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ABSTRACT

Common localization approaches require a large amount of

information to be available in order to achieve identifiabil-

ity, when the signal propagates in a strictly Non-Line-of-Sight

(NLOS) environment. Furthermore, even if they achieve iden-

tifiability, they usually perform poorly. In this contribution we

investigate the conditions that must be met for identifiability

to be feasible and for performance to be adequate. Through

basic theorems and simple numerical examples, we study the

benefit of exploiting additional information, if such is avail-

able and we provide intuitive conclusions that can be proved

useful for any localization scheme.

Index Terms— Localization, Positioning, Identifiability,

Non Line of Sight , Single Bounce Model, Maximum Likeli-

hood Estimation

1. INTRODUCTION

Geometrical network-based localization techniques are usu-

ally implemented in a 2-step procedure: First a set of location-

dependent parameters (LDP) is estimated. Common LDP are

the Angle of Arrival (AOA), the Angle of Departure (AOD)

and the Time of Arrival (TOA) which is equivalent to the de-

lay of any signal path, whether it is the direct Line-of-Sight

(LOS) one or any of the NLOS which are available in a mul-

tipath environment. Afterward, based on the estimated values

of the LDP, a maximum a posteriori (MAP), if information

about the priors of the LDP is available, otherwise a maxi-

mum likelihood (ML) location estimation can be performed.

The latter is the case considered in this paper.

While for the LOS path the geometric relation between

any of the above LDP and the coordinates of the Mobile Ter-

minal (MT) is simple, for the NLOS paths such a relation

can be derived only with the aid of an appropriate channel

model. Thus, in order to exploit the information contained in

the LDP of the NLOS paths, we consider the Single Bounce
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Model (SBM) whose wide applicability stems from the fact

in a wireless propagation environment, more bounces imply a

larger attenuation of the signal. To further include scenarios

in which the MT is moving, we have integrated the SBM with

a simple but realistic mobility model. The derived model that

can describe dynamic along with static channels, has great

advantages compared to the static one, both in terms of iden-

tifiability and performance. These advantages are partly due

to the fact that a new source of information for the location,

the doppler shift, becomes available.

Identifiability in location estimation is the ability to iden-

tify (i.e. to estimate) the unique true position of the MT from

the pdf of the data (which in our case is the LDP) conditioned

on the parameters that need to be estimated. Local identifi-

ability essentially means that position can be identified in an

open neighborhood around the true position. In this work we

examine local identifiability of the location and the speed and

the performance of ML estimation for various cases, using the

Fisher Infromation Matrix (FIM).

2. CHANNEL MODEL

In the following analysis, we consider the Single Bounce

Model (SBM) [1]. The SBM is a realistic model for the

first few arriving signal components that have non-negligible

energy and provides simple geometrical relations between

location-dependent parameters and the coordinates of the MT

and the scatterers, for static environments. For dynamic en-

vironments, i.e. when the MT is moving, a mobility model

can be integrated with the SBM. In our work we consider

such an environment, as shown in fig. 1 and we assume linear

movement of the MT, so that

xi = x0 + υxdti0 , yi = y0 + υydti0 , dti0 = ti − t0 (1)

Let φ, ψ, d, fd denote any AOA, AOD and length of a NLOS

path and the doppler shift of the corresponding signal compo-

nent. With respect to figure 1 and using subscript ij for the

parameters at time instant ti, 0 ≤ i < Nt and corresponding

to path (or scatterer) j, 1 ≤ j ≤ Ns, the location-dependent

parameters, are given by:
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Fig. 1. Single Bounce model

φij =

{
tan−1 ysj−(y0+υydti0)

xsj−(x0+υxdti0)
,

ysj−(y0+υydti0)
xsj−(x0+υxdti0)

> 0

π + tan−1 ysj−(y0+υydti0)
xsj−(x0+υxdti0)

,
ysj−(y0+υydti0)
xsj−(x0+υxdti0)

< 0

(2)

ψij = ψj =

{
tan−1 ysj−yBS

xsj−xBS
,

ysj−yBS

xsj−xBS
> 0

π + tan−1 ysj−yBS

xsj−xBS
,

ysj−yBS

xsj−xBS
< 0

(3)

dij =
√

(ysj − (y0 + υydti0))2 + (xsj − (x0 + υxdti0))2

+
√

(ysj − yBS)2 + (xsj − xBS)2 (4)

fd,ij =
fc

c

υx(xsj − (x0 + υxdti0)) + υy(ysj − (y0 + υydti0))√
(ysj − (y0 + υydti0))2 + (xsj − (x0 + υxdti0))2

(5)

3. LOCATION ESTIMATION

Location estimation is equivalent to estimating the MT’s co-

ordinates at a reference time 0, namely x0 and y0. If the

MT is moving, its speed components υx and υy , should

be jointly estimated. These two pairs of parameters (pa-

rameters of interest) compose a vector which we denote as

pint = [x0, y0, υx, υy]t. The rest of the unknown param-

eters, which are the coordinates of the scatterers are just

nuisance parameters and they compose the vector pnuis =
[xs1, ys1, . . . , xsNs

, ysNs
]t. The set of all of the above

Np = 2Ns + 4 parameters compose the vector:

p = [pt
int,p

t
nuis]

t (6)

Let θ denote the vector containing all the true values of the

LDP. Its entries can be expressed as functions of the entries

of p through eq. (2-5). The location ML estimation will be

based on the estimated value θ̂ of this vector. The size of

θ is Nθ = (αNt + β)Ns, with α ∈ {0, 1, 2, 3} being the

number of available time-varying LDP and β ∈ {0, 1} being

the number of the non-time-varying ones (only AOD in our

case). For example, for α = 3 and β = 1, all possible LDP

are available and θ is

θall = [φt,ψt,dt, f t
d]

t (7)

The ML estimate p̂ is given by:

p̂ = argmin
p

{L} (8)

Assuming that all the estimated LDP are Gaussian-distributed,

the likelihood L is [2]

L , L(θ(p)) =
1

2
(θ̂ − θ(p))tC−1

θ̃
(θ̂ − θ(p)) (9)

4. CRAMER-RAO BOUND

The correlation matrix of the parameter estimation errors p̃

is bounded below by the inverse of the Fisher Information

Matrix (FIM)

Rp̃p̃ = E{(p̂ − p)(p̂ − p)t} ≥ J−1 (10)

where the FIM is given by:

J = E
{ (

∂L

∂p

) (
∂L

∂p

)t }
=
∂θt

∂p
C−1

θ̃

∂θ

∂pt
= GC−1

θ̃
Gt

(11)

and we have introduced the transformation matrix G = ∂θ
t

∂p
.

5. IDENTIFIABILITY CONCERNS

In general, local identifiability of a parameter vector p can be

achieved when the FIM is nonsingular [3, Theorem 1]. The

following corollary is an immediate consequence of the above

theorem and the asymptotic normality of the ML estimates

which leads to eq. (11) for the cases where the estimation of

p is based on a previously estimated vector θ.

Corollary 1: Based on eq.(11), local identifiability of a

parameter vector p can be achieved when the transformation

matrix G is square or wide (Nθ ≥ Np) and has full rank Np.

Assuming that the first condition is always met, since it

essentially means that the number of equations is greater than

or equal to the number of unknowns, we will investigate iden-

tifiability in terms of the rank of the transformation matrix. In

table 1 we give the rank of G for environments with just 1

resolvable path and different subsets of the LDP being avail-

able. These results were obtained analytically (using Gaus-

sian elimination) and verified by simulations. From the table

we can observe that G can be full rank even when only 2 or

3 different kind of LDP are available. When Ns ≥ 2, G and

thus also the FIM J, are full rank for all cases given in table 1.

Therefore it becomes apparent that the entries of p are iden-

tifiable and localization can be implemented in strictly NLOS



scenarios, even when the AOA is not available. Thus the in-

tegration of a mobility model with the SBM offers a huge ad-

vantage in localization, since in the static model, AOA, AOD

and path length (delay) of at least 2 resolvable paths are re-

quired for identifying the coordinates.

6. PERFORMANCE CONCERNS

It should be noted that in some of the cases examined, al-

though the FIM is invertible, it is ill-conditioned. This has a

huge impact on the performance of the ML estimation, since

the CRB becomes very large. To avoid scenarios like these, in

which the parameters are “ill-identified” since the estimation

error will be so large that their estimated value is meaningless,

we will compare the condition number of the FIM for differ-

ent cases and study its impact on the CRB through a numer-

ical example. In this example we consider a pico-cell so that

the distance between the MT and the BS is a few tens of me-

ters ([xBS , yBS ] = [0, 0] , [x0, y0] = [30, 20]) while the MT

is moving with average walking speed ([υx, υy] = [2,−1.5]).
The scatterers’ coordinates are drawn from a uniform distri-

bution with support region [xBS , xBS + 2x0] × [yBS , yBS +
2y0]. The results are averaged for 103 different samples of

scatterers’ coordinates. The condition number of the FIM J

is defined as:

cθ =
λmax

λmin
(12)

where λmax (λmin) is the maximum (minimum) eigenvalue

of J . The effect on the CRB is depicted in the increase of

the Root Mean Square Error (RMSE) of the position and the

speed:

RMSEp,θ =
√
σ2

x̃0

+ σ2
ỹ0

=
√
tr([J−1](1:2,1:2)) (13)

RMSEsp,θ =
√
σ2

υ̃x
+ σ2

υ̃y
=

√
tr([J−1](3:4,3:4)) (14)

Since we are not interested in the impact of C
θ̃

on the per-

formance, we will assume that C
θ̃

= I . Any scaling by a

positive scalar does not change the condition number, while

if the diagonal entries change slightly, the condition num-

ber changes but its order of magnitude usually remains the

same. In table 2 we give the condition numbers and the po-

sition and speed Root Mean Square Errors (RMSE) for cases

of interest, normalized with respect to the same quantities for

the case when all LDP are available, cθall
, RMSEp,θall

and

RMSEsp,θall
respectively. All quantities are in dB, i.e. the

entries are given by

cn = 10 log10

(
cθ

cθall

)
(15)

RMSEp,n = 10 log10

(
RMSEp,θ

RMSEp,θall

)
(16)

RMSEsp,n = 10 log10

(
RMSEsp,θ

RMSEsp,θall

)
(17)

The cases shown in table 2 are the ones with the best per-

formance over all the cases for which local identifiability is

Table 1. Rank of the transformation matrix
Ns = 1 ⇔ Np = 6, Nt ≥ 4

θ [φt,dt]t [dt, f t
d]

t [φt,dt, f t
d]

t

rank(G) 6 6 6

θ [φt,ψt,dt]t [φt,ψt, f t
d]

t [ψt,dt, f t
d]

t

rank(G) 6 5 6

Table 2. Normalized Condition Number and RMSE
Ns = 3, Nt = 50

θ [φt,dt, f t
d]

t [φt,ψt,dt]t [ψt,dt, f t
d]

t

cn 1.2 10.1 6.4

RMSEp,n 1.6 7.7 6.4

RMSEsp,n 0.6 5.2 9.9

feasible. For the cases not shown in this table, the condi-

tion number is increased by at least an order of magnitude

and that leads to a similar degradation in performance, when

fewer LDP are available. The only exceptions are actually the

3 cases shown in this table. However for 2 of these cases the

RMSE for both the position and the speed is more than dou-

bled and only for the case when the AOD is not available, we

notice that the degradation is very small.

So far we have consider the improvement in performance

of the ML estimation of an identifiable parameter vector p,

which occurs when more LDP are exploited in the location

estimation process, but the number of nuisance parameters

remains constant. It is extremely useful to study the impact

on the performance also in situations where exploiting new

LDP comes at the cost of jointly estimating a new set of nui-

sance parameters. This happens when considering a dynamic

rather than a static environment and thus the speed of the MT

needs to be jointly estimated as mentioned above. This can

also happen when the set of unexploited LDP depends deter-

ministically on the entries of p but also on an unknown error

term. For example there might be an unknown synchroniza-

tion offset that needs to be taken into account for the delays

or an orientation/calibration offset that needs to be taken into

account for the AOA and/or the AOD. The following theorem

applies to all of the above cases and proves when the location

ML estimation will be more accurate:

Theorem 1: Introducing and exploiting new LDP θ2

(data) that depend on the entries of the Np1
× 1 parameter

vector p1 that needs to be estimated due to the problem for-

mulation (which might consist of parameters of interest and

possibly some nuisance parameters as well) but also on the

entries of new vector of nuisance parameters p2, will lead

to an enhancement of the performance of the ML estima-

tion only if the transformation matrix G22 =
∂θ

t
2

∂p2

is wide

(Nθ2
> Np2

) and has full rank Np2
.

Proof: Let θ1 be the Nθ1
× 1 vector containing the data

that are already used in the estimation process and define θ ,



[θt
1θ

t
2]

t, p , [pt
1p

t
2]

t, G = ∂θ
t

∂p
and Gij =

∂θ
t
i

∂pj
. The FIM

for the new problem is given by :

Jnew = E
{(

∂L

∂p

)(
∂L

∂p

)t }
= GC−1Gt

=

[
G11 G21

0 G22

] [
Cθ1|p 0

0 Cθ2|p

]−1 [
Gt

11 0

Gt
21 Gt

22

]

=

[
G11C

−1
θ1|p

Gt
11 + G21C

−1
θ2|p

Gt
21 G21C

−1
θ2|p

Gt
22

G22C
−1
θ2|p

Gt
21 G22C

−1
θ2|p

Gt
22

]

,

[
A B

C D

]
(18)

The first term of the sum composing A can be recognized as

the FIM J1 of the original estimation problem whileD is the

FIM J2 for the estimation problem of p2 .

If both of the conditions for G22 are met, we can use the

inversion formula for 2×2 block matrices to obtain theNp1
×

Np1
upper left submatrix of the inverse of Jnew as follows:

[J−1
new](1:L,1:L) = (A−BD−1C)−1

( J1 + G21C
−1
θ2|p

Gt
21

− G21C
−1
θ2|p

Gt
22J

−1
2 G22C

−1
θ2|p

Gt
21 )

−1
(19)

To show that the performance is improved with the addition

of new data, it suffices to show that [Jnew](1:L,1:L) > J1.

This is true because the sum of the other two matrices

on the r.h.s. of (19) results in a positive semidefinite ma-

trix. This can be proved by defining a , C
−1/2
θ2|p

Gt
22u and

b , G21C
−1
θ2|p

Gt
22(G22C

−1
θ2|p

Gt
22)

−1/2u, where u is any

non-zero vector and applying Cauchy-Schwartz inequality

||a||2||b||2 ≥ (atb)2, to get:

ut ( G21C
−1
θ2|p

Gt
21−

G21C
−1
θ2|p

Gt
22J

−1
2 G22C

−1
θ2|p

Gt
21 )u ≥ 0 (20)

If Nθ2
= Np2

andG2 has full rank, (19) reduces to :

[J−1
new](1:L,1:L) = J−1

1 (21)

thus the performance of the ML estimation is exactly the

same, while the complexity of the method increases.

If Nθ2
< Np2

and G2 is full rank, D is singular and

thus non-invertible. The parameter vector p2 is not identifi-

able, however p1 is still identifiable and [J−1
new](1:L,1:L) can

be derived by replacing the inverse of D−1 with its pseudo-

inverse D+ = G22(G
t
22G22)

−1Cθ2|p(Gt
22G22)

−1Gt
22 in

(19). This results again in (21) and thus in no improvement in

performance.

Finally, ifG22 has rank k < min{Nθ2
, Np2

}, Nθ2
− k of

its columns contain no additional information for p2. If they

contain additional information only for p1 then, the informa-

tion they contain for p2 (if any) could be removed by ele-

mentary column operations so that the corresponding entries

of θ2 can be included in θ1, leading to a different partioning

of the FIM. That will improve performance, since new LDP

that depend only on p1 and no new nuisance parameters, are

exploited. If, however, they contain no additional information

on any of the entries of p then they should be discarded. Ei-

ther way,G2 becomes a Np2
× k full rank matrix and the last

of the above cases applies. This completes the proof.

Theorem 1 can be applied in any ML localization ap-

proach. For example, proposition 1 in [4] can be derived using

this theorem. The fact that the performance of a TOA method

does not improve by including the TOA of the NLOS com-

ponents, if these are modeled as the TOA corresponding to

the LOS component plus an unknown error term, is a direct

application of theorem 1 with Nθ2
= Np2

.

7. CONCLUSIONS

In this paper we have thoroughly investigated identifiabil-

ity and performance for a ML location estimation technique

which is suitable for strictly NLOS propagation environ-

ments. The impact of exploiting various location-dependent

parameters, like the AOA, the AOD and the path lengths (de-

lays) along with the location and motion dependent doppler

shift has been depicted. In general, considering a dynamic

instead of a static channel can lead not only to an enhance-

ment in performance, but also to local identifiability of the

location in cases when fewer subsets of LDP are available.

In these cases, the condition number of the FIM can be used

as an indicator for the performance. The results presented

herein can be easily extended to include cases when prior

statistics of the LDP are available or can be obtained by infer-

ence. The information will just have to be added, by adding a

corresponding matrix Jprior to the FIM.
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