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Abstract director will ask for variations of the presentation withire
action, or sometimes because some recordings are disturbed
In this paper, we propose a hovel method inspired by the with unexpected mistakes. In the rushes video, a take will
bio-informatics domain to parse a rushes video into sceneshe a continuous recording from the camera, and, for short
and takes. The Smith-Waterman algorithm provides an effi-takes, it may happen that several takes are recorded contin-
cient way to compare sequences by comparing segments afously in the same video sequence. Furthermore, the rushes
all possible lengths and optimizing the similarity measure videos will also contain auxiliary data such as test patern
We propose to adapt this method in order to detect repetitiveto calibrate the camera colors, or clapper sequences which
sequences in rushes video. Based on the alignments founddentify the take and scene number in the recording and they
we can parse the video into scenes and takes. By comparin@re also used for alignment of the soundtrack with the video.
takes together, we can select the most complete take in eacfihese characteristics require adequate processing for the
scene. This method is evaluated on several rushes videoanalysis of rushes videos. In this paper, we propose anorigi
from the TRECVID BBC Rushes Summarization campaign.nal approach which uses sequence alignment algorithms in-
spired from the bio-informatics domain to structure a risshe
video into scenes and takes. In the following section, we
discuss the motivation for this work, and then, we detail the
video sequence alignment algorithm and finally, we evalu-
ate this algorithm on several rushes videos proposed during
the TRECVID BBC Rushes Summarization campaign.

1 Introduction

With rapid advances in the technology of digital video
documents and although powerful technologies now exist to o
create, play, store and transmit those documents, the-analy2 Motivation
sis of the video content is still an open and active research
challenge. In this paper, we focus on video film making  The TRECVID BBC Rushes Summarization campaign
tools. The automatic creation of video summarig<] is a proposes a task where, given a video from the rushes test
powerful tool which allows making summary by synthesis collection, one has to automatically create an MPEG-1
the entire content of a video while preserving the most im- video summary with a maximum duration & that shows
portant or most representative sequences. For this purposeghe main objects and events of the original video. The
the content of the video sequence has to be analyzed, andummary should minimize the number of frames used and
its structure has to be identified, so that the most relevantpresent the information in ways that maximize the usability
video segments can be selected. In this paper, we focuf the summary and speed of objects/event recognition.
on the analysis of video rushes, as used in the TRECVID The evaluation is performed by human assessors who
BBC Rushes Summarization campaign. Rushes videos aravatch the summaries and provide various indicators on the
the raw recordings from a camera, taken during the prepa-quality and coverage of their content.
ration of a movie or a documentary. They are unedited, andAs mentioned previously, the content of rushes videos is
they constitute the raw material from which the video editor very specific. Rushes videos contain a lot of repetitions, fo
will select segments and compose the final video program.example several takes of the same scene with variations due
Rushes exhibit a very specific structure. The recording of ato the indications of the director, or to unexpected events
movie is organized in scenes, where each scene representend errors. They also contain long segments in which the
a given piece of action. Typically, a scene will be recorded camera is fixed on a given scene or barely moving, and
several times, each recording is a different take, becdngse t reusable shots of people, objects, events, locations, that



are sometimes used to fill gaps during the final editing. tance between two strings is given by the minimum number
Although many techniques have already been proposed toof operations needed to transform one string into the other,
automatically process the content of general videos, thewhere an operation is either an insertion, deletion, or-scor
specific structure of rushes videos require an adaptation ofing of a single character. In 1970, Needleman-Wun$&gh [
these techniques, and sometimes, the development of neyproposed an algorithm to perform a global alignment over
approaches for an efficient parsing. In previous wof§ [ two sequences by dynamic programming. To find the align-
[?], we have already tackled the problem of detecting and ment with the highest score, a two-dimensional matrix is
removing junk frames (such as test patterns and clapperallocated, with one column for each character in the first
board), defining a video similarity measure (based on asequence, and one row for each character in the second se-
hierarchical classification of one second segments), andguence. Thus, if we are aligning sequences of sizesnand m,
selecting relevant segments for the final summary (throughthe running time of the algorithm is O(nm) and the amount

a criterion of maximal coverage). To extend this work of memory used isin O(nm).

further, we introduce a new step in the process in which

we use a sub-sequence alignment algorithm to structure the | Given : Two nucleotide or protein sequencéds= ajaz...a, B =
video into scenes and takes. We can compare takes of the| b1b2.--bm

same scene together, and select the take that seems to be¢ ® Compute(n + 1) x (m + 1) scoring matrix M; where

the most representative. Figu?P@ shows the main steps of M[i][;] represents the cost of the sub-sequence alignment
. ending with segments; ands;;.
this new process.

e Find the best sub-sequence alignment, i.e. the maximaé valu
M, fi][].
Output : The best sub-sequence alignment.
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Figure 2. Smith-Waterman algorithm

In 1981, Smith-Waterman?] proposed a variation
of this algorithm to perform local sequence alignment

one-second segment clustering

o Il BEIIN (see figure??): instead of looking at the total sequence,
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SEqUENCe ' ks w - the Smith-Waterman algorithm compares segments of all
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- possible lengths and optimizes the similarity measure.
_ i e G This is done by creating a scoring matrix with cells
Agment £ besttakeg indicating the cost to change a sub-sequence of one to the
selection . .
- T I . sub-sequences of the other. The main difference to the
L ] ['ss” Teoene ] |rc] NI R Needleman-Wunsch algorithm is that negative scoring ma-

trix cells are set to zero, which renders the (thus posiivel

scoring) local alignments visible. Back-tracing startshat

highest scoring matrix cell and proceeds until a cell with
In this process, the main steps to parse a video are: first,score zero is encountered, yielding the highest scoringj loc

to decompose the video into one-second segments and talignment. Figure?? shows the scoring matrix between

cluster these segments by a hierarchical method. SecondlyHEAGAWGHEE and PAWHEAE, the best local alignment

we use a Video Sequence Alignment algorithm (VSA) to (in bold) is AWGHE with AW-HE.

find repetitive sequences. Repetitive sequences are the dif

ferenttakes of the same scene, so that by grouping rejgetitiv

Figure 1. General approach of video parsing
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In 1966, Levenshtein introduced the notion of edit dis- = 2 's; * 0, 2 ot 0w #R®

tance by the question: "What is the minimal number of edit # | © 0, 8 2l- 13 > 04 w0 w0

operations to transform a string into another?”. The Lev- E /¢ o s 13 18 2« & 0 4 16 2%

enshtein distance is a metric for measuring the amount of

difference between two sequences. The Levenshtein dis- Figure 3. Example of scoring matrix



Several works is based on the same id@pdgcomposes 4.3 Scoring matrix
shots in keyframes and then perform a global alignment

between all pairs of shots. Finally they construct a similar We search local alignments between a video sequence

ity matrix of shots. p] perform a local alignment between 5.4 jtself. So, we propose the following definitions and as-

successive shots only, so they obtain an alignment SCOr&mptions to compute the scoring matrix:

which used to classify shot. 1?]J use LCSS to find the ] . ]

same takes, we call this method JRS. e A video sub-sequencg = s;s3...5, IS a list of one-
second segments.

e Two one-second segments and s, are aligned if
4 Video Sequence Alignment algorithm some sub-sequences containiagnds, are aligned.

_ _ _ _ _ e Two aligned sub-sequences can not contain the same
In this section, we explain our adaptation of the Smith- one-second segment.

Waterman algorithm to find repetitive sequences in a ) _

video: VSA (Visual Sequence Alignment). In order to ~ ® A pair of one-second segments can be aligned only

detect similarities between sub-sequences of the video, we ~ ONCE.

partition the video into one-second segments, and these o Two aligned sub-sequences must have a minimal num-

segments are hierarchically clustered by visual simifarit ber of one-second segments.

The hierarchical classification is useful because it can

easily provide various similarity thresholds, so that wa ca The video sequence is represented as a list of one-second

; il i segment clusters; = cics...c,,, Wherec; corresponds to
adapt it FO the V"?‘”?‘b"'tY of the visual content. Then, we the cluster of the segmeintat the clustering level. The
search visually similar video sub-sequences.

(m+ 1) x (m + 1) scoring matrix)M;[i][j] at levell is com-
puted as M,[i][0] = 0, M;[0][i] = Oand M;[i][i] = 0Vi €0, ...,n
0

M,[i — 1][j — 1] + match_cost(%, J)

M;[i][j — 1] + gap-cost

Myli — 1][5] + gap-cost

4.1 Temporal unit My[i][j] = maz

Our first step consists in defining a temporal unit from

work. This unit is the shortest sequence that could be wherematch_cost is the cost to align two segments and
perceived by a human. A study showed that one second isyap_cost is the cost to add a gap in the alignment.

the minimal length to see a concept in a video sequePce |
Another showed thaR0.5 frames is required to see a
concept P]. We have therefore chosen to use this temporal
unity of a second. We decompose the rush video into
one-second segmens(frames).

4.4 VSA

We can use the Smith-Waterman algorithm to find repet-

itive sequences in a video directly with the previous adap-

4.2 Hierarchical clustering tation to the video domain. This process requires to de-
fine a clustering level. In order to eliminate this require-

In order to perform an adaptation of Smith-Waterman Ment, we propose to use a varying level allows to have
algorithm, we have to define a good match between @ coarser or flner.def|n|t.|or.1 of the visual similarity. We
two video sequences. A good match happens when theStart with a finer V|su_al similarity, to detept the most sim-
matching is performed between two one-second segmenté_'ar_ sub—s_equences f|rs_t, and continue with a coarser sim-
belonging to the same cluster. Each one-second segmerit2rity to find weaker alignments. Another way is to favor
is represented by the average HSV histograsigihs for perfect allgnment ratherthan long alignment, sowe normal-
H, 3 for S and V) of those frames. The algorithm starts |z_ed the scoring matrix/ by the length of the alignments:
with as many clusters as there are one-second segmentsii][j] = il The Sequence Alignment Algorithm
then at each step of the clustering, the number of clusters igs described in figure .
reduced by one by merging the closest two clusters, until  The result of the VSA is an ordered list of aligned sub-
all segments are finally in the same cluster. The distancesequences, where the order corresponds to the confidence
between two one-second segments is computed as thé¢hat we can assign to the alignment, the best alignments
Euclidean distance, and the distance between two clusterdeing found first. As we let the algorithm run, erroneous
is the average distance across all possible pairs of segmentalignments may be introduced. Those will be filtered in the
of each cluster. next processing step, where scene detection is performed.



Given : A video sequence is defined as a list ofn one- More precisely, we compute the confideneet(f) of a
second segments = 5182...8m _ frame f to be a scene transition on the video sequence be-
e Hierarchical clusteringiS; = cicz...c. wherec; is ginning at the framefirst and finishing at the framéust

the cluster of segmersf of the clustering level. ) S A
e [=0. ) ) ) _ Yfle(first,f] ¥f2€(f last]
e Compute(m + 1) = (m + 1) normalized scoring maf by: rect(f) = > D
trix M; whereM,[i][j] represents the cost of the sub- Vi1Efarst. ]V 2T Last]
sequence alignment ending with segmentands; . We search the framg € [first, last] maximizing the value

e lteratively: find the best sub-sequence alignment, |.e.
the maximal valué/;.
— If M; > threshold, we store this alignment
and we update the scoring matrix.
— Elsel = I+ 1 and we update the scoring matrix.
Output:An ordered list of aligned sub-sequences.

of rect(f), and if this value is greater than a threshofd,
delimits a scene transition and we restart the process on the
two sides off. At the beginning, we fixfirst = 0 Alast =

F (F is the number of frames in the video). The process
is continued as long as we can find rectangles with values
greater than the threshold. The threshold has been manually
adjusted, and is the same for every video sequence. When
Figure 4. VSA: Video Sequence Alignment al- no rectangle can be found, the decomposition into scenes
gorithm is complete. We remove false alignments, i.e. inter scene
alignments. Figur@? shows a video scene decomposition.

5 Rushes video parsing

Every scene is generally recorded in several takes
(different versions for the same scene). We parse rushes
video into scenes depending on the alignments that have
been found by the VSA and we remove false alignment by
the fact that two aligned sub-sequences must belong to the
same scene.

Figure 5. Video scene decomposition

5.3 Take selection
5.1 Alignment matrix

To select the best take for a given scene, we note the

Our alignment matrix is a matrix of scores which express :
following comments:

the confidence of the alignment between two frames. A

video sequence is defined as a list of frares= f;... £, e The different takes of a given scene presumably con-
(we now work at the frame level). We construcha n tain very similar content, therefore it is likely that dif-
alignment matrixA where A[fj][f;] is the rank of the ferent takes (or parts of different takes) will appear in
alignment between segments which contain frarfijesnd the list of aligned sub-sequences. A take should be
f;, if one exists. If no such alignment exists, the value of a sequence of frames which do not contain aligned
Al[fi][f;] is set to the total number of alignments found plus frames.

one.

e Some takes may be shorter, for example when an unex-
pected event happens that does not allow a full record-
5.2 Scene detection ing of the action. The longest take is therefore a
good candidate for being the best representative for the
We assume that the different takes of the same scene  SCe€ne.
are visually very similar. So, in the alignment matrix, they
should correspond to a black square area along the diagonaBased on these remarks, we do not search for a precise
Since two scenes are presumably visually different, we candecomposition of the scene into takes, but rather we search
detect the boundary between scenes by searching for whitdor the longest take by searching the longest contiguous
rectangle areas in the alignment matrix. We use a recursivesequence of frames which do not contain frames that
method: we seach the best scene boundary, and we repeditave been aligned together. This sequence is kept as the
this process on the two sides of the boundary until we do reference take for the scene.
not find any.



6 Experimental results VSA and the number of pairs of frames aligned in the
ground truth. The precision rate is the ratio between the

6.1 Protocol number of correct pairs of frames aligned and the total
number of alignments found by VSA.

TRECVID BBC Rushes Summarization Tasks for 2008: tion, we compare the surface area of scenes found with the
6 for the development and for the test. It consists of ground truth data. When two frames are in the same scene

unedited video footage, shot mainly for five serieset by scene detection and in the ground truth, this allocation
purposes byBc archive. Precision rates as indicators for the performance of the

In the ground truth, the important information to evaluate Video parsing. The recall rate is the ratio between the

our system is the video decomposition in scenes andnumber of correct pairs of frames allocated in the same

takes: a scene is decomposed into takes and a take cafcene by the scene detection algorithm and the number of
be decomposed into consecutive take fragments, (not allPairs of frames allocated in the same scene in the ground
take fragments are present in all takes, since some takedruth. The precision rate is the ratio between the number
may have been shortened). Take fragments are delimitecPf correct pairs of frames allocated in the same scene and
by frame numbers. We constructed the ground truth datathe total number of allocations in the same scene by scene
by manually defining the various scenes, takes and takedetection.

fragments, as illustrated in figure?. The ground truth

shows the take fragments of the different scenes that can be

aligned together. So, from the ground truth data, we can 6-2 Results

easily infer the ground truth alignment matrix of the video
sequence. We use 6 videos to fix thresholds: we perform a

lot of tests by comparing results. In the scoring ma-
trix, match_cost(i,7) = cos(i,7) + 1 if ¢; = ¢; and,
match_cost(i,7) = cos(i, ) — 2 else, andjap_cost = —3.
During VSA, the minimal confidence to valid an alignment
of almost2 one-second segment minimal is And the
scene detection threshold(i95.

Curve?? shows the average precision-recall graphs on the
6 annotated videos, depending on the number of alignments
found by the VSA (the VSA provides an ordered list of
alignments anyway, so it is enough to consider the first
N elements of the list). The precision and recall rates are
computed at the frame level. We compared several varia-

MRS044500
Scene 1

take 1: 4733 48006284 5715
take 2: 2060 2149 2733 -
take3: - 31073208 3687
take 4 : 3720 3760 4017 4368
take 5577669196538 -
take 6 : 6746 6770 7027 7390
take 7 : 7401 7626 7839 8214

Scene 2
take 1:9222 9334
take 2: 9434 9462 10922

take 3 : 10929 11009 12213
take 4 : 12225 12271 13388

ground truth

T
VSA ——

VSA + scene detection ]
VSA without dynamic level =«
— VSA without normalization

Figure 6. Ground truth of video MRS044500,
and alignment matrix corresponding with
sample of aligned sub-sequences.
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To evaluate the VSA algorithm, we compare the align- il

ments found with the ground truth data. When two aligned o
frames by the VSA belong to aligned take fragments in the 0 005 01 015 02 025 03 035 04
ground truth, the frame alignment is considered as correct. Recal

Thi_s al!ows fo_r some variability in thg time alignment, Figure 7. Precision-Recall graph for varia-
which is required because consecutive frames are too tions of the VSA

similar to consider that only one frame-to-frame alignment

is correct. Small variations around it are still perfectly

valid. We use Recall and Precision rates as indicators fortions of the VSA algorithm. If we do not use normalization,
the performance of the VSA. The recall rate is the ratio the results change very little when compared with the
between the number of correct pairs of frames aligned by regular VSA. In the VSA without dynamic level, we fix the

0.3

Minirial confidence = 1.0 - Minimal length = 2 - Scene threshold = 0.95
. . . . . | .




hierarchical clustering level. This reduces the compjexit to identify similar sub-sequences in a video sequence. This
of the algorithm, but also greatly reduces the performance.algorithm is used to parse rushes video and structure them
We get similar effect if we remove both normalization and into scenes and takes. We have described the details of the
dynamic effect. Finally, if we filter the alignments using algorithm and evaluated its performance on the TRECVID
scene detection, we slightly improve the performance. BBC Rushes Summarization task videos.

Figure?? compares the ground truth alignment (left) with VSA is a useful step in the construction of summaries for
the scene structure found by VSA (right) for some example rushes video. In the future, we plan to extend it to other
videos. At the bottom of the matrix, the recall - precision video processing applications, for example, to structure

values for our method and for JRS methG# [ more general videos by detecting similar sub-sequences.
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