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Abstract—We study the selection of the rate allocation in mul-
tiple access channels (MAC). We consider MACs with different
rate regions. Namely, we investigate the polytope rate regions,
convex non-polytope rate regions, and non-convex rate regions.
Different operating points of the rate region possess different
properties in terms of efficiency, fairness, stability, etc. Our goal
is to provide guidelines for the choice of an operating point
using the above-mentioned criteria. We use two methodological
approaches: fairness function approach leading to an optimal
system operation point and game theoretic approach leading
to an equilibrium point. In particular, we use games with
correlated constraints. All fairness concepts and normalized Nash
equilibrium produce the same rate allocation in the case of a
MAC with polytope rate region. In the case of MACs with convex
non-polytope and non-convex rate regions this property does not
hold and behavior becomes much more various. In the case of
some non convex rate regions the max-min fair allocation may
even not exist.

I. INTRODUCTION

In this contribution we consider capacity regions for dif-
ferent kind of multiple access channels (MAC). A capacity
region consists of all n-tuples of achievable rates for a MAC
with n users transmitting to a common destination. Typically,
one has a very broad choice of achievable rates over the
capacity region, however different operating points possess
different properties in terms of efficiency, fairness, stability,
etc. Our goal is to provide guidelines for the choice of an
operating point using above-mentioned criteria. We classify
MACs by geometrical characteristics of their capacity regions.
Namely, we investigate the polytope capacity regions, convex
non-polytope capacity region and non-convex capacity regions.
An example of MAC with a polytope capacity region is
the general time-invariant Gaussian MAC [22]. Examples of
MACs with a convex non-polytope capacity region are the
time division multiple access (TDMA) and frequency division
multiple access (FDMA) channels [22]. An example of MAC
with a non-convex capacity region is the collision channel
without feedback [17]. For the selection of the operating
point we use two methodological approaches: game theoretic
approach leading to an equilibrium point and fairness function
approach leading to an optimal system operation point.

The fairness function approach can be applied to any kind
of capacity region. It turns out that in the case of the polytope
capacity region some specific optimal fair points coincide with
the equilibrium points attained in some games. The latter

allows one to use distributed algorithms to achieve those
operating points.

In particular, in the game theoretic framework, we consider
games with correlated constraints arising in MACs with poly-
tope capacity regions. In constrained games, each player is
faced with a constrained optimization problem rather than a
simple non-constrained optimization; the constraints may be
independent of actions of other players, in which case they are
called “orthogonal constraints” [12]. A more complex situation
arises when the actions available to one player depend on
those used by the others. Such games are called games with
correlated constraints [12]. These games exhibit various char-
acteristics that are very different than those without constraints
or with orthogonal constraints. A central feature in these games
is that they often possess a large number of equilibria. Natural
questions that arise concern the selection of an equilibrium.
Can we identify ones that are more fair, more efficient, or more
stable than others? We study this type of selection criteria as
well as other criteria related to decentralized implementations.

It turns out that in MAC with polytope capacity region
the rate assignment corresponding to the α-fairness function
optimization is the same for all values of the parameter α.
It also coincides with the max-min fair allocation, which for
this type of MAC, is the same as α-fair allocation when
the parameter α goes to infinity. We prove that the α-fair
allocation for the MAC with polytope capacity region also
coincides with a unique normalized Nash equilibrium. We also
show that in this case the maximization of the Jain’s fairness
index corresponds to maxmin fairness. The above properties
are related to the particular polytope structure of the achievable
rate region. They have very relevant practical implications. In
fact, a normalized Nash equilibrium is especially appealing
in terms of decentralized implementation, pricing and billing.
The above mentioned properties imply that the design of
distributed algorithms satisfying a very large family of fairness
criteria reduces to the design of distributed algorithms for the
normalized Nash equilibrium.

In the rest of this work we investigate MACs whose
achievable regions are not a polymatroid; we study cases in
which they are convex but not polytopes, and cases in which
they are not convex. We show how the geometric properties
of the rate capacity alter the properties of rate assignments



corresponding to various fairness concepts. In particular, we
show that in the case of some non convex achievable rate
regions the maxmin fair allocation may not exist.

II. POLYMATROID ACHIEVABLE RATE REGION

Consider n non-cooperative mobiles transmitting up-link
to a base station. The square amplitude of the channel gain
between mobile i and the base station is hi. The variance of the
additive white Gaussian noise is denoted by σ2

0 . We consider
the setting in which the achievable rate region is given by the
convex polytope C defined by the set of constraints:∑

i∈S

Ri ≤ ρ(S) ∀S ⊂ {1, ..., n} (1)

where

ρ(S) = log
(

1 +
∑

i∈S Pihi

σ2
0

)

and Pi is the transmitted power of user i.
We assume that no mobile (player) can tolerate the losses

that would occur if transmission rates were chosen outside
the achievable region. This assumption places these games in
the category of games with common constraints [12]. In our
particular game, the achievable rates represent the strategies
of players. Each player wishes to maxiomize some concave
increasing function Ui of its rate. This game has coupled
constraints: the choice of strategies of a player depends on
the strategies chosen by other players.

The equilibrium notion here, is that of finding a rate
allocation vector R within C such that no mobile i can gain
by deviating from Ri to another Si for which (Si, R

−i) ∈ C
(here R−i is the vector of strategies Rj for j 6= i, where Rj

is the entry of R corresponding to player j). This equilibrium
concept is a special case of the so-called “generalized equi-
librium” or “social equilibrium”. They have been introduced
already in [4], [5] (for more recent papers see [6], [8]).

As shown recently in [3], to define games with constraints
it is not sufficient to know the utility and constraints of each
given player. One should also specify how does a player value
the fact that constraints of another player are satisfied or
violated. Some extreme cases are (i) a player is indifferent
to satisfaction of constraints of other players, (ii) common
constraints: if a constraint is violated for one player then it
is violated for all players. The equilibrium point selections
at hand are modelled as games with common constraints.
In particular, we shall study the properties of a subset of
the equilibria of such games known as normalized equilibria
introduced by Rosen [12]. They have properties that are quite
appealing in terms of decentralized implementation, pricing
and billing.

Games with coupled constraints along with the generalized
equilibrium has been applied to many networking problems,
see e.g. [1], [2], [3], [7].

It is straightforward to see that we have:

Lemma 1. All rates satisfying
n∑

i=1

Ri = ρ(S), where S = {1, ..., n},

subject to (1) are Nash equilibria and are Pareto-efficient. Any
other point is not an equilibrium.

In view of the large number of Nash equilibria we address
next the problem of selecting one which has desirable prop-
erties: the normalized Nash equilibrium. The motivation for
proposing that one is related to pricing and billing issues.
Pricing We are interested in pricing mechanisms that induce
equilibria strategies and that can be implemented in a scalable
and decentralized way. Let λi be the per packet price for
mobile i and let λ be the vector whose ith entry is λi. Then
the payoff of mobile i with the additional pricing becomes

L
λ
i (R) := Ui(Ri) + λi(

n∑

i=1

Ri − ρ(S)).

Define

Ĉ 4
=

{
R

∣∣∣∣∣
∑

i∈S

Ri ≤ ρ(S), ∀S : ((S ⊂ {1, ...n}) ∧ (S 6= S))

}
.

Consider now the following relaxed game. Find R∗ ∈ Ĉ such
that for each i and R ∈ Ĉ,

Lλ
i (R∗) ≥ Lλ

i (Ri, (R∗)(−i)).

If it has a solution then Lλ
i (R∗) can be viewed as the

Lagrangian that corresponds to the constrained optimiza-
tion problem faced by mobile i when the other mobiles
play (R∗)(−i) obtained by relaxing the single constraint∑

i∈S Ri ≤ ρ(S).
From Karush-Kuhn-Tucker (KKT) Theorem we know that

there exists a vector λ (whose entries are not necessarily equal)
such that a rate vector R∗ is an equilibrium in the original
game only if for each i, R∗i maximises L

λ
i (Ri, (R∗)(−i))

obtained by relaxing the single constraint
∑

i∈S Ri ≤ ρ(S).
Thus, λ can be used to define a non-scalable pricing. It is

non-scalable since the price per packet will depend on i.
Let x∗ be the vector whose ith component is given by the

solution to
dUi(x)

dx
+ λi = 0. (2)

If x∗ ∈ Ĉ then it is the unique equilibrium of the relaxed
game.

Denote the solution by R∗(λ).

Problem P1: Consider a constant λ and let λ be a vector of
dimension n with all its entries λ. Then, we wish to find λ
such that R∗(λ) is an equilibrium of the original game.

If we find such a λ then it defines indeed a scalable
distributed pricing since the billing can be performed per
packet and can be implemented without any knowledge to
which mobile the packet belongs to.

An equilibrium associated with some constant λ that solves
Problem P1 is a special case of the normalized equilibrium
concept introduced in [12].



Theorem 1. There exists a unique normalizied equilibrium
to the original problem associated with some λ as defined in
Problem P1.

Proof: Define G to be the n dimensional square matrix whose
ijth entry is ∂2L

λ
i (R)

∂Ri∂Rj
. Then, since all the utility functions Ui

are strictly concave increasing functions, G + GT is strictly
negative definite. The Theorem then follows from [12, Thm
4].

A. Equal utility functions and maxmin fair assignment

Fix λ as given in Theorem 1. Assume that Ui is the same
for all i. Then the Lagrangians corresponding to each player
i have all the same dependence on their argument:

L
λ
i (R) := U(Ri) + λ(

n∑

j=1

Rj − ρ(S)).

Thus x∗ defined in equation (2) has the form (x, ...x). Note
that x does not depend on ρ(S) and thus on Pi and hi, i =
1, ...n. Thus for any Pi and hi such that x∗ ∈ Ĉ, the scalable
pricing λ from Theorem 1 yields a Pareto equilibrium which
is fair in the sense that all users receive the same rates. This is
a special case of the maxmin fairness which we define next.

Definition 1. A rate allocation is called maxmin fair if we
cannot increase the rate Ri of user i without decreasing the
rate Rj for some user j with Rj ≤ Ri, while maintaining
feasibility.

Next we show that
(i) when maximizing the sum of utilities over C, the unique
solution corresponds to the maxmin throughput assignment;
and
(ii) the normalized equilibrium is always maxmin fair, even if
x∗ /∈ Ĉ. In the latter case, the equilibrium will of course not
be symmetric.

Figures 1 and 2 are examples of achievable rate regions
for the case of two users. Figure 1 exhibits a case where the
maxmin fair rates are equal. In Figure 2 the point on the
boundary (the segment S1 parallel to the x-axis) for which
the rates are equal is not Pareto optimal and therefore is not
maxmin fair. The maxmin fair rate assignment is in that case
the intersection between the segment S1 and the diagonal
segment.

Remark 1. There are achievable rate regions of other access
networks that have the following property
ΠPareto : all the points on the boundaries other than those
on the axis, are Pareto optimal.
An example is given in Section III. Let x be the intersection of
the diagonal segment with the Pareto frontier. By construction,
all coordinates of x are equal. Since x is Pareto optimal, then
for any direction i, the only way to increase xi is by decreasing
xj for some j such that xj = xi. Hence, x is a max-min fair
assignment. Thus when ΠPareto holds, the maxmin assignment
always symmetric even if the data are not.

To establish the above mentioned results we shall use the
majorization order and Schur concavity which we define next.

Fig. 1. Rate region: equal rates
are maxmin fair

Fig. 2. Rate region: equal rates
are not maxmin fair

Definition 2. (Majorization and Schur-Concave Function
[10])
Consider two n-dimensional vectors d(1), d(2). d(2) majorizes
d(1), which we denote by d(1) ≺ d(2), if

k∑

i=1

d[i](1) ≤
k∑

i=1

d[i](2), k = 1, ..., n− 1,

and
n∑

i=1

d[i](1) =
n∑

i=1

d[i](2),

where d[i](m) is a permutation of di(m) satisfying d[1](m) ≥
d[2](m) ≥ ... ≥ d[n](m), m = 1, 2.

A function f : Rn → R is Schur concave if d(1) ≺ d(2)
implies f(d(1)) ≥ f(d(2)).

Lemma 2. [10, Proposition C.1 on p. 64] Assume that a
function g : Rn → R can be written as the sum g(d) =∑n

i=1 ψ(di) where ψ is a concave function from R to R. Then
g is Schur concave.

The following result from [14] characterizes the maxmin
fair rate assignement in terms of majorization.

Theorem 2. The maxmin fair rate assignment belongs to the
dominant face S̄ and is majorized by any other point on the
dominant face.

We would like to note that there is an algorithm with
O(n2) complexity for determination of the maxmin fair rate
assignment [14].

B. Other fairness concepts and their relation to the Normal-
ized equilibrium

1) Global optimization: Consider the global optimization
problem of maximizing the sum of the utilities

∑n
i=1 U(Ri)

over the achievable rate region C. We relax the constraint∑
i Ri ≤ ρ(S) and write the Lagrangian

Lλ(R) :=
∑

i

U(Ri) + λ(
n∑

j=1

Rj − ρ(S)).

We can rewrite it as

Lλ(R) :=
∑

i

ψ(Ri) where ψ(x) := U(x)+λx− ρ(S)
n

. (3)

Using Lemma 2 we conclude that Lλ(R) is Schur concave.
We conclude from Lemma 2 the following:

Theorem 3. The sum of utilities over the achievable rate
region is maximized at the maxmin rate assignment.



Proof: According to Theorem 2, the maxmin fair rate as-
signment is majorized by any other point on the dominant
face. It therefore maximizes any Schur concave function on
the dominant face. In particular, it maximizes Lλ(R) for
any λ since by Lemma 2 we conclude that Lλ(R) is Schur
concave. This implies the Theorem since by Karush-Kuhn-
Tucker (KKT) Theorem, there exists λ such that the sum of
utilities is maximized by the rate assignment that maximizes
the Lagrangian Lλ(R). ¦

2) α-fairness: We next recall the concept of α-fairness
and of general α-fairness. Mo and Walrand [11] introduced
the family of utility functions indexed by a real non-negative
parameter α:

Vα(x) =
x1−α

1− α

for α 6= 1. Consider the problem of maximizing
∑n

i=1 Vα(xi)
where (x1, ..., xn) lies in a closed convex set X . It is shown in
[11] that the solution of the maximization problem converges
to the maxmin fair assignment over X as α → ∞, it
provides the harmonic fairness for α = 2, it converges to
the proportional fair assignment as α → 1 and it provides the
globally optimal assignment over X for α = 0.

Now, instead of assigning fairly x ∈ X we can assign fairly
some utility of x. We thus define

Wα(x) =
U(x)1−α

1− α

and maximize
∑n

i=1 Wα(xi) over X . The solution is called
the generalized α-fairness [15].

Corollary 1. (i) For all α ≥ 0, the alpha-fair rate assignment
coincides with the unique maxmin rate assignment.
(ii) Consider some strictly concave increasing utility function
U . For all α ≥ 0, the generalized alpha-fair rate assignment
coincides with the unique maxmin rate assignment.

Proof: Both the α-utility Vα as well as the generalized
α-utility Wα are concave. It follows from Lemma 2 that∑n

i=1 Vα(Ri) and
∑n

i=1 Wα(Ri) are Schur concave. Since
these are concave functions defined on a convex compact set,
they have a solution (which is unique for all α > 0). The
solution is thus the same for all α > 0 and is majorized by
any other point on the dominant face of the rate region. In
particular since this solution does not depend on α, it is the
limit of the α-fair solutions as α →∞ and therefore it follows
from [11] that the solution is maxmin fair. ¦
Remark 2. The proof of the Corollary provides an alternative
proof to Theorem 2.

Remark 3. It may seem astonishing that all fairness concepts
provide the same rate allocation. In fact, this is not the case
in general fair assignment (see examples in [15]) although the
utilities Vα and Wα are always Schur concave. To understand
this, note that both α-fair and generalized α-fair assignments
are Pareto optimal. Whenever the Pareto optimal set has the
property that the sum rates are constant then indeed any
Schur concave function will have the same maximizer and
thus all the fairness concepts would coincide. In the ensuing

Sections III and IV we give examples of MACs where different
fairness concepts result in different rate allocations.

3) Jain’s fairness: We shall call a rate allocation Jain’s fair
if it maximizes the Jain’s fairness index [9]:

J =
(
∑n

i=1 Ri)2

n
∑n

i=1 R2
i

.

The Jain’s fairness index ranges from 1/n (worst case) to 1
(best case).

Since the maxmin fair rate allocation minimizes
∑n

i=1 R2
i

[14], we conclude that the maxmin fair rate allocation is also
the Jain’s fair rate allocation.

4) The normalized equilibrium: We know from Theorem
1 that there exists a unique normalized equilibrium R∗ to
the original problem associated with some λ as defined in
Problem P1. R∗ is thus such that for each i, its ith component
maximizes L

λ
i (R) := U(Ri) + λ(

∑n
j=1 Rj − ρ(S)). This

implies that R∗ is the unique vector that maximizes

∑

j

U(Rj) + λ(
n∑

j=1

Rj − ρ(S))

over Ĉ. This is the Lagrangian that corresponds to the global
optimization problem. We conclude that R∗ is the globally
optimal solution. Applying Theorem 3 we conclude:

Theorem 4. The unique normalized equilibrium is the maxmin
fair assignment.

C. Differential services and weighted α-fairness

We next raise the question of providing differentiation
between the mobiles. We do that by defining K priority
classes. Let k(i) be the priority class corresponding to mobile
i. We associate to class k priority some positive constant wk.
Introduce the following problem.

Problem P2. Let λ be some constant and define the price
per traffic of mobile i as λi(wk) = λ/wk if mobile i belongs
to priority class k. We wish to find the constant λ such that
λi(wk(i)) defines an equilibrium in our problem.

If such pricing exists then it is indeed scalable since billing
is done not according to the exact identity of the source of each
packet but according to the priority class of the transmitted
packets.

An equilibrium obtained as in problem P2 indeed exists
and is unique [12]. This is the general form of a normalized
equilibrium. The choice of wk now allows to determine the
rate that each priority class would get.

Furthermore, according to [12], finding normalized equilib-
rium is equivalent to the solution of the following optimization
problem:

U(R) =
n∑

i=1

wk(i)U(Ri), (4)

subject to constraints (1). In the important particular case when
the optimal solution to (4) lies on the dominant face and the



choice of utility function corresponds to α-fairness, we have
explicit expressions for λ and for the optimal rates.

Theorem 5. Let U(x) be α-fairness utility function. If the
optimal rate allocation lies on the dominant face, the Lagrange
multiplier and the optimal rates are given by

λ =

(∑n
j=1(wk(j))1/α

ρ(S̄)

)α

,

and

Ri =
ρ(S̄)∑n

j=1(wk(j))1/α
(wk(i))1/α.

Proof: The formulae of the theorem’s statement are derived
with the help of the Lagrangian

L =
n∑

i=1

wk(i)
R1−α

i

1− α
+ λ(ρ(S̄)−

n∑

i=1

Ri).

We note that if we take α = 1 the prices become propor-
tional to the rates. In the case of α = 1 the utility function is
logarithmic, which corresponds to the standard utility function
for elastic traffic. This provides justification to price elastic
traffic proportionally to required rates.

We also note that for any choice of weights we have
that Ri → ρ(S̄)/n as α → ∞ whenever the point
(ρ(S̄)/n, ..., ρ(S̄)/n) belongs to the dominant face. In fact,
since the case α → ∞ corresponds to the lexicographic
optimization for any choice of weights, the following more
general statement holds.

Theorem 6. As α → ∞, the weighted α-fair rate allocation
converges to maxmin fairness.

We would like to note that the lexicographic optimization
and maxmin fairness concepts coincide for polymatroid capac-
ity regions but can differ in the case of non-convex regions.
We shall discuss this issue in more detail in the special section
on non-convex capacity regions.

There are several kinds of multiple access systems whose
capacity region is characterized by a polytope. Some examples
are listed below:
• MAC systems with single transmit antennas at both sides

and time invariant channel [22].
• MAC systems with single transmit and receive antennas

and flat fading, when the channel state information is
known only at the receiver but not at the transmitter [13].

• MAC systems with multiple transmit and receive an-
tennas and unbiased flat fading, when the channel state
information is known only at the receiver but not at the
transmitter [23].

III. CONVEX NON-POLYTOPE ACHIEVABLE RATE REGION

Let us consider the Gaussian multiple access orthogonal
channel. Classical example of orthogonal channels are TDMA
and FDMA. In this case, the achievable rate region is given
by

Ri ≤ θi ln
(

1 +
Pihi

θiσ2

)
∀i = 1, ..., n (5)

where 0 ≤ ∑K
i=1 θi ≤ 1.

Given Pi and hi, i = 1...K the achievable rate region (5) is
convex but it is not a polytope and it is strictly contained in (1).
All points on the capacity region border are Pareto efficient
and Nash equilibria. Therefore, here again we need to choose
among many Pareto efficient points and Nash equilibria. We
suggest to use α-fairness utility function to select a particular
equilibrium point. In the following theorem we characterize
the α-fair equilibrium selection.

Theorem 7. The α-fair rate allocation in the Gaussian mul-
tiple access orthogonal channel, which maximizes the utility
function

U(R) =
n∑

i=1

R1−α
i

1− α
,

is unique for any value of the parameter α and is given by
θ’s which solve the following system of equations
[
θi ln(1 +

Pihi

θiσ2
)
]−α [

ln(1 +
Pihi

θiσ2
)− Pihi

θiσ2 + Pihi

]
= λ0,

(6)
n∑

i=1

θi = 1.

The above system has a solution in explicit form in the case
of total rate maximization (α = 0):

θ∗i =
Pihi∑n

k=1 Pkhk
. (7)

When α →∞, the α-fair rate allocation provides maxmin fair
rate allocation (R∗1 = R∗2 = ... = R∗n).

Proof. The uniqueness of the α-fair rate allocation follows
from the fact that we deal with the convex optimization
problem. The equations (6) follow from the KKT conditions
for the Lagrangian

L =
n∑

i=1

R1−α
i

1− α
+λi

[
θi ln(1 +

Pihi

θiσ2
)−Ri

]
+λ0

[
1−

n∑

i=1

θi

]
.

For the particular case α = 0, it follows from system (6) that

ln(1+
Pihi

θiσ2
)− Pihi

θiσ2 + Pihi
= ln(1+

Pjhj

θjσ2
)− Pjhj

θjσ2 + Pjhj
,

or

ln(1+
Pihi

θiσ2
)− ln(1+

Pjhj

θjσ2
) =

Pihi

θiσ2 + Pihi
− Pjhj

θjσ2 + Pjhj
.

Now it is easy to see that the values of θ’s provided by (7)
make zero both sides of the above equation. Also, it is clear
that the values of θ’s provided by (7) satisfy the normalization
condition.

¦



Let us calculate the Jain’s fairness index for the rate
allocation corresponding to the total rate maximization

J =
(
∑n

i=1 Ri)2

n
∑n

i=1 R2
i

=
(
∑n

i=1 Pihi)2

n
∑n

i=1 P 2
i h2

i

≥ 1
n

.

We note that the lower bound 1/n can be achieved and hence
the allocation corresponding to the total rate maximization
can be extremely unfair judging by the Jain’s fairness index.
Thus, the α-fairness concept provides a continuous spectrum
of rate allocations from the possibly very unfair total rate
maximization to the completely fair maxmin rate allocation.
It is easy to calculate the maximal total rate corresponding to
the total rate maximization problem

n∑

i=1

R∗i = ln
(

1 +
∑n

i=1 Pihi

σ2

)
.

MAC systems which enable time-sharing of the coding
schemes are in general characterized by a convex capacity
region. Examples of MACs having a convex non-polytope
capacity region with non linear boundary surfaces are:
• Time invariant MAC systems with multiple antennas and

without intersymbol interference (ISI) [21].
• Time invariant MAC with single [20] or multiple antennas

[21] and ISI.
• Flat fading channel with channel state information known

at the transmitter and the receiver and single [26] or
multiple transmitting and receiving antennas.

• In all previous cases with fading channels we considered
the ergodic capacity regions, i.e. we assumed that the
codewords have a duration such that the channel is
ergodic in such time interval. However, it is possible
to consider a second situation when codewords have a
duration independent of the scale of the channel variation.
In general, the channel is not stationary and ergodic in
the timeframe of a codeword. In such a case, it is possible
to have reliable communications only if the channel
is known at both ends. These kind of capacity region
for MAC with single transmit and receive antennas are
investigated in [27] and the maximum achievable rates
are referred to as delay limited capacities.

The approach of Theorem 7 equally applies to the above
MACs. In particular, in the case of any strictly convex capacity
region, there is a unique α-fair rate allocation. We also
note that in the present case, similarly to the polymatroid
capacity region case, the Jain’s fair allocation coincides with
the maxmin fair allocation.

IV. NON-CONVEX ACHIEVABLE RATE REGION

Shannon pointed out in [16] that all capacity and zero-
capacity regions are convex if it is possible to time-share
the coding schemes applied to attain individual points of the
region. However, time sharing is not applicable to all systems.
When some system characteristic prevents the use of time
sharing the capacity region is not necessarily convex. As an
example, time sharing is not applicable if the system nodes
do not share a common time reference.

We present below some examples of systems with non-
convex rate regions.

A. Collision Channel Without Feedback

The collision channel without feedback has been studied
first in [17]. The absence of a feedback channel does not
enable synchronization for applying time sharing of the code-
books. The interested reader is referred to [17] for a detailed
description of the system. Shortly, we recall here that the
two cases of slot-synchronized and asynchronous collision
channel are investigated in [17]. The source for each user is
Q-ary symmetric, independent of the others and generating
information at a rate of Ci packet/slot. The duty factor pi of
user i is the fraction of time during which user i is actually
transmitting packets. Thus, the transmitting rate of the user
when she is actually using the channel is Ci

pi
. The signals at

the receiver is impaired, eventually, only by colliding signals
but not by additive noise. The capacity region is the set
of all source rates that are approachable in the sense that
there exist coding schemes with rate Ci

pi
with enable reliable

communications1.
Let Cu,0, Cu, Cs,0, and Cs be the zero and non zero capacity

regions of asynchronous collision channels, and the zero and
non zero capacity regions of the slot-synchronous collision
channels, respectively. All these regions coincide and the
boundary of the common capacity region C is the set of all
points [17] C = (C1, C2, . . . , Cn) such that

Ci = pi

n∏

j=1
j 6=i

(1− pj) (8)

being p = (p1, . . . pn) a probability vector whose elements are
nonnegative and satisfying the constraint

∑n
i=1 pi = 1.

Interestingly, C is not convex but its complement in the non-
negative orthant is convex [18]. Figure 3 shows the capacity
region for the two users case.

In the next theorem we characterize the α-fair rate alloca-
tions for the non-convex capacity region described by (8).

Theorem 8. The α-fair rate allocation for the capacity region
described by (8) has three distinct cases with respect to the
value of α:
• Case α > α∗: The α-fair rate allocation corresponds to

the maxmin rate allocation.
• Case α = α∗: There are several α∗-fair rate allocations.

Among α∗-fair rate allocations one corresponds to the
maxmin fair rate allocation. Moreover, if n = 2, any rate
allocation on the capacity boundary is α∗-fair. If n > 2,
one α∗-fair rate allocation corresponds to the maxmin
fair allocation and the other α∗-fair rate allocations
correspond to total rate optimization and are given by
the points Ri = 1 and Rj = 0 for j 6= i.

1The communications systems analyzed in the previous sections were
characterized by the same source rate and transmission rate, while in this
case the two quantity differs. To keep clear this feature, we adopt a different
notation for the source rate in the collision channel and in the following
recovery channel.



• Case α < α∗: The α-fair rate allocations correspond to
total rate optimization and are given by the points Ri = 1
and Rj = 0 for j 6= i.

The threshold value α∗ is given by

α∗ =
(n− 1) ln(n/(n− 1))

ln(n) + (n− 1) ln(n/(n− 1))
. (9)

Proof. To determine the threshold value α∗, we equate
the values of the α-fairness utility function evaluated at
the maxmin fair point (1/n, ..., 1/n) and the corner point
(1, 0, ..., 0). Namely, we need to solve the following equation
with respect to α:

n

1− α

[
1
n

(
1− 1

n

)n−1
]1−α

=
1

1− α
.

If n = 2, the boundary of the capacity region has an explicit
form R

1/2
1 + R

1/2
2 = 1 and the statement of the theorem for

n = 2 follows immediately. If n > 2, we consider small
perturbations around the maxmin fair point

p1 =
1
n

+ ε, pi =
1
n
− 1

n− 1
ε, i = 2, ..., n,

and around the corner points

p1 = 1− ε, pi =
1

n− 1
ε, i = 2, ..., n,

in order to conclude that we deal with isolated maxima.
¦

Since the point p = (1/n, ..., 1/n) provides the maximal
value to the Jain’s fairness index, in the case of the non-convex
capacity region described by (8) the maxmin fairness coincides
with the Jain’s fairness in this example of MAC with non
convex capacity region.

The capacity of the slot-synchronized collision channel has
been extended in [19] to the case when a multiuser decoder
is utilized at the receiver and the colliding messages can be
recovered with probability q. This channel is referred to as
recovery channel. The capacity of the n-user recovery channel
with recovery probability q is the closure of all rate points
(R1, R2, . . . , Rn) satisfying the following for all i = 1, . . . n :

Ri ≤ pi

∏

j=1,j 6=i

(1− pj) + qpi


1−

∏

j=1,j 6=i

(1− pj)


 (10)

where 0 ≤ pi ≤ 1.
In contrast to the previously investigated rate regions, the

region (10) is neither convex, as the cases investigated in
Section II and III, nor concave as for the collision channel
without feedback. Examples of this capacity region are pro-
vided in [19]. In the next theorem we characterize the α-fair
rate allocations for the capacity region (10).

Theorem 9. The α-fair rate allocation for the capacity region
described by (10) has three distinct cases with respect to the
value of α:
• Case α > α∗: The set Sα+ of the α-fair rate allocations

contains the single point R1 = . . . Rn = q corresponding
to the maxmin fair rate allocation.

• Case: α < α∗: The set Sα− of the α-fair rate allocations
contains n points corresponding to total rate optimization
points, namely Sα− = {R|(Ri = 1)

⋂n
j=1,j 6=i(Rj =

0), for i = 1, . . . n}.
• Case α = α∗: The set Sα∗ of the α-fair rate allocations

contains contains n + 1 points. More specifically, Sα∗ =
Sα+

⋃Sα− .

The threshold value α∗ is given by

α∗ = 1 +
ln(n)
ln(q)

. (11)

Proof. We focus on the case q > 0 since for q = 0 the
recovery channel reduces to the collision channel. All the
extreme points for the optimization problem max

∑n
i=1

R1−α
i

1−α
with (R1, R2, . . . Rn) belonging to the rate region (10) are
obtained as solution of the KKT conditions for the Lagrangian

L = −
n∑

i=1

R1−α
i

1− α
+

n∑

i=1

λi


Ri − pi

∏

i6=j

(1− pj)

−qpi


1−

∏

i 6=j

(1− pj)





 +

n∑

i=1

νi(pi − 1).

The points satisfying the KKT conditions belong to the union
set Sα−

⋃n
i=0,i6=1Ki where Ki is the set of all distinct permu-

tations of (q, . . . q︸ ︷︷ ︸
i times

, 0, . . . 0︸ ︷︷ ︸
n−i

). Potential maximum values for the

utility function are reached in Sα− where
∑n

i=1
R1−α

i

1−α = 1
1−α

and in Sα+ = Kn with
∑n

i=1
R1−α

i

1−α = nq1−α

1−α (the other
sets correspond to obvious local maxima and minima). To
determine the threshold value α∗, we equate the values of the
α-fairness utility function evaluated at Sα− and Sα+ . Namely,
α∗ is the solution of the following equation with respect to α:

nq1−α

1− α
=

1
1− α

.

¦
With the allocation rate (q, q, . . . q) all users transmit con-

tinuously ignoring the presence of the interfering users and
relying only on the multiuser decoding capabilities of the re-
ceiver. It could be surprising that there exists a single threshold
for the parameter α which determines a transition from the set
of the allocation rates Sα− to the set Sα+ while the points
in Ki are not α-fair allocations for any value of α. This
phenomenon is due to system model adopted to describe the
recovery channel. In fact, the recovery probability is assumed
constant and independent of the number of colliding users. In
practical systems the recovery probability q is a decreasing
function of the system load, i.e. the number of active users
in the system. Taking into account this aspect could induce
a smoother transition from Sα− to Sα+ through the sets Ki

when the parameter α increases.

B. Implication on max-min fairness

Consider the utility region given in Figure 4. It has two
points, A and B, which are both lexicographically maxima: the



value of the smallest coordinate of any point in the region is
maximized there; moreover among all points that maximize the
smallest coordinate, points A and B also maximize the value of
the largest coordinate. For the case where the achievable region
is convex, lexicographic maxima are also maxmin fair. The
region of Figure 4 however has no maxmin assignment! For
example, at point A, any way to increase the assignment in the
vertical axis direction results in a decrease in the assignment
in the horizontal direction.
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0.4
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1

R
2

R
1
 (packets/slot)

Fig. 3. Rate region of a collision
channel with two users

Fig. 4. Rate region: equal rates are
maxmin fair

We note that in this case the Jain’s fair allocation is well
defined (it is the intersection point of the central line pointed
by (1/n, ..., 1/n) and the boundary of the capacity region) and
is different from the lexicographic fair allocations.

The Figure 4 is taken from a rate region in interference
channel with random access [25]. To our knowledge, this is
the first time that this phenomenon is identified in our context.
A similar phenomenon has been discovered in the context of
assignment of discrete objects, see [24].

V. CONCLUSION

We have studied MACs in the context of non-cooperative
games with correlated constraints. In the non-cooperative
games with correlated constraints the actions available to one
player depend on those used by the others. A typical feature
in these games is that they often possess infinitely many
equilibria. To select among the equilibria we have proposed
to use the Normalized Nash equilibrium and different fairness
concepts such as maxmin fairness, lexicographic fairness, α-
fairness and Jain’s fairness. We have considered three main
types of MACs: polymatroid regions, convex non polytope
regions, and non convex capacity regions. In the case of
Gaussian MAC (an example of a channel with polymatroid
achievable rate region), the normalized Nash equilibrium and
all fairness concepts select the same equilibrium. In the case of
Gaussian multiple access orthogonal channel (an example of a
channel with convex non-polytope achievable rate region) dif-
ferent fairness concepts can select different equilibria. We have
characterized these equilibria. Finally, the analysis pointed
out very unexpected behaviors of channels with non-convex
achievable rate regions. It turns out that in some channels with
non-convex achievable rate regions the maxmin fair allocation
might not even exist. An interesting future research direction is
to study equilibria selection in the case of several base stations.
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