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Abstract—The ESPRIT algorithm is an attractive solution to
many parameter estimation problems due to its low computa-
tional cost. In this paper we apply ESPRIT to the estimation
of the Angle of Arrivals (AoA), the Angle of Departures (AoD),
the Delays and the Doppler Shifts of different components of the
received signal. Due to the structure of the Channel Impulse
Response Matrix of a MIMO-OFDM system, these four sets
of parameters can be jointly estimated via a 4-dimensional
algorithm, thus the need for pairing them is eliminated. The
estimates of these parameters can essentially be utilized in
localization algorithms applicable to Non-Line-of-Sight (NLoS)
environments1.

I. I NTRODUCTION

Traditional geometrical localization techniques consistof
the two following steps: First a set of location-dependent
or location- and motion-dependent parameters (LMDP) are
estimated in one or more Base Stations (BS). Widely used
LMDP are the Angle of Arrival (AoA), the Angle of Departure
(AoD), the delay or Time of Arrival (ToA), the Received Sig-
nal Strength (RSS) and the Doppler shift. Based on estimates
of one or more of the above subsets of LMDP, the location of
the Mobile Terminal (MT) can be derived either by solving a
number of geometrical equations that its coordinates satisfy,
or more often, for over-determined systems of equations, by
finding the best candidate position that best fits the data
(LMDP estimates) using a statistical approach like Maximum
Likelihood (ML).

It is common practice in existing localization techniques,
to assume that LMDP estimates are available. Thus, the
performance is validated only for the second step. Examples
of localization techniques that perform good in strictly NLoS
environments can be found in [1] for static channels or [2]
for dynamic channels. Both of these techniques are based on
the Single-Bounce-Model (SBM), due to which an one-to-one
invertible mapping between the LMDP of the NLoS signal
components and the MT coordinates can be derived. In the
former work, the authors consider knowledge of AoA, AoD
and delays of all the signal components, while in the latter the
authors also consider knowledge of the Doppler shifts.

1Eurecom’s research is partially supported by its industrialmembers:
BMW Group Research & Technology, Bouygues Telecom, Cisco, Hitachi,
ORANGE, SFR, Sharp, STMicroelectronics, Swisscom, Thales.The work
presented in this paper has also been partially supported bythe European FP7
projects Where and Newcom++ and by the French ANR project Semafor.

In this work, we focus on the first step of localization. We
consider a Multiple-Input Multiple-Output (MIMO) system,
a MT that moves so that its signal is affected by Doppler
frequency shifts and an OFDM signal that propagates through
a NLoS propagation environment. We parameterize the chan-
nel impulse response (CIR) matrix in such a way, that a 4-
dimensional (4-D) ESPRIT algorithm can be utilized to jointly
estimate 4 subsets of LMDP, namely the AoA, the AoD, the
delays and the Doppler Shifts. If we assume that the MT is
not moving, then the problem can be easily reformulated, so
that a 3-D ESPRIT algorithm can jointly estimate the AoA,
the AoD and the delays of the NLoS paths. Therefore, the
work presented herein can be used as a complement to the
techniques in [1] and [2], to form a complete localization
procedure.

ESPRIT algorithm2 was introduced in [3] as a computation-
ally attractive estimation algorithm that exploits the rotational
invariance of the signal subspace. Its impact was such that
many contributions followed. The algorithm was extended to
the 2-D case in [4] and [5] and to a multidimensional case
in [6]. An algorithm with superior performance and reduced
computational cost, called Unitary ESPRIT, was introducedin
[7] and extended to the multidimensional case in [8]. Finally
a 2-D Unitary ESPRIT for MIMO systems was introduced in
[9]. The proposed 4-D ESPRIT closely follows the guidelines
in these two last papers.

Notation: Throughout the paper, upper case and lower case
boldface letters will represent matrices and column vectors
respectively. If an upper case boldface letter has been utilized
to represent a matrix (eg.A), the lower case of the same
letter will always correspond to the vectorized form of that
matrix, i.e.a = vec(A) , [at

1, . . . ,a
t
N ]t. (·)t will denote the

transpose,(·)∗ the conjugate and(·)† the conjugate transpose
of any vector or matrix.(·)+ will denote the pseudoinverse of
a matrix. For a squareM ×M matrix A, diag(A) is aM ×1
vector composed from its diagonal entriesaii, 1 ≤ i ≤ M ,
while for a M × 1 vector a = [a1, . . . , aM ]t, diag(a) is
an M ×M diagonal matrix witha’s entries along it’s main
diagonal. The symbols⊗, ⊠ and ⊙ denote the Kronecker,
Khatri-Rao (column-wise Kronecker) and Hadamard product

2ESPRIT stands for “Estimation of Signal Parameters via Rotational
Invariance Techniques”



respectively.

II. CHANNEL MODEL

The SBM has been used extensively to describe the NLoS
paths of a multipath propagation environment. It is based on
the realistic assumption that the first few arriving signal com-
ponents have bounced only once while propagating through the
wireless channel. It enables the derivation of simple equations
that express the LMDP as functions of the coordinates and
the speed of the MT. Thus, it can be used in localization
algorithms. Furthermore, due to the fact that it assigns one
parameter from each subset of LMDP to each path (or scatterer
or signal component)3 it simplifies the expressions used to
describe the CIR Matrix and thus can also be applied in
statistical channel modeling. An example of a SBM with two
paths has been drawn in 1, whereψs denote the AOD andφs
denote the AOA.

The discrete input-output relationship of anr ×nt MIMO-
OFDM system in the time-frequency domain, is:

Yif it
= Hif it

Xif it
+ Nif it

(1)

where Xif it
is the nt × N transmitted signal matrix,N is

the number of OFDM symbols,Yif it
is thenr ×N received

signal matrix andNif it
is the nr × N noise matrix,∀if ∈

{0, 1, . . . , (Nf − 1)} and∀it ∈ {0, 1, . . . , (Nt − 1)}. To work
directly with received signals, we will assume that the pilot
symbols used in this estimation process are the same∀{if , it},
i.e. Xif it

= X. If this condition is not met, estimates of the
CIR matrix are required to serve as a starting point for the
ESPRIT algorithm presented in the following sections.

For a NLOS environment that can be accurately described
by the SBM, the channel matrixHif it

is given by4 [10], [11]:

Hif it
=

1√
Ptot

Ns
∑

i=1

√

Piγie
j2πit∆tfd,iaR(φi)a

t
T (ψi)

HTRe
−j2πif ∆fτi

= AR(Γ ⊙ (Dif
Fd,it

))At
T = ARΓDif

Fd,it
At

T . (2)

where∆t and∆f are the sampling intervals in time and fre-
quency respectively. In the above equation we have introduced
the delays,τi, the Doppler shifts,fd,i, the complex amplitudes
γi and the powers,Pi = τ−2

i , of theNs signal components
along with the normalization constantPtot which contains all
the common to the different powers, constant terms. We further
introduced thenr × 1 andnt × 1 array responsesaR(φi) and
aT (ψi) of the receiver and the transmitter respectively, for the
signal component with AOAφi and AOD ψi. For sake of
simplicity, we will assume Uniform Linear Arrays (ULA) at
both ends of the communication link, so that

aR(φi) = [1, ej2π
fc
c

dr sin(φi), . . . , ej2π
fc
c

dr(nr−1) sin(φi)]t

(3)

3In fact one discrete object (scatterer), which correspondsto one signal
component, is used to describe a mini cluster of very closely spaced scatterers.

4The proposed channel matrix representation is also valid forany NLOS
environment where each AOA is linked with one AOD but not necessarily
via a single scatterer.
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Fig. 1. Single Bounce model

andaT (ψi) is given by replacingφi by ψi, nr by nt and the
distance between two consecutive elements,dr, by dt. Any
general array that can be decomposed into 2 subarrays with
identical elements separated byd can be considered instead.
HTR = FT{hTR(τ)} is the transfer function of the cascade
of the filters at the transmitter’s and receiver’s front end.It
should be noted that although the LMDP considered above
are all time-varying due to the movement of the MT, they
will be treated as constants, since their variation for a small
observation time (of the order of msec) is negligible. The
newly introduced matrices on the r.h.s. of eq. (2) are defined
as follows

AR , [aR(φ1), . . . ,aR(φNs
)] (4)

AT , [aT (ψ1), . . . ,aT (ψNs
)] (5)

Γ , HTRdiag(γ) (6)

Dif
, diag(dif

) (7)

Fd,it
, diag(fd,it

) (8)

where

γ , 1√
Ptot

diag([
√
P1γ1, . . . ,

√

PNs
γNs

]) (9)

dif
, [e−j2πif ∆fτ1 , . . . , e−j2πif ∆fτNs ] (10)

fd,it
, [ej2πit∆tfd,1 , . . . , ej2πit∆tfd,Ns ]. (11)

III. D ATA PREPROCESSING FOR4-D ESPRIT

In order to implement the 4-D Unitary ESPRIT algorithm
and estimate the AOA, AOD, delays and Doppler shifts
directly from the received signal samples, we need to rewrite
the input-output relationship in a form such that the CIR matrix
inherits a shift invariance property in all four dimensions. The
following 4 steps are required to achieve that.

1. Split the set of theNfNt received matrices (samples)
into L = LfLt subsetsSlf ,lt of M = MfMt samples each.
Assuming that the subsetsSlf ,Lt

, 1 ≤ lf ≤ Lf and SLf ,lt ,
1 ≤ lt ≤ Lt are padded with zero matrix entries if necessary,



Mf =
⌈

Nf

Lf

⌉

andMt =
⌈

Nt

Lt

⌉

. This separation of the data
is equivalent to a smoothing that ensures that more than one
measurement vector will be used in the final formulation.

2. Vectorize the receive signal matrices, so that thenrnt×1
received signal vectorsyif it

is given by:

yif it
= hif it

+ nif it
(12)

hif it
, (XtAT ⊠ AR)ΓF

(lt−1)
d,1 Dif

fd,mt
(13)

wherelt =
⌊

it

Mt

⌋

andmt = l −
⌊

it

Mt

⌋

Mt.

3. For each of the subsets, i.e. for1 ≤ lf ≤ Lf and 1 ≤
lt ≤ Lt, do the following concatenations and vectorizations:

3a. Stack the column vectorsyif it
, (lt − 1)Mt + 1 ≤ it ≤

ltMt of the corresponding subsetSLf ,lt to form matrixȲif lt

of sizenrnt ×Mt and vectorize again to get:

ȳif lt = h̄if lt + n̄if lt (14)

h̄if lt , (Ft
d,1:Mt

⊠ XtAT ⊠ AR)Γ̄lf ltdmf
(15)

Fd,1:Mt
, [fd,1, . . . , fd,Mt

] (16)

Γ̄lf lt , ΓF
(lt−1)
d,1 D

(lf−1)
1 (17)

wherelf =
⌊

if

Mf

⌋

andmf = l −
⌊

if

Mf

⌋

Mf .

3b. In a similar way, stack the column vectorsyif lt , (lf −
1)Mf + 1 ≤ if ≤ lfMf to form L = LfLt matrices ¯̄Ylf lt

and vectorize again to get:

¯̄ylf lt = ¯̄Hγ̄lf lt + ¯̄nlf lt (18)
¯̄H , (Dt

1:Mf
⊠ Ft

d,1:Mt
⊠ XtAT ⊠ AR) (19)

D1:Mf
, [d(i−1)Mt+1, . . . ,diMf

] (20)

γ̄lf lt , (D
(lf−1)
1 ⊙ F

(lt−1)
d,1 )γ (21)

4. Stack all generated vectors in a big matrix

¯̄Y = [¯̄y11, . . . , ¯̄yLf Lt
]

= ¯̄HΓ̄ + ¯̄N (22)

where we have introduced

Γ̄ = [γ̄11, . . . , γ̄Lf Lt
] (23)

¯̄N = [¯̄n11, . . . , ¯̄nLf Lt
]. (24)

It should be noted that this type of formulation is possible due
to the fact thatΓ, Dk and Fd,l are diagonal, which in turn
is a consequence of the fact that each path is distinct. Also
it becomes obvious that the matrix̄Γ and not the original
transmitted matrixX plays the role of the unknown signal in
our model.

IV. 4-D ESPRIT FOR JOINTAOA, AOD, DELAY AND

DOPPLER SHIFT ESTIMATION

A simple, yet efficiency way to increase the number of
the data used in the estimation process, while simultaneously
decrease the computational cost, is to transform¯̄Y into a

centro-Hermitian matrix and subsequently into a real matrix5,
to get:

¯̄Yr = Q
†
MN[ ¯̄Y ΠMN

¯̄Y∗ΠL]Q2L (25)

whereΠ are permutation matrices obtained by reversing the
order of the rows ofI and Q are left Π-real matrices. A
common example of leftΠ-real matrix is

Q =
1√
2





Iq 0 jIq
0t

√
2 0t

Πq 0 −jΠq



 (26)

for odd sizes, or by deleting the center row and column, one
can get the equivalent for even sizes. Due to the noise term
on the r.h.s. of eq. (22),̄̄Yr is full rank, instead of rank
Ns. This affects the solution of any ESPRIT algorithm, by
resulting in a number of estimates that is greater than the
number of parameters that need to be estimated. To mitigate
this, a rank reduction can be performed, using for example the
SVD decomposition of̄̄Yr. From the SVD, theNs dominant
left singular vectors, composingENs

, can be derived. These
vectors span the signal subspace and thusENs

can be used
to form the invariance equations in all four dimensions.
Specifically, letr denote one of the four dimensions of the
rotational invariant matrix¯̄H and letNr denote one of the
corresponding number of data{nr, nt,Mt,Mf}, on each of
these dimensions. Following the reasoning behind the ESPRIT
algorithm, it is easy to show that

KNr,1ENs
Θr = KNr,2ENs

(27)

where the matrices denoted byKNr,i, i = 1, 2 are constructed
by transforming the selection matrices denoted byJNr

accord-
ing to

KNr,1 = 2Re{Q†
Nr

JNr
QL} (28)

KNr,2 = 2Im{Q†
Nr

JNr
QL} (29)

and the 4 selection matrices are given by

Jnr
= IMf

⊗ IMt
⊗ Int

⊗ [0(nr−1)×1Inr−1] (30)

Jnt
= IMf

⊗ IMt
⊗ [0(nt−1)×1Int−1](X

t)+ ⊗ Inr
(31)

JMt
= IMf

⊗ [0(Mt−1)×1IMt−1] ⊗ Int
⊗ Inr

(32)

JMf
= [0(Mf−1)×1IMf−1] ⊗ IMt

⊗ Int
⊗ Inr

. (33)

The Invariance equations given by eq. (27) can be solved by
means of Least-Squares (LS) or any of its more advanced
variants, to obtain the matricesΘr. The LS solution yields

Θr = (KNr,1ENs
)+KNr,2ENs

(34)

where(KNr,1ENs
)+ is

(KNr,1ENs
)+ = ((KNr,1ENs

)tKNr,1ENs
)−1(KNr,1ENs

)t

(35)

while the Total Least-Squares (TLS) solution yields

Θr = −V12V
−1
22 (36)

5This transformation forces the solutions of the algorithm tolie on the unit
circle and thus the name “Unitary ESPRIT”



whereV12 andV22 are the upper right and lower rightNs ×
Ns submatrices ofV, which in turn is obtained from the SVD
of [KNr,1ENs

KNr,2ENs
], i.e.

[KNr,1ENs
KNr,2ENs

] = UΣV†. (37)

From these matrices we can derive the LMDP estimates
as follows. DefineΩr, r = 1, . . . , 4 the Ns × Ns diagonal
matrices with diagonal entries

ωi1 = tan(
2π fc

c
dr sin(φi)

2
), r = 1 (38)

ωi2 = tan(
2π fc

c
dt sin(ψi)

2
), r = 2 (39)

ωi3 = tan(
−2πif∆fτi

2
), r = 3 (40)

ωi4 = tan(
2πit∆tfd,i

2
), r = 4. (41)

Each matrix Ωr contains theNs eigenvalues of the cor-
respondingΘr. Thus, if Θr are available, one needs to
compute their eigenvalues and then use the above equations
to get the LMDP estimates. To avoid the need for pairing the
estimates, joint diagonalization or triangularization ishighly
recommended, since it can achieve automatic pairing. This is a
direct consequence of the fact that the fourΘr share the same
set of eigenvectors in the absence of noise. In the presence of
noise, these sets are approximately the same. Following the
work in [8], Simultaneous Schur Decomposition (SSD) will be
utilized to compute the eigenvalues of the fourΘr = BRrB

t.
The SSD is an iterative procedure that tries to derive

approximate upper triangular matrices simultaneously. Each
iteration has1

2Ns(Ns − 1) steps. It starts withRr,0 = Θr,
r = 1, . . . , 4 and in each stepj the matricesRr,j , are updated
as follows

Rr,j = Bt
i1i2

Rr,j−1Bi1i2 (42)

where the elementary Jacobi rotation matrixBi1i2(α) is cho-
sen to minimize the following cost function

e(Bi1i2) =

4
∑

r=1

||L(Rr,j)||2 = tr{
4
∑

r=1

L(Rr,j)L(Rr,j)
t}

(43)
L denotes the strictly lower triangular part of a matrix. These
Jacobi matrices are constructed from identity matrices, by
replacing four of their entries as follows

βi1i2 = −βi1i2 = sin(α) (44)

βi1i1 = βi2i2 = cos(α). (45)

It is obvious that finding the matrixBi1i2(α) that minimizes
e(Bi1i2) in each step is equivalent to findingα. The solution
to this problem was given in [8]. After the12Ns(Ns−1) steps
have been completed, the final matricesRr, 1

2
Ns(Ns−1) serve as

starting pointsRr,0 and the operation can be repeated to yield
matrices that are even closer to upper triangular. After just a
few iterations, the algorithm outputsI as the Jacobi matrix
in each step and thus the cost function can not be minimized
further.

TABLE I
MT AND SCATTERERS’ COORDINATES

(xMT , yMT ) (xs1, ys1) (xs2, ys2) (xs3, ys3) (xs4, ys4)
(30, 20)m (20, 30)m (35, 20)m (40, 15)m (15, 25)m
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Fig. 2. RMSE ofsin(φ)

V. NUMERICAL EXAMPLES

In this section we evaluate the performance of the proposed
method in terms of the RMSE of the LMDP estimates. We
will assume that the transmitter’s ULA is equipped with four
antenna elements and the receiver’s ULA is equipped with
only two. The transmitted signal propagates throughNs = 4
distinct NLoS paths. The coordinates of the corresponding four
scatterers along with the coordinates of the MT are given in
table I. The BS is assumed to be placed at the origin. The
magnitude of the speed of the MT is|υ| = 1.5m/sec (average
walking speed) and the direction is−π

3 .Nt = 40 time samples
with ∆t = 1msec andNf = 8 frequency samples with
∆f = 10MHz are considered. The impact of the choice of
the data smoothing numbers,Lt andLf , on the estimates of
the different LMDP was studied. The results indicated that
there is a trade-off between performance for different subsets
of LMDP, rather than some optimal smoothing numbers that
minimize RMSE for all of them. The only restriction on the
smoothing numbers is that their product must satisfyL ≥ Ns,
so that the LMDP become identifiable. The results shown
in the figures correspond toLf = 2 and Lt = 8. On a
similar basis, for identifiability purposes, the largest ofthe
four dimensionsNr must satisfy

4
∏

r=1

Nr

Nr,max − 1

Nr,max

≥ Ns. (46)

The carrier frequency isfc = 1.9GHz and the transmitted
pilot signal is the training matrixX = I. We runN = 50
independent trials and averaged the results, thus the RMSE is

RMSE(µir) =

√

√

√

√

1

N

N
∑

n=1

|µ̂ir − µir|2 (47)
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Fig. 3. RMSE ofsin(ψ)
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where the termsµir depend on the LMDP according to

µir =
2

π
arctan(ωir), 1 ≤ i ≤ Ns, 1 ≤ r ≤ 4. (48)

In figures 2-5 we plot the RMSE defined in 47 versus the
Signal-to-Noise Ratio (SNR) at the receiver, which is given
by

SNR = 10 log10

(

E{tr(( ¯̄HΓ̄)( ¯̄HΓ̄)†)}
E{tr( ¯̄N ¯̄N†)}

)

(49)

VI. CONCLUSIONS

In this work we have presented an efficient way to perform
the first step of a localization procedure, namely the estimation
of the LMDP. We considered a MIMO-OFDM system and we
transformed the CIR matrix into a rotation invariant one, by
simple concatenation and vectorization operations. The invari-
ance property of the newly formed CIR matrix allowed us to
implement a 4-D Unitary ESPRIT algorithm and estimate four
different subsets of LMDP simultaneously. The performance
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of the algorithm was demonstrated for2×4 system in a NLoS
environment with four strong signal components. Results show
that the RMSE of the estimates are very small even for
small to medium SNR (5−10dB). This excellent performance
along with its low computational cost make this algorithm an
attractive solution to any LMDP estimation problem.
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