
Low Complexity Cross-Layer Design for Dense
Interference Networks

Sara Akbarzadeh, Laura Cottatellucci, Christian Bonnet

Institut Eurecom, 2229 Route des Cretes, 06904 Sophia Antipolis Cedex, France E-mail: sara.akbarzadeh@eurecom.fr

Abstract—We considered a dense interference network with
a large number (K → ∞) of transmitter-receiver pairs. Each
transmitter is endowed with a finite buffer and accepts packets
from an arrival process. Each transmitter-receiver link is a
fading vector channel with N diversity paths whose statistics
are described by a Markov chain. We investigatedistributed
algorithms for joint admission control, rate and power allocation
aiming at maximizing the individual throughput defined as the
average information rate successfully received. The decisions are
based on the statistical knowledge of the channel and bufferstates
of the other communication pairs and on the exact knowledge
of their own channel and buffer states. In the case of a finite
number of communication pairs this problem is computationally
extremely intensive with an exponential complexity in the number
of users. Assuming that K, N → ∞ with constant ratio the
algorithm complexity becomes substantially independent of the
number of active communications and grows with the groups of
users having distinct asymptotic channel statistics. The cross-
layer design is investigated for different kind of decodersat
the receiver. The benefits of a cross layer approach compared
to a resource allocation ignoring the states of the queues are
assessed. The performance loss due to the use of policies designed
for asymptotic conditions and applied to networks with a finite
number of active communications is studied.

I. I NTRODUCTION

In a wireless medium, the users radiate energy and com-
municate through superposition of each other’s transmissions.
Thus, the concept of link does not exist intrinsically. This
context is extremely challenging but also offers unimaginable
possibilities since all the nodes are naturally connected each
other. The current generation of wireless networks reduces
the problem complexity by using multiple access protocols,
introducing a hierarchical network structures, and exploiting
the natural attenuation of the medium (frequency reuse), but
renounces to benefit from the full connectivity offered by the
air interface. Next generation wireless networks aim at exploit-
ing this full connectivity by weakening the notion of central
authority (e.g. cognitive radio) or cancelling it completely (e.g.
ad hoc networks) without renouncing to the full flexibility
and level of services already offered by cellular networks.
Then, the focus is on interference networks characterized
by interfering communications between multiple sources and
multiple destinations. Different levels of cooperations among
sources and\or destinations can be envisaged but in general
the delocalization of control mechanisms such as rate and
power allocation, scheduling, admission control, and routing
will play a fundamental role. In decentralized schemes, the

decision concerning network parameters (rates and/or powers)
and transmission conditions are made by individual nodes
based on their local information.

The benefit of cross-layer design and joint optimization
of this control mechanisms are well known in centralized
communication systems (e.g. [1] and references therein) and
can be effectively exploited also in interference networks[2],
[3].

The interference channel is currently object of intensive
studies both in information and communications theory.

The decentralized cross layer algorithms for resource alloca-
tion in interference networks is a complex and intriguing prob-
lem since the decision affects many fundamental operational
aspects of the network and its resulting performance. Several
alternative approaches have been proposed. Two main streams
can be identified: (1) schemes based on repeated games and
learning dynamics, (2) constrained stochastic games.

The first approach has been extensively applied for power
allocation ([5], [6], [7],[8]). Power allocation in interference
networks is inherently a repeated process and it is natural
to model interactions among users with repeated games.
These approaches introduce a learning phase which provides
each users with information (intelligence) to make a correct
decision. The convergence of the learning dynamics in the
repeated game [5] is the main challenge of these schemes.
Additionally, they assume slow varying channels. Constrained
stochastic games have been applied to decentralized cross layer
design for multiple access [2] and interference channels [3].
By assuming statistical knowledge of the channels and the
service request processes, constrained stochastic games can be
applied to system with fast varying dynamics. However, they
rely on a rational behaviour of the players. When applied to
networks with a large number of nodes, the former approach
incurs in a huge amount of overhead and delay while the latter
suffers from an unaffordable complexity.

In this work we focus on the design and analysis of
decentralized cross layer algorithms for power and rate allo-
cation, scheduling and admission control for dense interfering
networks based on constrained stochastic games with the
primarily aim of decreasing their complexity. We assume that
the links between transmitter and receiver are characterized by
some kind of diversity (e.g. in space, frequency) and we refer
to it as vector channels withN diversity paths. Furthermore,
we assume that theN diversity paths are random andK,



the number of network links, andN tend to infinity with
constant ratio. This approach is motivated by the fact that
the asymptotic design and analysis of the network in random
environments significantly decreases the design complexity
and provides insightful analysis results. This model may
characterize interference networks with spreading of the trans-
mitted signals based on random signature sequences (similarly
to code division multiple access - CDMA - in multiple access
networks), or systems with multiple antennas at the receiver,
where the randomness is due to channel fading. In such
settings, when the number of users and diversity paths grow,
fundamental performance measures as capacity and signal to
interference and noise ratio (SINR) at the output of a receiver
detector converge to deterministic limits.

The performance analysis of various receivers (e.g. matched
filters, linear minimum mean square error - LMMSE -, optimal
detector), for multiple access vector channels in random en-
vironment has been extensively investigated in literature(e.g.
[14],[15],[16]). We extend the results to interference channels
and apply them to the design and analysis ofdistributedcross
layer algorithms in large interference networks1.

The assumption of large system analysis introduces two
fundamental features into the system setting in [3] charac-
terized by a discrete set of decision variables and a discrete
set of channel statistics. Firstly, in an interference system with
finite number of users and decentralized control mechanisms, a
transmission is intrinsically subject to outage since eachtrans-
mitter is not aware of the interferers’ decisions and effects.
On the contrary, in large interference channels, the effects
of the interferers tends to a deterministic limit regardless of
the instantaneous link states. Then, a transmitter can avoid
outage events by convenient control algorithms. Secondly,
the complexity of the cross layer design algorithms, which
increases exponentially with the number of users in [3], scales
only with the number of groups of users characterized by the
same channel statistics in large systems.

For large interference systems we consider the cross-layer
design of rate and power allocation jointly with scheduling
and admission control for four different kind of receivers with
increasing complexity. Namely, we consider two receivers,one
based on linear MMSE detection and the other on optimum
detection and subsequent decoding of all users having the same
rate and received power. The receivers have only statistical
knowledge of the interferers’ channel states. A third receiver
is based on joint optimum detection and decoding of all users
having same received power and rate but with additional
knowledge of the interference structure at the receiver. The
fourth receiver decodes jointly and optimally all the decodable
users while knowing the interference structure.

We compare the performance of the receivers with the
designed optimum policies. The mismatch between of per-
formance of the optimum policies for large systems and for
finite systems are also assessed.

1Hereinafter, we refer to interference networks with numberof users and
diversity paths growing to infinity with constant ratio aslarge interference
networks.

Notations: The boldface capital/small letters are used
for matrices/vectors respectively. A superscript for a
matrix/row-vector denotes the index of corresponding column-
vector/element. A subscript of a matrix/row-vector is the index
of corresponding row-vector/element. The probability mass
function of a discrete random variablex is denoted byP(x).

II. SYSTEM MODEL

We consider a system consisting ofK arbitrary source-
destination pairs sharing the same medium, (e.g. ad hoc
network). We use the same index for the corresponding trans-
mitter and receiver of a single source-destination pair. The time
is uniformly slotted. We assume that one node cannot transmit
and receive at the same time. The channels are Rayleigh fading
and ergodic within a time slot, while the channel statistics
change from a time slot to the following one. Furthermore,
codewords are completely transmitted during a single time
slot, i.e. the channel is fast fading.

Following the same approach as in [3] we define two sets
of discrete variables representing states and actions of each
transmitter.

The channel in time slott ∈ N is described by anK ×K
matrix Σ(t) whose(j, i) elementσi

j(t) is the average power
attenuation of the channel between transmitterj and receiveri
during time slott. Throughout this work, we refer to them as
the channel states (CS). The rowj includes the states of the
channels from the transmitting nodej to all the destination
nodes. This vector is denoted byσj(t). The i-th column
includes the states of the channels from all the transmitting
nodes to the receiveri and it is denoted by the column
vector σi(t). It contains all the CS information necessary
to determine the statistics of the signal to interference and
noise ratio (SINR) at the destination nodei at time slot t.
Furthermore, each average power attenuationσj

i is modelled
as an ergodic Markov chain taking values in the discrete
set E of cardinality L. For the sake of notation, we define
a bijection between the setE and the set of the natural
numbers{0, 1, ..., L − 1}, ϕ : E → {0, 1, ..., L − 1}. Let
its inverse beψ = ϕ−1. The Markov chain ofσi

j is defined
by the transition matrixT (j, i) whose(k, ℓ) elementT ℓ

k(j, i)
is the probability of transition from the CSψ(k) to the state
ψ(ℓ). The conditional probability nature ofT ℓ

k(j, i) reflects on
the fact that

∑L
ℓ=1 T

ℓ
k(j, i) = 1. We assume throughout that

T (j, i) is irreducible and aperiodic as in [2]. The steady CS
probability distribution of the channel between transmitter i
and destinationj is given by the column vectorπ(i, j).

At each node, packets arrive from the upper layer according
to an independent and identically distributed arrival process
γi(t), t ∈ K with arrival rateλi. Here,P(γi(t)) is the proba-
bility of receivingγi(t) packets at time instantt. The packets
have constant length.

Each transmitter is endowed with a buffer of finite length.
We denote byBi the maximum length of the buffer at node
i and byqi(t) number of queuing packets at the beginning of
slot t. In the following, we address the variableqi(t) also as
the queue state (QS).



In each time slot, on the basis of the available information
at timet transmitteri decides (a) the transmission power level
pi ∈ Pi, wherePi is a finite set of nonnegative reals including
zero; (b) the number of packets to transmitµi ∈ Mi, with
Mi = {0, 1, ...,Mi} andMi ≤ Bi; (c) to accept or reject
new packets arriving from upper layers. We denote withci = 1
andci = 0 the decision of accepting and rejecting the packets,
respectively. Therefore, the action of the nodei at time slott
is described by the tripletdi(t) = (pi(t), µi(t), ci(t)).

The information available at nodei at timet is given by the
pair xi(t) = (σi

i(t), qi(t)), i.e. the CSs from transmitteri to
receiveri and the number of the packets in the queue at the
beginning of time slott (QS). We refer to the pairxi(t) as the
transmitter state (TS). Additionally, each transmitter knows the
statistics of the other channels and the statistics of the arrival
process in the buffer.

We assume that the link between a source and a destination
is a vector channel with equal average power attenuation over
all the N paths. A vector channel can model systems with
several types of diversity (e.g. spatial diversity if the receivers
are equipped withN antennas, frequency diversity if code
division multiple access, CDMA, or orthogonal frequency
division modulation, OFDM are selected as multiple access
schemes).

The complex-valued channel model for receiveri is

y(i)[m] = S[m]H(i)
[⌊m
N

⌋]
A

[⌊m
N

⌋]
b[m] + wi[m] (1)

wherem is the index for symbol intervals and depends on
the frame intervalt by the expressionm = tN + p with
p = 0, . . .N − 1; y(i)[m] and b[m] are theN -dimensional
complex vectors of received signals by nodei and transmitted
symbols by all nodes, respectively. Here,S[m] is a K × N
complex matrix with zero mean independent and identically
distributed (i.i.d.) entries having variance1/N. The matrices
H(i)

[⌊
m
N

⌋]
and A

[⌊
m
N

⌋]
are diagonal withj-th diagonal

elements equal to
√
σi

j(t) and
√
pj(t), respectively. Finally,

wi is theN dimensional complex vector of the additive white
Gaussian noise with zero mean and unit variance. We assume
that the transmitted signalsbi[m] are i.i.d., with zero mean
and unit variance.

In order to model a large interference network asK →
∞, we assume that the transition matricesT (j, i) are taken
from a finite set of transition matricesT = {T (1), . . . ,T (c)}
and the channel between each transmitter and each receiver
is described with probabilityP(T (ℓ)) by the transition matrix
T (ℓ). The same property holds for each receiver.

If (1) models a CDMA system, the matrixS[m] includes the
effects of the spreading sequences with spreading factorN and
the randomness of a Rayleigh fading channel. If (1) models
K interfering single antennas transmitting toK receivers
equipped with multiple antennas (SIMO systems), then the
matrix S[m] accounts for the Rayleigh fading. In both cases,
the matrix H(i)

[⌊
m
N

⌋]
models the effects of the pathloss.

Eventual coupling effects among the receiving antennas in

interfering SIMO systems are neglected in this model.
Throughout this work we will consider a system in the

steady state. Thus, we will neglect the symbol intervalm
when its omission does not cause ambiguity. In the following
section, conditions for the convergence to a steady state ofthe
whole system will be detailed.

The probability mass function of the joint action and trans-
mitter state in the steady state of the Markov decision chain
is denoted byP(ak, σ

k
k , qk). A policy of transmitterk is a

deterministic or probabilistic application from the spaceof TS
Xk to the action spaceDk. A probabilistic (or mixed) policy
of transmitterk is uk(dk|xk), i.e. the probability that mobilek
chooses the actiondk when the state isxk or equivalently, the
conditional probability that userk chooses the action triplet
(pk, µk, ck) conditioned to the transmitter state(σk

k , qk)The
class of decentralized policies of mobilek is denoted by
Uk. If we assume that the user policies are known, then the
probability mass function ofpi

k = pkσ
i
k, k = 1 . . .K, the

average received power from transmitterk by receiveri is
given by

P(pi
k) =

∑

σk,pk:

pkσi
k=p

i
k

∑

ck

∑

qk

∑

µk

P(σk, qk)uk(pk, µk, ck|σk
k , qk)

=
∑

σk,pk:

pkσi
k=p

i
k

∑

ck

∑

qk

∑

µk

P(σk
k , qk)P(σi

k)uk(pk, µk, ck|σk
k , qk)

(2)

where the second step is a consequence of the independence
of σk

k andσi
k.

Let us notice that the empirical eigenvalue distribution
of the matrixH(i)AAHH(i)H

converges to the probability
distribution function of the averaged received powerpi

k, when
the system is in the steady state (t → +∞) and the number
of communication flows grows large (K → +∞)

Additionally, the assumptions on the finite cardinalities of
the state and action sets induce a dynamic partition on the
set of theK transmitter-receiver pairs for each given receiver
i. This partition consists of a finite number of subsets: all
the communication pairs having thesame received powerat
the receiveri and thesame rateat a certain time interval
belong to the same group. We denote the total number of
groups byN (i)

g and G(i)
m is the m-th group. There exist a

bijection between the set of groupsG(i)
m and the set of pairs

(pi
r, µs). Let K(i)

1 ,K
(i)
2 , . . .K

(i)
Ng
, with

∑Ng

m=1K
(i)
m = K, be

the cardinality of the setsG(i)
1 ,G(i)

2 , . . .G(i)
Ng
, respectively. Let

us notice that, in general, the bijection depends on the block
interval. However, when we consider the steady state and

N,K → +∞, with K
N → β, the convergenceK

(i)
m

N → β
(k)
i ,

with
PNg

m=1 K(i)
m

N = K
N = β holds. For further studies, it

is useful to introduce the correlation matrix of the whole
transmitted signalsR(i) = SH(i)AAHH(i)H

SH andR
(i)
bG(i)

the correlation matrix of the signals transmitted by nodes in
Ĝ(i) and received by nodei. The correlation matrixR(i)

bG(i)
is

obtained by settingpi
m = 0 in R(i), for all transmitting nodes



not in Ĝ(i). Finally, we define the correlation matrix of the
interfering signals to the signals of interest in̂G(i), R

(i)

∼bG(i)
. It

is obtained fromR(i) settingpi
m = 0 if the m-th transmitter

is in Ĝ(i).
Let us turn to the structure of the receiver at each node.
We will consider different receivers depending on the as-

sumptions we make about (I) the level of knowledge of the
interference available at the receiver; (II) the eventual use of
a suboptimal receiver based on a preliminary pre-decoding
processing (e.g. detection) followed by decoding; and (III)
the type of the decoder, i.e. single-user/joint decoder. Itis
important to note that the aim of receiverk is to decode its
own message of interest, i.e. the message transmitted by the
corresponding transmitterk. The other messages are decoded
if this is beneficial for decoding the message of interest. Based
on these observations, we consider four approaches detailed in
the following:

SG-MMSE/UIS/SGD (Single Group MMSE detection/ Un-
known Interference Structure/Single Group Decod-
ing): In this case we assume that the receiverk
has knowledge only of the channel vectors

√
pk

i sk
i

for the communication flows which have the same
received powers and transmission rate of the user
of interest k, i.e. the transmitters inG(k)

k , but no
knowledge of the others. The interference from the
latter communication flows is considered as a white
additive Gaussian signal. The receiver first detects
the transmitted symbols for all the flows with known
vector channels by a linear minimum mean square
error (LMMSE) detector. Subsequently, it performs
single-group decoding, i.e. it decodes jointly the
information streams of the pairs inG(k)

k .
NP/UIS/SGD (No preprocessing/Unknown Interference

Structure/Single Group Decoding): This case differs
from the previous one only in the fact that no pre-
processing of the received signal is performed.

NP/KIS/SGD (No preprocessing/Known Interference
Structure/ Single Group Joint Decoding): The re-
ceiver k has knowledge of all the vector channels√

pk
i sk

i . It decodes jointly the information streams
of the single groupG(k)

m it belongs to, i.e. with the
same received power as the user of interestpk

k and
same rateµk. In the decoding it makes use of the
knowledge about all the interference structure, i.e.
the knowledge of the vector channels of all active
streams.

NP/KIS/MGD (No preprocessing/Known Interference
Structure/ Multi Group Joint Decoding) All the vec-
tor channels of the active transmitters are known to
receiveri. Then, receiveri identifies the maximum
decodable set of information streams and decode
them jointly while taking into account of the interfer-
ence structure for the users which are not decoded.

Let us notice that the investigated receivers are in order of
increasing performance in decoding the information of interest.

In the following we will denote byXk the information bits
(uncoded bits) transmitted by nodek, by XV the information
bits transmitted by the transmitting nodes in the setV . Fi-
nally, I(XV ;Y (k)) is the mutual information of the channel
transmittingXV and receivingy(k).

III. PRELIMINARY USEFUL TOOLS

In this section we will specialize known results on large
multiple access networks and on the rate regions of inter-
ference channels to our interference networks with a large
number of nodes. Additionally, key remarks will be stated.

A. Some Convergence Results

Let us consider the Markov chain with finite states which
characterize the statistics of a channel between a transmitter
and a receiver node. If we assume that the Markov chain is
irreducible and aperiodic, then there is a unique stationary
distribution which describes the steady state. Let us further as-
sume that all the transmitter-receiver channels are described by
the same Markov chain. Then,applying the Glivenko-Cantelli
theorem (e.g. [10]) the empirical distribution of the channel
states in the matrixH(i), for any i, as the system is in the
steady state, converges almost surely to the unique stationary
distribution of the unique Markov chain. If the policies of all
users,Uk, k = 1, ...,K,, are known and identical, then also the
empirical distribution mass function of the received powers
in the matrix AH(i)H(i)HAH converges almost surely to
the distribution mass function (2). A similar convergence
result can be obtained if the channels between a transmitter
and a receiver are described by a Markov chain defined by
a transition matrix belonging to a finite set with a given
distributionP(T )

This kind of convergence satisfies the conditions for the
applicability of results on random large matrices (see e.g.[11])
which are the key tools to derive the following results.

B. Large System Analysis of the Receivers

The large system analysis of multiple access vector channels
with random channel vectors is in [14], [16], [15]. Effects of
interference on large network performance are investigated in
[12], [13]. The extension of their results to the interference
network in Section II is presented here.

Without loss of generality, in the following we will focus on
the transmitter-receiver pair 1 and we denote byG(1)

1 the group
of all the communication flows with received power at receiver
1 and transmission rate equal top1

1 andµ1R, respectively.
In the case of a SG-MMSE/NIS/SGD receiver and the

system size grows large withK,N → ∞, K
N → β and

|G
(1)
1 |
N → β

(1)
1 , the spectral efficiency per chip converges almost

surely to [14]

Cmmse(SNR, β
(1)
1 )→ β

(1)
1 log2(1 + SNR− 1

4
F(SNR, β

(1)
1 )

(3)
beingF(x, z) =

(√
x(1 +

√
z)2 + 1 −

√
x(1 −√z)2 + 1

)2

andSNR the signal to noise ratio accounting in the noise also
the interference from other groups, i.e.



SNR =
p
(1)
1

1 +
∑

m∈{2,...,Ng}
β

(1)
m p

(1)
m

. (4)

The information stream of the pair inG(1)
1 can be decoded

reliably if and only if

µ1R ≤
Cmmse(SNR, β

(1)
1 )

β
(1)
1

. (5)

In fact, from the definition of groupG(1)
1 and the capacity

region of a multiple access channel, the elements of all
the information flows inG(1)

1 are reliably decodable if the
following infinite conditions are satisfied:





β̃
(1)
1 µ1R ≤ Cmmse(SNR, β̃

(1)
1 ) for 0 < β̃

(1)
1 ≤ β(1)

1 ,

µ1R ≤ log2(1 + SNR) for any subset ofG(1)
1 with

finite cardinality andN→∞.
(6)

The condition on the dominant face (5) implies all the infinite

other conditions (6) since the termC
mmse(SNR,eβ(1)

1 )

eβ(1)
1

is a

decreasing function of̃β(1)
1 .

Let us notice that the effects of interference become deter-
ministic if β(1)

j are deterministic.
The derivation of the large system performance for the

NP/UIS/SGD receiver follows along similar lines when we
observe that the spectral efficiency of the multiple access
channel consisting of all the transmitters inG(1)

1 and the
reference receiver1 is given by [14]

Copt(SNR, β
(1)
1 ) = β

(1)
1 log2(1 + SNR− 1

4
F(SNR, β

(1)
1 ))

+ log2(1 + SNRβ
(1)
1 − 1

4
F(SNR, β

(1)
1 ))− log e

4SNR
F(SNR, β

(1)
1 )

with SNR defined in (4). Then, the information streams of
the pairs inG(1)

1 can be decoded reliably by a NP/UIS/SGD
receiver if and only if

µ1R ≤
Copt(SNR, β

(1)
1 )

β
(1)
1

. (7)

The performance of an NP/KIS/SGD receiver can be derived
by using the fundamental relation on the mutual information

I(X
G

(1)
1

;Y (1)) = I(XG(1) ;Y (1))− I(X
∼G

(1)
1

;Y (1)|X
G

(1)
1

)

= log2 det(R(1) + I)− log2 det(R
(1)

∼G
(1)
1

+ I) (8)

where X
G

(1)
1

denotes the set of transmitted information

streams inG(1)
1 , Y (1) is the set of the received random signals

at receiver 1, andX
∼G

(1)
1

is the set of all the information

streams transmitted by the nodes in the set∼ G(1)
1 =⋃Ng

m=2 G
(1)
m .

In large systems, the spectral efficiency per chip at the
receiver 1 when all the transmitted information are decoded
(multiple access vector channel) is given by [15], [16]

C(MAC)(SNR, β
(1)
1 ) =

Ng∑

m=1

β(1)
m log2(1 + p

(1)
m η(1))

− log2 η
(1) + (η(1) − 1) log2 e (9)

being η(1) the unique real nonnegative solution of the fixed
point equation

η(1) =
1

1 +
∑Ng

m=1 βm
p
(1)
m

1+p
(1)
m η(1)

. (10)

Then, (8) and (9) yield the spectral efficiency per chip of
an NP/KIS/SGD receiver

C(NP/KIS/SGD)(SNR, β
(1)
1 ) = β

(1)
1 log2(1 + p

(1)
1 η(1))

+

Ng∑

m=2

β(1)
m log2


 1 + p

(1)
m η(1)

1 + p
(1)
m η

(1)

∼G
(1)
1




− log2

η
(1)

∼G
(1)
1

η(1)
+ (η(1) − η(1)

∼G
(1)
1

) log2 e (11)

with η(1) given in (10) andη(1)

∼G
(1)
1

satisfying the relation

η
(1)

∼G
(1)
1

=
1

1 +
∑Ng

m=2 βm
p
(1)
m

1+p
(1)
m η

(1)

∼G
(1)
1

. (12)

Let us consider the multiuser efficiencyη(1) of the
NP/KIS/SGD receiver as a function ofβ(1)

1 and observe that
it is a decreasing function ofβ(1)

1 . Then, making use of
this property and appealing to similar arguments to the ones
adopted for the SG-MMSE/NIS/SGD receiver it can be shown
that the a reliable communication is possible if and only if the
rateµ1R in G(1)

1 satisfies the conditions on the dominant face
of the rate region, i.e.

µ1R ≤
C(NP/KIS/SGD)(SNR, β

(1)
1 )

β
(1)
1

. (13)

Let us consider now a NP/KIS/MGD receiver. We aim to
provide necessary and sufficient conditions for a reliable
decoding. Let us first observe that for each receiver there exist
a unique maximal decodable set of transmitters, i.e. a set of
transmitters which are jointly decodable by the receiver and
is not a proper subset of any other decodable subset [17].
Furthermore,

THEOREM 1 [17] A subsetĜ(1) ⊆ G(1) is the unique maximal
decodable subset at receiver 1 if and only if the transmitters’



rates satisfy the following inequalities




∑
i∈

o

G(1)
µiR ≤ I(Xo

G(1)
;Y (1)|XbG(1)\

o

G(1)
) ∀

o

G
(1)

⊆ Ĝ(1),

∑
i∈

e

G(1)
µiR > I(Xe

G(1)
;Y (1)|XbG(1)) ∀

e

G(1) ⊆ G(1)\Ĝ(1).

(14)

This theorem was derived in [17] for finite setsG(1) but
it can be extended to infinite sets. In this case, conditions
(14) consist of infinite inequalities and it is not of practical
usefulness. Nevertheless, for our system, the partition ofthe
transmitter-receiver pairs in groupsG(i)

m , m = 1, . . . , Ng can
be utilized to reduce the set of conditions (14) to a finite set.
In fact, the following properties derive from basic inequalities
in information theory: (I) If a receiver is able to decode one
transmitter in a group of users with identical received powers
and transmission rates, it is able to decode all transmitteed
information by the users in the group. Equally, if a receiveris
not able to decode jointly all the users with identical received
powers and transmission rates it is not able to decode any
single transmitted information by one user in the group. (II)
If a receiver is able to decode two groups2 of transmitters, the
union is also decodable by the receiver. Thus, also for large
systems we can conclude that if a transmitter of a groupG(i)

m

belongs to the decodable set any other transmitter belonging to
the same group is also decodable and the full set is included
in the maximum decodable set3. G(i)

m and (14) reduce to a
finite set of conditions.

Let us observe that the possible decodable sets for which
to verify condition (14) are2Ng . Because of the exponential
complexity of this step, it is of great interest to have low com-
plexity algorithms. An algorithm with polynomial complexity
is proposed in [17]. It is based on the submodular function
f(V ,S), with V ⊇ S ⊇ G, andG finite set transmitters4

f(V ,S) = I(XV ;Y (1)|XS\V)−RV (15)

andRV is the sum of the rates of all the transmitters inV .
Note thatf(V ,S) is defined also for the empty set∅, and
f(∅,S) = 0. Additionally, the algorithm exploits well known
polynomial time algorithms for the minimization of submod-
ular functions [18], [19]. The application of this approachto
a large system is almost straightforward when we determine
the maximum decodable set up to a subset with zero measure.
Then, if the communication of interest belongs to a set of zero
measure,independently whether it is decodable or not.

The polynomial time algorithm to verify whether the in-
formation stream of the transmitter-receiver pair of interest

2Each group consists of users having same received powers andtransmis-
sion rate.

3These properties hold thanks to the existence and uniqueness of the
maximum decodable set [17] and the fact that all users in the same set have
the same transmitted and received power.

4Note that the functionf(V ;S) ≥ 0 if the sum rate of the information
transmitted by nodes inV is lower than the mutual information over the
channel between the nodes inV and the receiver when all the information
transmitted by nodes inS\V is known at the receiver and the information
transmitted by the nodes inG(1)\S is treated as noise.

in G(1), with cardinality |G(1)| → ∞ is decodable or not is
detailed below.

ALGORITHM 1 Initial Step:
SetS =

⋃
ℓ=1

β
(1)
ℓ

6=0

G(1)
ℓ .

Step 2:
Determine the setVmin =

⋃
ℓ=1

β
(1)
ℓ

6=0

G1
iℓ
⊆ S with minimum

cardinality that minimize the submodular function

f̃(V ,S) = lim
K,N→∞

K
N

→β

f(V ,S)

N

=

Ng∑

ℓ=1
G

(1)
ℓ

/∈∼S

β
(1)
ℓ log2



1 + p
(1)
ℓ η

(1)
∼S\Vmin

1 + p
(1)
ℓ η

(1)
∼S





Ng∑

ℓ=1
G

(1)
ℓ

∈Vmin

β
(1)
ℓ log2(1 + p

(1)
ℓ η

(1)
∼S\Vmin

) + log2

η
(1)
∼S

η
(1)
∼S\Vmin

+(η
(1)
∼S\Vmin

− η(1)
∼S) log2 e−

Ng∑

ℓ=1
G

(1)
ℓ

∈Vmin

µmβ
(1)
m R.

with η(1)
∼S\Vmin

and η(1)
∼S defined as in (12).

Step 3
SetS ← S\V(1)

min. If V(1)
min 6= ∅ go to step 2.

Step 4
If G(1)

1 ⊆ S then the transmitter-receiver pair 1 is decod-
able. STOP.

Step 5
If β(1)

1 = 0 then setV to a sigleton set containing the
transmitter-receiver pair 1 and compute the function

f0(V ,S) = lim
K,N→∞

K
N

→β

f(V ,S)

= lim
K,N→∞

K
N

→β

log2 det(RS + p
1
1s

1H

1 s1
1 + I)

− log2 det(RS + I)− µ1R = log2

(
1 + p

1
1ηS

)
− µ1R

with ηS defined as in (12).
Step 6
If f0(V ,S) ≥ 0 then the transmitter-receiver pair 1 is

decodable otherwise is not decodable. STOP.

IV. PROBLEM STATEMENT

The utility function for this problem is defined as the
individual throughput of each transmission flow, i.e. the av-
erage number of information bits transmitted by a source and
successfully received by the corresponding destination inthe
time unit. We are interested in finding the policiesUk which
maximize the individual throughput with some constraints
while using one of the receivers described in Section II. With
this aim, we investigate the problem introduced in [3] under
the assumption thatKN → β > 0 andβ finite. We make use of



mathematical results on random matrices successfully utilized
in the analysis of several large systems.

In the rest of this section we introduce the throughput
optimization problem as a stochastic game defined for the
interference network under investigation.

At each time slot, a node chooses its action without having
a global view of the channel states and the other users’
interference. There is no coordination among transmitters’
actions and only local information is available at each node.
Therefore, in the general case, for any choice(pi, µi), there
is no guaranty that theµi transmitted packets can be received
correctly when the TS isxi.

However, for large interference networks, asN,K → ∞
and K

N → β, the total interference impairing useri can be
replaced by a deterministic value. Therefore, during a block
time t, µi(t) packets can be transmitted successfully by source
i if the conditions derived in Section III for the achievable rates
on the interference channel are satisfied. Namely, if an SG-
MMSE/NIS/SGD receiver is adopted , the power and trans-
mission rate are such that (5) is satisfied. For an NP/UIS/SGD
receiver, condition (7) needs to be fulfilled. Condition (13)
is required for reliable communications when NP/KIS/SGD
receivers are utilized. Conditions for reliable communications
over a system based on NP/KIS/MGD receivers are provided
in (14) or, equivalently, in Algorithm 1.

Let P(µk(t)R achievable |xk
k = χ0) be the probability of

receiving correctlyµk(t) transmitted packets at block timet,
conditioned toxk(0) = χ0, the initial state of userk. This
probability depends on the choice of the receiver although it
is not explicitly expressed by the adopted notation.

The average throughput for sourcek is

lim sup
T→+∞

1

T

T−1∑

t=0

E{P
(
µk(t)R|xk

k(0) = χ0

)
µk(t)R} (16)

where the expectation is conditioned toxk
k(0), the initial TS

of userk.
For physical and QoS reasons the transmitters are subjected

to constraints on the average transmitted powers and on the
average queue length. More specifically, the average power of
transmitterk is constrained to a maximum valuepk and the
following upper bound is enforced

lim sup
T→+∞

1

T

T−1∑

t=0

E{pk(xk(t), dk(t))|xk(0) = χ0} ≤ pk (17)

wherepk(xk(t), dk(t)) is the power, eventually zero, transmit-
ted by the sourcek at time instantt when the action triplet
dk(t) is selected. The expectation is conditioned to the initial
TS xk(0) = χ0 of transmitterk. Similarly, in order to keep
the average delay of the packets limited, the average queue
length is constrained by the following bound:

lim sup
T→+∞

1

T

T−1∑

t=0

E{qk(t)|xk(0) = χ0} ≤ qk (18)

whereqk is maximum allowed average queue and the expec-
tation is conditioned toxk(0) = χ0.

V. GAME IN LARGE SYMMETRIC INTERFERENCE

NETWORKS

In this section we restrict our investigation to a large sym-
metric interference network. A large symmetric interference
network is characterized by the fact that all the channels are
characterized by the same Markov chain and the statistically
identical processes for the arrival processes. Additionally,
their action sets and the constraint parameters are identical.
Equivalently, in a large symmetric interference network all the
users have the same objectives and constraints. In such a case,
an optimal policy is identical for all users. Furthermore, the
distributions of the received powers are equal for all users.

Therefore, here on, we omit the user index and generalized
our analysis to any transmitter-receiver pair. We denote byκ
the cardinality of the product setK = X × D = {(x, d) :
x = (σ, q) ∈ X , d = (p, µ, c) ∈ D} and by< x, d >n the
n-th element ofK. In the asymptotic case, the other users’
policies will influence the payoff function only through the
asymptotic distribution of the received powers. If we denote
this probability byP(p), the payoff function is

c(x, d,P(p)) = µR 1(µR achievable; P(p)) (19)

where 1(·) is the indicator function. The payoff function
can be computed for each given pair inK and P(p) from
conditions (5), (7), (13) or (14) according to the adopted
decoding method.

Let z = z(x, a) be the joint probability that the transmitter
performs actiona while being in statex. It can be expressed
by the column vectorz = (z1, z2, . . . zκ)T . Then, for a given
received power distribution, the payoffρ is given by the linear
form

ρ(P(p)) =
∑

<x,d>∈K

c(x, d,P(p))zn. (20)

Therefore the constrained optimization problem defined in
(16)-(18) can be expressed as follows

max
z(x,d)

∑

x∈X

∑

d∈D

z(x, d)µR1(µR achievable; P(p)) (21a)

Subject to:
∑

x∈X

∑

d∈D

z(x, d)[δr(x)− Pxdr] = 0 ∀r ∈ X (21b)

∑

x∈X

∑

d∈D

p(x, d)z(x, d) ≤ p (21c)

∑

x∈X

∑

d∈D

qz(x, d) ≤ q (21d)

z(x, d) = 0 if q ≤ µ (21e)

z(x, d) ≥ 0; ∀(x, d) ∈ K;
∑

(x,d)∈K

z(x, d) = 1 (21f)



wherePxdr is the probability to move from statex to stater
when actiond is performed.δr(x) is a delta function which
is equal to1 wherex = r and zero for other values ofx.
Additionally, (21b) guarantees that the graph of the obtained
MDP is closed; (21c)-(21d) correspond to the constraints (17)-
(18), respectively; (21e) eliminates the invalid pairs inK such
that the number of packets to be sent is not higher than the
number of packets in the queue.

Note that if the distributionP(p) had been known (20)
would have reduced to a linear equation and the optimal
z = z∗ would have been solution of a linear program.

The optimal policyu∗(d|x) of a transmitter can be immedi-
ately derived fromz∗ in the steady state of the MDC system
by the relationu(d|x) = z∗(x,d)P

d′∈d
z∗(x,d′) .

In a large symmetric network an equilibrium for the network
is achieved when all the transmitters adopt the same policy
u(d|x) or z(x, d). Since the probability of the received powers
P(p) depends onu(d|x), then the game (21) is intrinsically
nonlinear and difficult to solve. Thus we propose a best
response algorithm as solution of the game. We choose ar-
bitrarily a policy for all the infinite transmitters except the
reference pair 1. Based on such a policy it is possible to
determine the probability of the received powers at receiver 1
by (2). Then, the new probability mass functionP(p) is utilize
to solve the linear problem defined in (21). This procedure can
be iterated. If the algorithm converges the solution is a Nash
equilibrium.

VI. N UMERICAL RESULTS

In this section, we consider two methods for resource
allocation. The first method is the cross-layer method proposed
in this work and denoted shortly CL. The second method is the
conventional resource allocation ignoring the state of queues.
It is denoted shortly as Conv. We use the setting of a symmetric
large interference network with parameters detailed in Table I
for the comparisons presented here.

We compare the performance of the optimal game strate-
gies, at receiveri, while using the three classes of re-
ceivers described in Section II, namely (SG-MMSE/UIS/SIG),
(NP/KIS/SGD), (NP/KIS/MGD). For the sake of brevity, we
address the approaches asAm − r wherem ∈ {CL,Conv}
and r ∈ {(SG−MMSE/UIS/SIG), (NP/KIS/SGD),
(NP/KIS/MGD)}.

In our setting, we assume that CS varies according to
a Markov chain with the following transition probabilities:
T 0

0 (i, j) = 1
2 , T

1
0 (i, j) = 1

2 , T
L−1
L−1 (i, j) = 1

2 , T
L−2
L−1 (i, j) =

1
2 ; (2 ≤ k ≤ L − 2)T k

k (i, j) = 1
3 , T

k−1
k (i, j) =

1
3 , T

k+1
k (i, j) = 1

3 . This means that at each time slot the
channel preserves its state or changes by one unit. The packet
arrival process is described by a Poisson distribution with
average rateλi = 1. In our simulations, we assume that the
possible rates are multiple ofR = 1

2 .
We perform a two-level admission control; one is defined by

our offline policy and set the variableci to 1/0 corresponding
to the acceptance/rejection decision. However, as we only use
one admission control flagci for all the possible number

of packet arrivals, there exist situations where the remaining
space of the queue is less than the number of packets arrived
at the time. The second (realtime) control is needed in order
to drop the packets when the queue is full.

The algorithm in Section V converges for all the classes of
receivers. The optimal policies are in general not unique and
depend on the policy initializing the algorithm.

The optimal policies in Figure 1, are obtained in high SNR
regime. This figure shows the equilibrium policies obtained
by the proposed algorithm for the three classes of receivers.
The action index is presented in abscissa while the state index
is represented in ordinate. The state index addresses the pair
of CS and QS. The indexing approach is presented in Table
II. Similarly, Table III describes the mapping between action
indices and the triplets(µi, pi, ci).

Interestingly, the optimal policies of thelarge interference
networkstudied in this paper have the following decoupling
property: (I) decision onµi is not affected by the CSs and is
an increasing function of the QS, and (II) the power level is
independent from the queue level and only a function of CS.
This property is specific of large interference networks and
it does not hold in the general case of interference networks
with finite users [3].

For all three classes of receivers, the optimal policy does
not transmit packets when the channel is in the worst situation.
For two other channel states, namely medium and good, the
decision onµi is a non-decreasing function of QS. The optimal
policies for ACL-(SG-MMSE/UIS/SGD) yield transmissions
with lower rates compared to the two other receivers. ACL-
(NP/KIS/MGD) yields a number of transmitted packets not
lower than the ACL-(NP/KIS/SGD) receiver at the same
power.

At high SNR, the policies of the ACL-(NP/KIS/MGD)
receiver yield transmission at the maximum allowed rate
whenever the channel state of the transmitter is nonzero. In
other words, the optimal rate is limited by the discrete rate
set. In contrast, for the other two receivers the optimal rates
are limited by the interference and they show an interference
limited behavior. This observation helps us in a better un-
derstanding of the saturation behavior of the receivers in the
following Figure 2-4.

Figure 2 shows the performance of optimal policies in our
cross-layer approach for three classes of receivers. This figure
shows the throughput obtained by each class of receivers ver-
sus the energy per bit per noise level,Eb/N0. The simulations
are done on a range of noise variances from -30dB to 0dB.
The value of the throughput here is obtained through averaging
the data rates (bits/s/Hz) of the equilibrium policies of our
proposed algorithm over all transmitter states. To be compliant
with the definition of throughput, the energy per bit per noise
level is obtained by the same averaging function.

As the value of energy per bit per noise level increases,
all receivers enter into a saturation mode. For the ACL-
(NP/KIS/MGD) receiver, this behavior results from the fact
that the optimal rate is limited by the discrete rate set. In
contrast, for the other two cases, the throughput is interference



title β Bi L Mi |Pi| p
i

q
i

CL 2 5 3 5 4 1 2
Conv 2 − 3 5 4 1 2

Table I
NETWORK PARAMETERS

state index 0 1 2 3 4 5 6 ... 17
queue state 0 0 0 1 1 1 2 ... 5
channel state 0 1 2 0 1 2 0 ... 2

Table II
LABELLING OF STATES

action index 0 1 2 3 4 5 6 7 8 9 ... 48
Num of packets 0 0 0 0 0 0 0 0 1 1 1 ... 5
power level 0 0 1 1 2 2 3 3 0 0 1... 3
accept/reject 0 1 0 1 0 1 0 1 0 1 0... 1

Table III
LABELLING OF POLICIES

TP Outage Rate Drop rate
policy of asymptotic problem 0.6 0.38 0.09
policy adapted to the finite problem 0.61 0.36 0.09

Table IV
COMPARISON BETWEEN THE PERFORMANCE OF THE EQUILIBRIUM POLICY

OBTAINED FOR THE ASYMPTOTIC PROBLEM AND THE ONE ADAPTED TO A

2-FLOW NETWORK [3] IN A NETWORK WITH 2 ACTIVE COMMUNICATIONS
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Figure 1. Policies in a network with infinite transmissions

limited.
Figure 3 compares the performances of cross-layer and con-

ventional mechanisms while using the best receiver, namely
ACl-(NP/KIS/MGD) and AConv-(NP/KIS/MGD). At the first
glance, we can observe that in the conventional approach more
power is consumed for sending a given packet. Indeed, the
policies in this case are decided regardless of the queue states.
Consequently, there exist cases where the power is adjusted
to satisfy a certain rate while there is not enough data in the
queue to provide that rate. In such cases, the remaining data
in the queue is sent with a power level higher than needed.

Figure 4 represents the performance of the optimal policies
obtained for the asymptotic case in networks with finite trans-
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missions. We can observe that using the policies obtained from
the asymptotic problem, even when the number of transmitter
is very low, e.g.K = 4, the finite network performs almost
as well as the large interference network. ForK = 8 the
performance of a finite network attains the asymptotic one.

Finally, we compare the performance of the policy adapted
to a finite network of 2 communication flows (obtained in
[3]) with the one of the asymptotic problem. The performance
measures here are: (i) Throughput (TP), i.e. the number of
packets per time slot correctly decoded by the receiver, (ii)
Outage rate, i.e. the fraction of transmitted packets whichcan
not be decoded correctly, (iii) Drop rate, i.e. the fractionof
arriving packets from upper layers which are rejected due to
admission control. The value of the performance metrics for
both policies are represented in Table IV. We can observe that
in a network of 2 communication flows the policy obtained
through the asymptotic problem, performs almost as well as
the one adapted to this finite network. Therefore, also for a
2-flow network one can choose the less complex problem, i.e.
the asymptotic one, for obtaining good policies.



VII. CONCLUSIONS

In the current work, we considered a dense interference
network with a large number (K →∞) of transmitter-receiver
pairs. We investigateddistributedalgorithms for joint admis-
sion control, rate, and power allocation aiming at maximizing
the individual throughput. The decisions are based on the
statistical knowledge of the channel and buffer states of the
other communication pairs and on the exact knowledge of their
own channel and buffer states.

We considered different receivers depending on the as-
sumptions we make about (I) the level of knowledge of the
interference available at the receiver; (II) the eventual use of
a suboptimal receiver based on a preliminary pre-decoding
processing (e.g. detection) followed by decoding; and (III) the
type of decoder, i.e. single-user/joint decoder.

In a finite framework, this problem presents an extremely
high complexity when the number of users and/or transmitter
states grows above a very limited range (e.g. 2, 3 users!).
This makes distributed cross layer approaches very intensive.
The asymptotic approach of large interference networks en-
ables a sizable complexity reduction. More specifically, the
complexity does not scale with the number of users but with
the number of groups of users having identical statistics. The
problem has an especially low complexity in the practical case
of symmetric networks.

The optimal policies obtained with the asymptotic approach
can be effectively applied in finite interference networks.In
fact, we studied the performance loss due to the application
of policies designed for asymptotic conditions in network with
a finite number of active communications. We observed that
even for a network containing 4 active communications, the
performance of finite networks almost attains the one of large
interference networks. Similar results are obtained for the
converse comparison. We compare the performance of a finite
network when an asymptotic approximation of the policies is
adapted with the one obtained with policies tailored to the
finite networks [3]. Even for the most challenging case of a
network with 2 communication flows, the optimal policy of
the asymptotic problem performs almost as well as the policy
adapted to the network.

We further investigated the benefits of a cross layer ap-
proach compared to a conventional resource allocation ignor-
ing the states of the queues. In the conventional approach more
power is consumed for sending a given amount of data as there
exist cases where the power is allocated to satisfy a certain
rate although there is not enough data in the queue to achieve
that rate. To neglect the state of the queue causes a relevant
performance loss since the power is not efficiently allocated.

Interestingly, the optimal policy of the large interference
network studied in this paper presents interesting decoupling
properties. More specifically, the rate is an increasing function
of the queue state only while the allocated power is a function
of the channel state only.
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