-level firewall. The ap-

proach works without attack-specific signatures. However,

as opposed to SWAP, Noxes requires user-specific config-

uration (firewall rules), as well as user interaction when a

suspicious event occurs.

Another client-side approach is presented in [27], which

aims to identify information leakage using tainting of input

data in the browser.

All client-side solutions share one drawback: The ne-

cessity to install updates or additional components on each

user’s workstation. While this might be a realistic precon-

dition for skilled, security-aware computer users, it is per-

ceived as an obstacle or is not even considered by the vast

majority of users. Thus, the level of protection such a sys-

tem can offer is severely limited in practice.

Hybrid mitigation approaches. Some solutions apply

hybrid approaches, which also involve the Web browser.

The server annotates the delivered content and provides in-

formation on the legitimacy or level of privileges of scripts.

The Web browser is then responsible for checking and en-

forcing these annotations.

BEEP (Browser-Enforced Embedded Policies) [26] pro-

poses to use a modified browser that hooks all script execu-

tion attempts, and checks them against a policy, which must

be provided by the server. Two kinds of policies are sug-

gested. First, using a white list of the hashes of all allowed

scripts, which the browser can check against. Second, label-

ing those nodes in the HTML source, which are supposed

to contain user-provided content, so the browser can deter-

mine whether a script’s position in the DOM tree is within

user-provided content. The modified browser verifies each

script with respect to the policy and prohibits scripts from

execution that do not comply.

In Noncespaces [9], the authors propose to use random-

ized XML namespaces in order to partition the content into

different trust classes. The client is responsible for inter-

preting the namespaces and restricting the content’s rights

according to a policy that is provided alongside the Web

site. The owner of the site can assign the desired trust

levels via XPath expressions, and thus, disallow JavaScript

code in HTML subtrees that are supposed to contain user-

contributed content.

The mentioned hybrid mitigation techniques offer the

most powerful features and the best ratio between parame-

terization costs and level of protection. However, they share

the same drawback as the strictly client-based solutions:

The requirement to being deployed on user’s machines. Our

solution is similar to BEEP and Noncespaces in that we use

a server-provided specification of legitimate JavaScript con-

tent and detect when a script has been injected. However,

our solution performs all XSS mitigation functionality on

the server-side. It therefore does not require any client-side

modifications, and can be applied transparently, without the

user even being aware of it.

3 SWAP Overview

SWAP operates on a reverse proxy, which relays all traf-

fic between the Web server that should be protected and its

visitors (as depicted in Figure 1). The proxy forwards each

Web response, before sending it back to the client browser,

to a JavaScript detection component, in order to identify

embedded JavaScript content. In the JavaScript detection

component, SWAP puts to work a fully functional, mod-

ified Web browser, that notifies the proxy of whether any

scripts are contained in the inspected content.

In order to differentiate between benign and malicious

JavaScript, previously to enabling the proxy with the

JavaScript detection component, the hosted Web applica-

tion is modified. All legitimate script calls in the original

Web application are encoded into unparsable identifiers, so

called script IDs, and thus, hidden from the JavaScript de-

tection component. Consequently, it is safe to assume that

each script that is still found must have been injected, either

via the preceding Web request (reflected XSS), or via the

Web application’s database (stored XSS).

If no scripts are found, the proxy decodes all script IDs,

effectively restoring all legitimate scripts, and delivers the

response to the client. If the JavaScript detection compo-

nent, on the other hand, detects a script, SWAP refrains

from delivering the response, but instead notifies the client

of the attempted XSS attack.

Figure 1. Scheme of SWAP setup



To summarize, the main components of SWAP are:

1. A JavaScript detection component, which, given the

Web server’s response, is capable of determining

whether script content is present or not.

2. A reverse proxy installed in front of the Web server,

which intercepts all HTML responses from the server

and subjects them to analysis by the JavaScript detec-

tion component.

3. A set of scripts to automatically encode/decode script-

s/script IDs.

4 Implementation

4.1 Web Application Modification

SWAP is based on the idea of rendering all legitimate

JavaScripts syntactically incorrect, so that every JavaScript

that is eventually executed by a browser can be concluded to

be malicious. Therefore, the first step for deploying SWAP

is to identify all legitimate script calls in the original Web

application, and to replace each one by a unique identifier, a

script ID. This effort has to be repeated every time a change

is made to the application that alters or adds JavaScript

code. Fortunately, it is easily possible to automate this step.

Generally, in order to locate legitimate scripts in the

original Web application, it is advisable to utilize a simi-

lar mechanism as the JavaScript detection component later

used to identify malicious scripts (as described in sec-

tion 4.2). This ensures that no legitimate scripts are over-

seen and later erroneously reported as malicious. Since we

assume that all legitimate scripts are shipped with the soft-

ware and not user-contributed, obviously, this step should

be performed on a fresh installation of the application, with-

out any user-provided content in the application database.

Note, that in the case where legitimate scripts are stored in

the database, also these scripts must be encoded into script

IDs. For the applications we used for testing, applying sim-

ple bash scripts using grep and sed on the source code

was sufficient to accomplish the task.

There are three requirements for a script ID: First, it

must not contain any valid HTML tags, so that except of

removing the script, the structure of the Web page is pre-

served. Second, it must not contain what would be inter-

preted as JavaScript by a browser, so that when render-

ing a page it is safe to conclude that all script executions

stem from illegitimately injected scripts. Third, the map-

ping must be reversible, so that after probing a page for

scripts, the original condition with functional JavaScript

code can be reestablished. For our prototype implemen-

tation, we defined a set of strings that directly indicate

the presence of JavaScript code, such as the script tag

(<script>), names of event handlers (e.g., onclick,

onload), or the javascript: directive. Under con-

sideration of the mentioned three requirements, we chose

to replace single characters of each of these strings, such

that some readability of the obfuscated content is preserved.

E.g., <script> turns to <scrip1>, onclick turns to

onc1ick, javascript: turns to javascrip1:,...

Note, that even though we chose to replace only cer-

tain JavaScript keywords, SWAP remembers the complete

script code as a script ID. Only a character sequence which

matches the complete script code, with changed keywords,

will be decoded properly. It is therefore not possible for an

attacker who gains knowledge of the encoding scheme, to

inject an encoded script previously unknown to SWAP that

will be decoded properly and subsequently executed by the

client’s browser. If readability of the encoded scripts is not

of concern, the script IDs could as well consist of hashes of

the script code.

4.2 JavaScript Detection

After having encoded all JavaScript code in the Web ap-

plication into script IDs, we now expect all HTML pages re-

turned by the server to be free of parsable script content, un-

less it has been injected maliciously. In order to verify that,

we require a JavaScript detection component, that can de-

termine whether a page contains JavaScript content or not.

Even though there are exact specifications on how

an HTML parser is supposed to identify and interpret

JavaScript code, browsers often attempt to compensate for

Web developers’ mistakes and also process and execute

scripts that do not match the specification. Not only does

this lead to incompatibilities between different browsers

and their according parser implementations, but it also

opens unforeseeable possibilities for a Web developer to

initiate a script execution. For this reason, crafting a cus-

tom parser and basing the decision on whether it contains

a script or not on its output, is likely to produce unsatis-

factory results. More precisely, a parser that strictly follows

the specifications would miss certain malformed scripts that

a browser would execute.

For this reason, we chose to put a modified version of

an actual Web browser to work in the JavaScript detection

component, in order to render the page and decide whether

there is script code included. We decided for Mozilla Fire-

fox, since it is the most widely used open-source Web

browser.

We have adapted the source code of the Firefox browser

in only three different positions, in order to handle one type

of script-embedding each: First, to get notified of scripts

which are executed automatically on loading of the page,

we directly hook into the code responsible for script ex-

ecution. Second, to get notified of event handlers, most



of which are only executed on user interaction, we hook

into the code responsible for keeping track of registered

event handlers. Third, to get notified of JavaScript URL

link scripts, which are only executed when clicked upon,

we hooked into and modified the code responsible for dis-

playing a link in the correct color, depending on whether it

had been visited before. To the best of our knowledge, all

differentways of embedding valid JavaScript into an HTML

document can be discovered with these three modifications.

4.3 Reverse-Proxy

To intercept, modify, and check all traffic transparently

to the user, we utilize a simple, custom, Python-based re-

verse proxy. All (inbound) HTTP requests are forwarded

unchanged to the Web server. Only the (outbound) HTTP

replies are inspected more closely. Each reply is first

checked on whether it consists of HTML code (as opposed

to, e.g., a file download), and can therefore contain scripts.

All HTML pages are forwarded to the JavaScript detec-

tion component, which determines whether the page con-

tains any JavaScript code, and reports its findings back to

the proxy. If, expectedly, no code is found, the page is

deemed clean and the proxy delivers it to the client, after

decoding all script IDs and restoring the original legitimate

script content. If, however, JavaScript content is identified

in the page the proxy obtained from the server, it is most

likely injected, and the proxy returns a warning message to

the client, instead of the actual content. Alternatively, a less

radical solution than dropping the complete response can be

implemented, e.g., to omit the malicious script content.

5 Evaluation

5.1 Detecting Script Content

The ability of SWAP to correctly detect XSS attacks

strongly depends on how precisely the JavaScript detec-

tion component works in locating JavaScript content within

HTML code. In order to verify that our implementation

works satisfactorily also in non-traditional ways of em-

bedding script code, we evaluated it on the XSS Cheat

Sheet [22], a collection of various XSS attack code snippets,

that cover a broad range of nuances regarding filter evasion.

All tested examples that work in an unmodified Firefox

browser have been successfully detected by our JavaScript

detection component.

5.2 Detecting Authentic Attacks

In order to evaluate the quality of our prototype imple-

mentation, first, we aimed to assess its ability to correctly

identify injected scripts. For that purpose, we deployed

three well-known Web applications in a test environment,

all of which are vulnerable to XSS, and applied SWAP as

their protection. That is, we encoded all JavaScript code

into script IDs in the applications’ source code, and installed

the reverse proxy and JavaScript detection component in

front of the application server.

The applications we chose are phpBB [20], a well-

known and widely used bulletin board application, php-

stats [15], which enables the user to view statistics on the

contents of a file system, and Alexguestbook [3], a guest

book script for Internet Web sites.

All exploits we applied to all three testing applications

have been verified to work correctly, by first trying them on

a setup without SWAP protection. In all cases, we could

successfully conduct a XSS attack.

First, We evaluated phpBB version 2.0.0, which is vul-

nerable to a stored XSS exploit [17]. After enabling SWAP,

the application still performed as expected, and the usability

of the Web site was not diminished. The performance detri-

ment introduced by the additional security safeguard was

unnoticeable. When attempting to inject our attack string

(Figure 2), SWAP correctly recognized the attack, and re-

turned a warning message instead of the actual content to

the client.

[img]http://a.a/a"onerror="javascript:alert

(document.cookie)[/img]

Figure 2. phpBB Exploit.

phpstats suffers from a reflected XSS vulnerability [18].

Again, no noticeable changes in performance or usability

were observed after enabling SWAP. After injecting the ex-

ploit (Figure 3) into the SWAP protected application, ex-

pectedly, the XSS attack was recognized and delivery of the

malicious content to the client was prevented.

http://mysite.org/phpstats/phpstats.php?

baseDir=<script>alert(1)</script>&mode=

run

Figure 3. phpstats Exploit.

Various versions of @lex Guestbook are vulnerable to

multiple XSS exploits [24]. Also in this case, SWAP did

not influence the behavior or performance of the applica-

tions noticeably. Two exploits (Figure 4) were executed and

successfully blocked from being delivered to the user when

SWAP was enabled.



http://mysite.org/alexguestbook4/setup.php?

language_setup="><script>alert(document

.cookie)</script>

http://mysite.org/alexguestbook4/index.php?

mots_search=&rechercher=Ok&debut=0&lang

=&skin=&test="><script>alert(document.

cookie)</script>

Figure 4. @lex Guestbook Exploits.

Size(kB) w/o SWAP w/ SWAP SWAP ∆ Factor

1 27.31 196.11 168.80 7.18

10 53.84 200.50 146.66 3.72

50 120.50 331.80 211.30 2.75

100 166.23 427.66 261.43 2.57

Table 1. Page load times (ms) with and with-
out SWAP deployment.

5.3 Performance

Due to the additional requirements for processing power

introduced by SWAP, clearly, a performance detriment is in-

troduced, meaning that the client will experience higher la-

tency when requesting content from a SWAP protectedWeb

server, as compared to a server that does not feature SWAP

protection. SWAP adds to the latency two-fold: First,

by putting an additional stepping stone between client and

server, namely the reverse proxy, all traffic is relayed instead

of a direct transmission, and thus, takes longer to arrive at its

target. Second, and more importantly, the JavaScript detec-

tion component effectively has to render each page before

it can be delivered to the client. We have conducted experi-

ments to measure the magnitude of the performance penalty

inflicted by our SWAP prototype implementation.

Our test environment consisted of two machines, one to

host a Firefox browser, and the other to host an Apache2

Web server. Each test run consisted of 110 reloads of a test

page on the client machine. After each load, we let a Firefox

extension calculate and log the load time, delete the cache

and subsequently reload the page after a 500ms delay. From

the 110 obtained timings, the lowest and highest five were

discarded. From the remaining 100 timings, the average

was taken. The tests have been conducted on test pages of

1 kB, 10 kB, 50 kB and 100 kB size respectively, both with

and without SWAP protection.

The factor by which a deployment without SWAP out-

performs a SWAP protected setup decreases steadily with

increasing file size. This can be attributed to the constant

effort for proxy relaying as well as initializing the Firefox

browser used in the JavaScript detection component. How-

ever, with a higher amount of data, the JavaScript detection

component’s effort to render the page becomes prevalent,

and the ratio apparently converges towards a value slightly

greater than 2. From our set of test pages, SWAP causes the

lowest additionally introduced latency at a size of 10 kB.

For lower sizes, the constant effort for proxying and ini-

tialization is dominant, which leads to a drastic slowdown

in comparison to a non-protected setup, whereas for higher

sizes, the time SWAP requires to render the page becomes

dominant.

Note, that during our tests the client and server ma-

chines were connected locally, and no Internet connection

was used. In a realistic scenario, the additional latency in-

evitably introduced for communication between two remote

hosts over the Internet would significantly add to the re-

ported latencies, equally with and without SWAP.

6 Limitations

As already mentioned in Section 5.3, SWAP introduces a

performance overhead. Even thoughwe experienced the de-

lay to be acceptable during our experiments, SWAP might

not be suitable for a high-performance Web service. For

our implementation prototype, no attempts were made to

enhance processing speed, and there surely is potential for

speed-ups. Most importantly, the utilization of a full fledged

Web browser as the JavaScript detection component, even

though it offers important benefits, could be given up in

favor of a more light-weight solution, using Web scraping

tools, such as Crowbar, or HtmlUnit.

Since not all implementations of the HTML protocol fol-

low precisely the defined standards, differentWeb browsers,

in some cases, have a different notion on what is, and

what is not, valid JavaScript. While this makes a Web

browser the perfect tool to identify malicious scripts for

users surfing the Web with the same browser (in our case,

Firefox), users employing different browsers (e.g. Inter-

net Explorer, Opera) are not perfectly protected, since their

browser might parse and execute certain content as a script,

which Firefox merely treats as text, and therefore, fails to

recognize as a malicious script. Nevertheless, a high level

of protection for users of other browsers is still provided,

because the behaviors of different browsers match for the

majority of cases. Furthermore, future versions of SWAP

could feature different versions of the JavaScript detection

component, which are alternatively activated, according to

the user agent string.

Finally, SWAP’s capability to detect maliciously injected

content is limited to JavaScript. It cannot defend against

other types of undesirable content, such as static links point-

ing to sites including malicious scripts.



7 Conclusion

We presented SWAP, a server-side solution for protecting

users of a Web application from cross-site scripting attacks.

SWAP operates on a reverse proxy, intercepting all HTML

responses, and forwarding them to a JavaScript detection

component, consisting of a full fledged Web browser. Due

to previous, automated modifications to the Web applica-

tion, this component is able to distinguish between benign,

and malicious scripts. The proxy prevents each malicious

response from being delivered to the client, and thus effec-

tively inhibits the attack to be carried out on the client’s

browser. We have implemented a prototype, and conducted

experiments, showing the efficacy of SWAP to successfully

detect and defeat cross-site scripting attacks.

Acknowledgments

This work has been supported by the Austrian Science

Foundation (FWF) under grant P18764, MECANOS, Se-

cure Business Austria (SBA), and the WOMBAT and FOR-

WARD projects funded by the European Commission.

References

[1] Phishmarkt :: de. http://baseportal.com/

baseportal/phishmarkt/de, 2006.

[2] Phishmarkt :: at. http://baseportal.com/

baseportal/phishmarkt/at, 2007.

[3] A. Soulard, P. Gieling, M. Hercelin and J. Boulmont.

@lex Guestbook. http://www.alexguestbook.

net, 2008.

[4] Acunetix. Acunetix Web Vulnerability Scanner. http:

//www.acunetix.com/, 2008.

[5] B. (BK) Rios. Google XSS. http://xs-sniper.com/

blog/2008/04/14/google-xss/, 2008.

[6] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing

Static and Dynamic Analysis to Validate Sanitization inWeb

Applications. In IEEE Security and Privacy Symposium,

2008.

[7] CERT. Advisory CA-2000-02: Malicious HTML Tags Em-

bedded in Client Web Requests. http://www.cert.

org/advisories/CA-2000-02.html, 2000.

[8] D. Endler. The Evolution of Cross Site Scripting Attacks.

Technical report, iDEFENSE Labs, 2002.

[9] M. V. Gundy and H. Chen. Noncespaces: Using randomiza-

tion to enforce information flow tracking and thwart cross-

site scripting attacks. In Proceedings of the 16th Annual Net-

work and Distributed System Security Symposium (NDSS),

2009.

[10] O. Hallaraker and G. Vigna. Detecting Malicious JavaScript

Code in Mozilla. In Proceedings of the IEEE International

Conference on Engineering of Complex Computer Systems

(ICECCS), 2005.

[11] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static

Analysis Tool for DetectingWebApplication Vulnerabilities

(Short Paper). In IEEE Symposium on Security and Privacy,

2006.
[12] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: A

Web Vulnerability Scanner. InWorld Wide Web Conference,

2006.
[13] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:

A client-side solution for mitigating cross-site scripting at-

tacks. In 21st ACM Symposium on Applied Computing

(SAC), 2006.
[14] G. D. Lucca, A. Fasolino, M. Mastoianni, and P. Tramon-

tana. Identifying cross site scripting vulnerabilities in web

applications. In Sixth IEEE International Workshop on Web

Site Evolution (WSE), 2004.
[15] M. Wagner. phpstats 0.1 alpha. http://www.

michael-wagner.de/software/phpstats/,

2008.
[16] S. McAllister, E. Kirda, and C. Kruegel. Expanding hu-

man interactions for in-depth testing of web applications. In

11th Symposium on Recent Advances in Intrusion Detection

(RAID), 2008.
[17] NIST National Vulnerability Database. CVE-2002-

0902: Cross-site scripting vulnerability in phpBB 2.0.0.

http://nvd.nist.gov/nvd.cfm?cvename=

CVE-2002-0902, 2002.
[18] NIST National Vulnerability Database. CVE-2008-0125:

Cross-site scripting (XSS) vulnerability in phpstats.php.

http://nvd.nist.gov/nvd.cfm?cvename=

CVE-2008-0125, 2008.
[19] OWASP. OWASP Top Ten. http://www.owasp.

org/index.php/Category:OWASP_Top_Ten_

Project, 2007.
[20] phpBB. phpBB web forum software. http://www.

phpbb.com, 2008.
[21] PortSwigger. Burp Suite. http://portswigger.

net/suite/, 2008.
[22] RSnake. XSS Cheat Sheet. http://ha.ckers.org/

xss.html, 2008.
[23] D. Scott and R. Sharp. Abstracting Application-level Web

Security. In 11th World Wide Web Conference, 2002.
[24] SecurityFocus. @lex Guestbook Multiple Cross-Site Script-

ing Vulnerabilities. http://www.securityfocus.

com/bid/28519/, 2008.
[25] Z. Su and G. Wassermann. The Essence of Command Injec-

tion Attacks in Web Applications. In Symposium on Princi-

ples of Programming Languages, 2006.
[26] T. Jim and N. Swamy and M. Hicks. BEEP: Browser-

Enforced Embedded Policies. In 16th International World

Wide Web Conference (WWW2007), Banff, 2007.
[27] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda,

and G. Vigna. Cross site scripting prevention with dynamic

data tainting and static analysis. In 14th Annual Network

and Distributed System Security Symposium (NDSS), 2007.
[28] Web Application Attack and Audit Framework. http://

w3af.sourceforge.net/.
[29] WhiteHat Security. Website Security Statistics Re-

port. http://www.whitehatsec.com/home/

resource/stats.html, 2008.
[30] Y. Xie and A. Aiken. Static Detection of Security Vulner-

abilities in Scripting Languages. In 15th USENIX Security

Symposium, 2006.


