Mitigating Drive-by Download Attacks: Challenges and
Open Problems

Manuel Egele!, Engin Kirda?, and Christopher Kruegel®

1 Secure Systems Lab, Technical University Vienna, Austria
pizzaman@seclab.tuwien.ac.at
2 Institute Eurecom, France
kirdaleurecom. fr
3 University of California, Santa Barbara
chris@cs.ucsb.edu

Abstract. Malicious web sites perform drive-by download attacks to infect their
visitors with malware. Current protection approaches rely on black- or white-
listing techniques that are difficult to keep up-to-date. As todays drive-by attacks
already employ encryption to evade network level detection we propose a series
of techniques that can be implemented in web browsers to protect the user from
such threats. In addition, we discuss challenges and open problems that these
mechanisms face in order to be effective and efficient.

1 Introduction

The commercialization of the Internet attracted people with malicious intents
who strive to gain undeserved revenues by exploiting security flaws in Internet
applications. These miscreants often attack remote systems with the intent of
stealing valuable, sensitive information such as passwords, or banking creden-
tials. Today, attacks against remote systems are often carried out as drive-by
download attacks. In a typical attack, a user visits a web page that silently (i.e.,
without the users consent) downloads and executes malicious code on her com-
puter. Although many solutions have been proposed to mitigate threats such as
malicious e-mail attachments, network intrusions (e.g., [17,23]), and malware
(e.g., [8,12,27,28]), detecting and preventing drive-by downloads has not re-
ceived much attention so far.

In this paper, we discuss some challenges and open problems in detecting
drive-by download attacks. Furthermore, we argue that browser vendors need
to integrate mechanisms into their browsers to efficiently protect Internet users
against drive-by download attacks. The paper makes the following main contri-
butions:

— We describe different techniques that can be used to perform drive-by at-
tacks, and elaborate on why existing protection mechanisms fail to mitigate
these threats.

— We discuss new approaches that should be able to detect and mitigate drive-
by attacks.

— We discuss research challenges and open problems in creating successful
and efficient solutions to prevent drive-by download attacks.

The remainder of this paper is structured as follows. Section 2 gives a brief
overview of active content (i.e., scripting and plug-ins) in web browsers. Dif-
ferent drive-by attack scenarios are discussed in Section 3. Possible mitigation
strategies for these scenarios are presented in Section 4. Section 6 discusses
related work in the area, and Section 6 concludes.

2 Active Content in Web Browsers

To enrich the rather static appearance of HTML pages, browser vendors started
to support active client-side content. Among the supported techniques, JavaScript
is arguably the most widely known and used. Many of the so-called Web 2.0
sites heavily rely on JavaScript and the related Ajax technology to implement
support for highly dynamic content. Further techniques that are widely deployed
are Adobe Flash or support for executing Java applets. Additionally, Microsoft’s
Internet Explorer features Visual Basic Script (VBScript) support. All these
techniques have in common that they download and execute code from the In-
ternet. Since this code is under control of the respective web site’s owner, it has
to be regarded as being potentially malicious.

To confine the impact these programs can have on the browser and the
underlying operating system, browser vendors integrated security models into
their products. JavaScript, for example, follows a same origin policy that grants
scripts only access to the data that was retrieved from the same domain as the
script itself (i.e., same origin). It is, thus, not possible for a malicious script to
steal sensitive information, such as a session cookie, that originated from a dif-
ferent site. Furthermore, files on the local system can neither be read nor written.
Flash, in addition, supports general network socket communication. Similarly to
the same origin policy of JavaScript, connections can only be established with
the same server where the content was originally retrieved from.

Most web browsers have a concept of plug-ins. These plug-ins allow third
party developers to extend the browser’s functionality. Moreover, plug-ins com-
monly have higher privileges (e.g., reading/writing files, opening connections
to arbitrary hosts) than script code embedded in a web page. Microsoft’s In-
ternet Explorer, for example, uses ActiveX technology to implement plug-in
support. These plug-ins are accessible to the web browser, and unless explicitly
denied, also to scripts embedded in web pages. Such plug-ins allow users, for

example, to view PDF or Microsoft Office documents in the web browser itself,
instead of launching the respective application. Additionally, many third party
software products contain ActiveX components to be used in the context of the
web browser. Such components may support media playback, software updates,
or transfer applications to hand-held devices. Since client-side scripts have ac-
cess to these components, the provided functionality is available to these scripts
as well.

An important similarity between all active client side content techniques is
the fact that they share the address space with the web browser. For example,
JavaScript objects are allocated on the browsers heap and plug-ins are loaded
into the browsers address space, thus having access to the same memory con-
tents. Because of the shared address space and the elevated privileges of plug-
ins, this combination is a popular target for drive-by download attacks.

3 Drive-by Download Attacks

Drive-by download attacks are downloads that occur without the knowledge
or consent of a user. After downloading, the application is invoked and is free
to perform its nefarious purposes. The mere visit to a malicious web site can
lead to the download and subsequent execution of malicious software on a vis-
itor’s computer. Obviously, attackers strive to infect as many victims as pos-
sible. Furthermore, an attacker can misuse a web page, even without having
full control over the page’s contents. Buying advertisements, for example, can
sometimes allow an attacker to have her malicious code included in pages that
display the advertisements. Also, by exploiting security vulnerabilities in web
applications, attackers can often automatically modify these sites to host their
malicious code [11]. Adding the malicious content to pages with a large number
of visitors (e.g., as was the case for BusinessWeek.com [5]) raises the chance
for an attacker to be able to infect many users.

Once a user visits a page that launches drive-by attacks, a common first step
in the attack is to perform fingerprinting of the visitor’s browser. To this end,
a script collects information about the browser version and language, operating
system version, or enumerates the installed plug-ins. Subsequently, the browser
is instructed to load exploit code that matches the gathered information. For
example, an exploit for a QuickTime vulnerability is only loaded if the finger-
printing detects the plug-in to be present.

Typically, drive-by attacks focus on exploiting vulnerabilities in popular
web browsers. Moreover, applications that rely on web browser capabilities
might also be vulnerable to such attacks. For example, e-mail programs that
use a browser’s rendering components in order to display HTML e-mails, or

media players that display additional information for currently playing songs
could contain bugs that can be exploited in a drive-by download. Besides target-
ing the web browser directly to perform drive-by attacks, an attacker can also
exploit security flaws in plug-ins that extend the browser’s functionality. For
example, a buffer overflow vulnerability in Flash [1] allowed an attacker to ex-
ecute arbitrary code on a victim’s computer. The pervasive install base of Flash
products make this a viable target for attackers. Note that the advance of mali-
cious PDF files that exploit vulnerabilities in Adobe’s Acrobat products show
that this problem is not confined to web browsers.

The remainder of this section introduces the two major strategies that attack-
ers make use of to launch drive-by download attacks. First, we discuss attacks
that rely on API misuse. In the second part, we focus on attacks that exploit vul-
nerabilities in web browsers, or their plug-ins. For each technique, a real-world
example will be given to illustrate the attack.

3.1 API Misuse as Attack Vector

Insecurely designed APIs (application programming interface) allow an attacker
to launch a drive-by attack. For example, the DownloadAndInstall API of
the Sina ActiveX component [24] was intended to provide update functionality
for the component itself. One of the method’s parameters is a URL indicating
the location of the file to download and install. As the argument was not checked
to indicate a trusted source, this API could be used to download and execute ar-
bitrary files from the Internet. In 2008, an exploit for the Microsoft Office Snap-
shot Viewer [14] allowed to download arbitrary files from the Internet to a local
directory of choice. Downloading a malicious file to an auto-start location could
infect the computer of an unsuspecting web user. Slightly more complicated,
but similar in effect, was an attack based on [15]. Listing 1.1 illustrates this at-
tack. The APIs of three different components were used to perform a drive-by
download attack. The first component allowed to fetch arbitrary contents from
the web (Lines 10,11). In a second stage, another component was used to save
these contents to a local file on the disk (Lines 12-16). The third and final API
then allowed to execute (Line 18) the downloaded file with the privileges of the
browser and without the user knowing.

3.2 Exploiting Vulnerabilities in Browsers and Plug-ins

Exploiting vulnerabilities in web browsers or plug-ins also allows an attacker
to perform drive-by download attacks. Such attacks typically follow the fol-
lowing scenario. First, the attacker loads a sequence of executable instructions,

0NN R W

var obj = document.createElement (' object’);
obj.setAttribute (’id’,’obj’");

obj.setAttribute (’classid’,’ clsid:BD96C556-65A3-11D0-983A-00C04FC29E36") ;

try {
var asq = obj.CreateObject ('msxml2.XMLHTTP',"");

var ass = obj.CreateObject ("Shell.Application",’”);
var asst = obj.CreateObject (’adodb.stream’,’’);
try {

asst.type = 1;
asqg.open (/GET’,"http://www.evil.org//load.php’, false);
asqg.send() ;
asst.open();
asst.Write (asqg.responseBody) ;
var imya = ’'.//..//svchosts.exe’;
asst.SaveToFile (imya, 2) ;
asst.Close();

} catch(e) {}

try { ass.shellexecute(imya); } catch(e) {}}

Listing 1.1. API misuse drive-by download

so-called shellcode, into the address space of the web browser. This usually hap-
pens by using client-side scripting such as JavaScript or VBScript. The second
step of the attack exploits a vulnerability in the browser or a plug-in that allows
the attacker to divert the control flow of the application to the shellcode. The
shellcode, in turn, is responsible for downloading and executing the malicious
application from the Internet. As the shellcode is provided by the attacker, it
can make use of system libraries to ease its task. Again, the whole procedure
is performed without the user noticing. Exploits that follow this attack vector
face similar difficulties as any other control flow diverting attacks (e.g., buffer
overflows). The biggest challenge for an attacker is to predict the exact location
of the shellcode in memory. This information is crucial in order to successfully
perform the attack. Not being able to precisely divert the control flow to the
shellcode will most likely result in a crash of the browser instead of the intended
download and execution of additional malicious components.

To increase the chance that the diverted control flow results in executing
the shellcode, the attacker commonly prepends the shellcode with a so-called
NOP sledge. This NOP sledge is a series of instructions that do not perform any
action (e.g., the x86 no-operation instruction). It is thus sufficient for the attacker
to divert the control flow to anywhere within the NOP sledge, as execution sleds
down the NOPs, and subsequently executes the shellcode.

Heap Memory Manipulation NOP sledges increase the chance for an attacker to
successfully exploit control flow diverting vulnerabilities. Within web browsers,
the use of client-side scripting allows an attacker to further increase that chance.
A technique called heap spraying relies on client-side scripting (e.g., JavaScript,
VBScript) to fill large portions of the browser’s heap memory with shellcode and
prepended NOP sledges. For example, an attacker can embed a script in a web
page that, in a loop, assigns copies of a string to different variables. If this string
consists of the NOP sledge and shellcode, the attacker can easily manipulate
the heap in a way that large address ranges contain these string values. If the
attacker additionally leverages knowledge about how the browser’s heap mem-
ory is managed [6,25], control flow diverting vulnerabilities can be exploited
reliably. Performing a series of operations that allocate and de-allocate memory
allows an attacker to predict an address that will contain the NOP sledge after
spraying the heap.

3.3 Observations

We now describe some observations that we made during our initial studies of
drive-by download attacks in the wild. Most of the attacks we encountered so
far rely on JavaScript to perform their nefarious actions. Furthermore, many at-
tacks involve vulnerable ActiveX components. Although a fix for the MDAC
vulnerability [15] is available since 2006 many malicious sites still try to launch
attacks exploiting this vulnerability. Other frequently targeted components in-
clude media player plug-ins and search engine toolbars.

Obfuscation Frequently, we encountered attacks that were obfuscated. One way
to obfuscate the attack code is to encrypt it and to prepend the cipher-text with a
decryption routine. To hamper analysis, the decryption key can be chosen to be
dependant on the source code of the decryption function. Therefore, modifying
the decryption routine by adding debugging instructions modifies the key and
subsequently results in distorted and invalid output.

Listing 1.2 is an excerpt from the code of a real-world drive-by attack. Be-
fore being able to analyze it, we had to reverse the encryption to get the plain
text version of the attack. In Line 4, the shellcode is assigned to a variable. The
loop at Lines 6 - 8 then performs heap spraying* and stores copies of the shell-
code with a prepended NOP sledge in successive array indices. At Line 12, a
SuperBuddy ActiveX component is instantiated and Line 16 exploits the vul-
nerable LinkSBIcons [3] method that transfers the control flow to the passed
pointer (in this case 0x0OcOcOcOc which lies in the region of the sprayed heap).

* This sample sprayed more than 150MB of heap memory.

function IxQUTJYS (
if (!IwomS7sE) {

var Y1sE1Y1IW = 0x0c0cOcOc;
var hpgfpT9z = unescape ("$u00e8%u0000%u5d00%ucb583% ...");

) A

for (var CCEzrp0Os=0;CCEzrp0s<Wh_74Nkm; CCEzrpOs++) {
je9rIXgu[CCEzrpOs] = QdV7IGyr + hpgfpT9z;

var KpluYOJjP = new ActiveXObject (’/Sb.SuperBuddy’);
if (KpluYOjP) {
IxQUTJOS () ;
oH9MUjOd (9) ;
KpluYOjP.LinkSBIcons (0x0c0c0cOc) ;
var Dr_RHrVa = new ActiveXObject ("QuickTime.QuickTime.4");
if (Dr_RHrVa) {

for (var vyLOQHfP=0; vyLOQHfP<3; vyLOQHfP++) {
Bz904Aco += "\x0c\x0c\x0c\x0c";
}

param name="gtnextl" value="<rtsp://AXDOF:" + Bz904Aco

Listing 1.2. Excerpt of a real-world, decrypted malicious script.

If the attack was not successful (e.g., because a fixed version of the component
was installed), the script creates a QuickTime ActiveX component. Lines 20 -
22 create a long argument that results in a buffer overflow when passed as the
URI parameter to the component [4]. Again, the attack tries to divert control
flow to the same sprayed memory location.

4 Possible Mitigation Strategies

Depending on the type of attack, we envision that different mitigation tech-
niques can be applied to protect the user from drive-by downloads. These tech-
niques can be applied on different levels. Google, for example, adds warning
labels to search results that it found to contain malicious software. Although
this measure gives some protection, it is inherently difficult for the search en-
gine to identify and keep track of such malicious pages. As Google relies on
scanners that identify malicious sites, a page that starts to launch drive-by at-
tacks goes unnoticed at least until the next examination of the scanner. During

this interval, the user is exposed to the risk of getting infected with malware
once the search result link is clicked.

Recently, AVG integrated a technology called LinkScanner [13] into their
anti-virus products that actively scans the results of search engine queries and
presents the user with security information regarding these sites. Although this
allows for a more up-to-date assessment of possible risks, concerns have been
raised for the additional load this method creates by examining all search en-
gine results regardless of whether they are visited or not. Additionally, malicious
pages might disguise their intentions by trying to distinguish between LinkScan-
ner and a regular visitor, launching attacks only in the latter case.

To protect Internet Explorer users from attacks that exploit known vulner-
abilities in ActiveX components, Microsoft regularly updates the list of com-
ponents whose kill bit is set in the registry. Setting the kill bit of a component
indicates that this component is not safe for scripting. Any request to instanti-
ate such a component from a script embedded in a web site is declined by the
system and results in an error. Although effective, this measure only protects
from known vulnerabilities. Moreover, for third party components, Microsoft
only sets the kill bit upon request by the vendor of the component.

4.1 Browser Built in Protection

For the shortcomings mentioned above, we envision protection mechanisms
built into the browser itself. As the decision whether a page is malicious or not
is reached during the download and interpretation of the page itself, such tech-
niques do not suffer from outdated information. Furthermore, performing the
analysis only on the currently visited page does not create additional load for
other non-related sites. As many drive-by attacks rely on client-side scripting,
we focus on mechanisms that allow for detection of such attacks.

The information required to cast a decision on the maliciousness of a page
can be gathered from scripts in two ways. Either statically by analyzing the
page and the scripts it contains, or dynamically, where the analysis is performed
during the execution of the scripts. The main advantage of static analysis over
dynamic analysis is that all possible execution paths can be taken into account. If
a script, for example, exhibits malicious behavior only if viewed with a specific
browser, static analysis could still reveal the malicious intents of the script, even
when visited with a different browser. Obfuscation and encryption schemes, on
the other hand, give an attacker an easy means to prevent efficient static analysis.

As our focus lies in protecting the user from drive-by attacks launched by
the page currently viewed, we are mainly interested in those code paths that
are actually executed. That is, an attack that is not executed does not harm the

user. In addition, obfuscation and encryption do not pose an obstacle to dynamic
analysis.

Static and Machine Learning Approaches: To prevent malicious scripts from
using APIs in unintended ways, we propose a technique that infers sets of pos-
sible values or domains of parameters (similar to [9]). Although the parameter
types for APIs are usually checked (e.g., implicitly by the interface definition
of an API) further analysis of the component might be able to derive additional
meta information regarding the API function parameters. If, for example, a pa-
rameter is compared against a finite set of constants, this information helps to
identify calls that contain arguments that do not appear in this set. Anomaly
based detection methods, such as [22], might also prove effective in protecting
users from drive-by attacks. A feasible approach might first learn the character
distributions of arguments of legitimate API calls. Once the learning phase is
complete, subsequent invocations of the same API are scrutinized and the char-
acter distribution of the arguments is compared against the learned information.
If the difference is above a certain threshold, a possible attack is identified and
the user is notified.

A further learning based approach could operate on behavioral profiles of
the involved scripts. To this end, a set of known benign scripts is used to estab-
lish a body of known good profiles. The information contained in these profiles
might include the size of the involved scripts, the names of invoked functions
and variables, or any other meta information that can be automatically extracted.
Once the benign profiles are learned, the system calculates the actual profile for
every visited page. The profile is then compared against the learned benign pro-
files. Again, if the deviation is above a threshold, the user is notified.

Additionally, profiles can contain more abstract representations of behav-
ior. Heap spraying, for example, might be characterized as repeatedly assigning
identical contents to variables (e.g., subsequent array indices), where the accu-
mulated memory exceeds a given threshold. If required, the assigned contents
can be pattern matched for known NOP instruction sequences to lower the num-
ber of possible false positive alerts.

Emulation-Based Mitigation Technique: Drive-by attacks also make use of
exploits that rely on shellcode. We envision that these threats can be mitigated
by applying emulation techniques similar to approaches that are used to detect
shellcodes in network streams [18]. To this end, we propose an approach where
the memory contents that contain data retrieved from a web site are examined
for the longest valid instruction sequence of machine instructions [7]. As the x86
instruction set is densely packed, almost all contents will contain executable in-

structions. To lower the number of false positives, we propose to introduce a
threshold where only valid instruction sequences that exceed this value raise
an alert. An overly conservative threshold value will rise the number of false
positives while a too loose value will open the possibilities for attacks to go un-
noticed. As the NOP sledges created by heap spraying attacks must also contain
executable code, this approach would also detect attempts to spray the heap.

Performance Considerations: One challenge when dealing with integrating a
protection mechanism into browsers is that such solutions need to be efficient
and performant. Browser vendors invest time and money to speed up their re-
spective JavaScript interpreters. Thus, any protection mechanisms that exhaus-
tively reduce performance will most likely not be applied by these vendors.
Performance has especially become important as more and more sites make ex-
tensive use of Web 2.0 technology (i.e., increased usage of client-side scripting).
We, therefore, propose to give the user the possibility to deactivate the protec-
tion facilities for certain trusted pages. Thus, the user would benefit from the
additional protection on unknown sites and experience the high performance on
trusted sites.

4.2 Analysis Challenges

Developing efficient protection mechanisms against drive-by attacks requires
effective analysis tools that allow to study current and future attacks. For ex-
ample, to analyze a malicious script that is encrypted with its origin URL, an
analysis tool needs to keep track of the URLs where the content was fetched
from to allow later off-line analysis. Furthermore, many malicious sites attack a
client only once in a given time-frame. To hamper analysis, these sites provide
the malicious content only on the first visit of a client. All subsequent requests
are redirected to harmless sites, such as search engine portals. Thus, an anal-
ysis tool needs to provide mechanisms to record and replay all requests and
responses involved in a detected attack.

5 Related Work

Previous work in the area of drive-by downloads focused on measurements and
identification of web sites that distribute malicious content. Provos et al. [21]
investigated the mechanisms employed by web-based malware to mount their
attacks. In [20], the same authors performed a measurement to determine the
prevalence of malicious sites on the Internet. They came to the conclusion that
the results for more than 1.3% of all Google queries contain pages that perform

drive-by download attacks. Their approach classifies web sites as malicious if
visiting that site with a web browser results in the creation of additional pro-
cesses.

Wang et al. [26] designed and implemented Honeymonkeys, a system that
visits malicious web sites with browsers of different patch levels. The gained
information allows them to classify the performed attacks and if a successful
attack against a fully patched system is detected, a so-called zero-day attack is
identified.

Frei et al. [10] performed measurements observing that only 60% of Google
users use the latest, most secure version of their web browser. They conclude
that the browser is a valuable target for attackers.

The effects of an infection with web based malware on a computer is stud-
ied by Polychronakis et al. in [19]. An empirical study of spyware that infects
users via drive-by attacks was conducted by Barwinski et al. [2]. Moshchuck et
al. [16] detected drive-by attacks by observing the effects the visit of a web page
has on system resources such as file system, or registry. They do not, however,
present a solution that would be integrated into the end-user’s browser to protect
her against drive-by attacks.

6 Conclusion

As the web browser advances to an integral component in every day computing,
it becomes an attractive target for attackers. Outdated browsers and plug-ins
allow attackers to infect computer systems via drive-by attacks that download
and install malicious software upon the mere visit of a web page containing
malicious content.

Mitigation approaches that are implemented in network components, such
as routers or proxies, are easily evaded by obfuscated or encrypted content.
White- or blacklisting techniques (as implemented by search engines) inher-
ently suffer from non up-to-date security information.

As drive-by attacks target the browser and its components directly, we pro-
pose to have defensive mechanisms built into the browser itself to mitigate the
threats that arise from drive-by download attacks. Therefore, the paper proposes
and elaborates on different mitigation strategies that bare the potential to pro-
tect users from these threats. Implementing countermeasures in the browser, to
some extent, also allows for the protection of otherwise vulnerable components.
Therefore, users would benefit directly and immediately from the security en-
hancements that browser built-in protection mechanisms would provide.

Acknowledgments

This work has been supported by the Austrian Science Foundation (FWF) under
grant P18764, SECoverer FIT-IT Trust in IT-Systems 2. Call, Austria, Secure
Business Austria (SBA), and the WOMBAT and FORWARD projects funded
by the European Commission in the 7th Framework.

References

10.

11.

13.

14.

15.

16.

. Flash player update available to address security vulnerabilities. http://www.adobe.

com/support/security/bulletins/apsb09-01.html.

. M. Barwinski, C. Irvine, and T. Levin. Empirical study of drive-by-download spyware.

http://cisr.nps.navy.mil/downloads/06paper_spyware.pdf, 2006.

. Superbuddy activex control vulnerability. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2006-5820, 2006.
Buffer overflow in apple quicktime 7.1.3. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2007-0015, 2007.

. Dan Goodin (The Register). SQL injection taints BusinessWeek.com. http://www.

theregister.co.uk/2008/09/16/businessweek_hacked/. Last accessed,
December 2008.

M. Daniel, J. Honoroff, and C. Miller. Engineering Heap Overflow Exploits with JavaScript.
In 2nd USENIX Workshop on Offensive Technologies (WOOTO0S), 2008.

M. Egele, E. Kirda, and C. Kruegel. Defending browsers against drive-by downloads: Mit-
igating heap-spraying code injection attacks. In Detection of Intrusions and Malware, and
Vulnerability Assessment, 6th International Conference, DIMVA 2009 (to appear), 2009.

. M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. X. Song. Dynamic spyware analysis. In

USENIX Annual Technical Conference, pages 233-246, 2007.

M. Egele, M. Szydlowski, E. Kirda, and C. Kruegel. Using static program analysis to aid
intrusion detection. In DIMVA, pages 17-36, 2006.

S. Frei, T. Diibendorfer, G. Ollmann, and M. May. Understanding the web browser threat.
Technical Report 288, ETH Zurich, 06 2008. 2008.

John Leyden. Drive-by download attack compromises 500k websites. http:
//www.channelregister.co.uk/2008/05/13/z1lob_trojan_forum_
compromise_attack/. Last accessed, February 2009.

. E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kemmerer. Behavior-based spyware

detection. In USENIX Security, 2006.

Exploit Prevention Labs: LinkScanner. http://linkscanner.explabs.com/
linkscanner/default.aspx.

Microsoft Office Snapshot Viewer ActiveX vulnerability. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2008-2463, 2008. Last accessed, March
20009.

Microsoft Corporation. Microsoft Security Bulletin MS06-014 - Vulnerability
in the Microsoft Data Access Components (MDAC) Function Could Allow Code
Execution. http://www.microsoft.com/technet/security/Bulletin/
MS06-014.mspx, 2006. Last accessed, December 2008.

A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A crawler-based study of spyware
in the web. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2006, San Diego, California, USA, 2006.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works, 31, 1999.

M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Emulation-based detection of
non-self-contained polymorphic shellcode. In Recent Advances in Intrusion Detection, 10th
International Symposium (RAID), pages 87-106, 2007.

M. Polychronakis and N. Provos. Ghost turns zombie: Exploring the life cycle of web-based
malware. In First USENIX Workshop on Large-Scale Exploits and Emergent Threats, 2008.
N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iframes point to us. In
USENIX Security Symposium, 2008.

N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The Ghost In The
Browser Analysis of Web-based Malware. In First Workshop on Hot Topics in Understand-
ing Botnets (HotBots '07), 2007.

W. K. Robertson, G. Vigna, C. Kriigel, and R. A. Kemmerer. Using generalization and char-
acterization techniques in the anomaly-based detection of web attacks. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2006, San Diego, California,
USA, 2006.

M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In /3th Systems Admin-
istration Conference (LISA), 1999.

Sina dloader class activex control *donwloadandinstall’ method arbitrary file download vul-
nerability. http://www.securityfocus.com/bid/30223/info.

A. Sotirov. Heap Feng Shui in JavaScript. http://www.phreedom.org/research/
heap-feng-shui/heap-feng-shui.html. Lastaccessed, November 2008.

Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. T. King. Auto-
mated web patrol with strider honeymonkeys: Finding web sites that exploit browser vulner-
abilities. In NDSS, 2006.

C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using
cwsandbox. IEEE Security and Privacy, 5(2):32-39, 2007.

H. Yin, D. X. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing system-wide
information flow for malware detection and analysis. In ACM Conference on Computer and
Communications Security, pages 116-127, 2007.

