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Abstract—The ESPRIT algorithm is an attractive solution to In this work, we focus on the first step of localization. We
many parameter estimation problems due to its low computa- consider a Multiple-Input Multiple-Output (MIMO) system,
tional cost. In this paper we apply ESPRIT to the estimation a MT that moves so that its signal is affected by Doppler

of the Angle of Arrivals (AoA), the Angle of Departures (AoD), . :
the Delays and the Doppler Shifts of different components of the frequency shifts and an OFDM signal that propagates through

received signal. Due to the structure of the Channel Impulse @ NLOS propagation environment. We parameterize the chan-
Response Matrix of a MIMO-OFDM system, these four sets nel impulse response (CIR) matrix in such a way, that a 4-
of parameters can be jointly estimated via a 4-dimensional dimensional (4-D) ESPRIT algorithm can be utilized to jint
algorithm, thus the need for pairing them is eliminated. The estimate 4 subsets of LMDP, namely the AoA, the AoD, the
estimates of these parameters can essentially be utilized ind | d the D | Sh'f; if ,th t th I\}IT'
localization algorithms applicable to Non-Line-of-Sight (NLoS) elays an e boppier s, 1 we assu_me at the IS
environmentst. not moving, then the problem can be easily reformulated, so
that a 3-D ESPRIT algorithm can jointly estimate the AoA,

[. INTRODUCTION the AoD and the delays of the NLoS paths. Therefore, the

Traditional geometrical localization techniques consit WOrk presented herein can be used as a complement to the
the two following steps: First a set of location-dependef@chniques in [1] and [2], to form a complete localization
or location- and motion-dependent parameters (LMDP) apgocedure.
estimated in one or more Base Stations (BS). Widely usedESPRIT algorithri was introduced in [3] as a computation-
LMDP are the Angle of Arrival (AoA), the Angle of Departureally attractive estimation algorithm that exploits theatatnal
(AoD), the delay or Time of Arrival (ToA), the Received Sig-invariance of the signal subspace. Its impact was such that
nal Strength (RSS) and the Doppler shift. Based on estimat@gny contributions followed. The algorithm was extended to
of one or more of the above subsets of LMDP, the location #f€ 2-D case in [4] and [5] and to a multidimensional case
the Mobile Terminal (MT) can be derived either by solving & [6]. An algorithm with superior performance and reduced
number of geometrical equations that its coordinates fgatiscomputational cost, called Unitary ESPRIT, was introduiced
or more often, for over-determined systems of equations, bl and extended to the multidimensional case in [8]. Finall
finding the best candidate position that best fits the da?a2-D Unitary ESPRIT for MIMO systems was introduced in
(LMDP estimates) using a statistical approach like Maximuf9]. The proposed 4-D ESPRIT closely follows the guidelines
Likelihood (ML). in these two last papers.

It is common practice in existing localization techniques, Notation: Throughout the paper, upper case and lower case
to assume that LMDP estimates are available. Thus, theldface letters will represent matrices and column vactor
performance is validated only for the second step. Exampkespectively. If an upper case boldface letter has beeadil
of localization techniques that perform good in strictly 88 to represent a matrix (e4), the lower case of the same
environments can be found in [1] for static channels or [2§tter will always correspond to the vectorized form of that
for dynamic channels. Both of these techniques are basednoatrix, i.e.a = vec(A) £ [al, ..., al ]’ (-)! will denote the
the Single-Bounce-Model (SBM), due to which an one-to-orfeanspose(-)* the conjugate an¢)' the conjugate transpose
invertible mapping between the LMDP of the NLoS signadf any vector or matrix(-)* will denote the pseudoinverse of
components and the MT coordinates can be derived. In tagnatrix. For a squar@/ x A/ matrix A, diag(A) is aM x 1
former work, the authors consider knowledge of AoA, AoDyector composed from its diagonal entrieg, 1 < i < M,
and delays of all the signal components, while in the latier twhile for a M x 1 vector a = [ay,...,an]", diag(a) is
authors also consider knowledge of the Doppler shifts.  an M x M diagonal matrix witha’s entries along it's main

diagonal. The symbols, X and ©® denote the Kronecker,

'Eurecom’s research is partially supported by its industri@mbers: Khatri-Rao (column-wise Kronecker) and Hadamard product
BMW Group Research & Technology, Bouygues Telecom, CisctadHi,
ORANGE, SFR, Sharp, STMicroelectronics, Swisscom, Thalés work
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respectively.

II. CHANNEL MODEL

The SBM has been used extensively to describe the N
paths of a multipath propagation environment. It is base:
the realistic assumption that the first few arriving signatine
ponents have bounced only once while propagating throus
wireless channel. It enables the derivation of simple eégna
that express the LMDP as functions of the coordinates
the speed of the MT. Thus, it can be used in localiza
algorithms. Furthermore, due to the fact that it assigns
parameter from each subset of LMDP to each path (or sca
or signal component)it simplifies the expressions used
describe the CIR Matrix and thus can also be appliet
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statistical channel modeling. An example of a SBM with 1
paths has been drawn in 1, whese denote the AOD angs
denote the AOA.

The discrete input-output relationship ofa x n; MIMO-
OFDM system in the time-frequency domain, is:

Y, =H;,;X;,;, +N 1)

where X ;, is the n; x N transmitted signal matrix)V is
the number of OFDM symbolsy; ;, is then, x N received
signal matrix andNj,;, is then, x N noise matrix,Viy €
{0,1,...,(Ny—1)} andVi; € {0,1,...,(N: — 1)}. To work

Qi ipis i i Qi

directly with received signals, we will assume that the tpilo

symbols used in this estimation process are the s&me i, },
i.e. Xifif,
ESPRIT algorithm presented in the following sections.

For a NLOS environment that can be accurately describ
by the SBM, the channel matriid; ,;, is given by [10], [11]:
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= AR(F © (Dide’it))At = ARI‘Dide’itAéw. (2)

= X. If this condition is not met, estimates of the
CIR matrix are required to serve as a starting point for th
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Fig. 1. Single Bounce model

andar(v;) is given by replacingp; by v;, n,. by n, and the
distance between two consecutive elemedts,by d;. Any
general array that can be decomposed into 2 subarrays with
identical elements separated bycan be considered instead.
Hrr = FT{hrr(7)} is the transfer function of the cascade
of the filters at the transmitter's and receiver’s front efid.
hould be noted that although the LMDP considered above
re all time-varying due to the movement of the MT, they
ill be treated as constants, since their variation for allsma
observation time (of the order of msec) is negligible. The
Qawly introduced matrices on the r.h.s. of eq. (2) are defined
as follows

S
al

where At and Af are the sampling intervals in time and fre- h
guency respectively. In the above equation we have intrediucV"€"€

the delaysy;, the Doppler shiftsf, ;, the complex amplitudes
v; and the powersp; = 7[2, of the N, signal components
along with the normalization constafi,; which contains all

the common to the different powers, constant terms. Wedurth

introduced then,. x 1 andn,; x 1 array responsear(¢;) and

ar(1;) of the receiver and the transmitter respectively, for the

signal component with AOAp; and AOD ;. For sake of
simplicity, we will assume Uniform Linear Arrays (ULA) at
both ends of the communication link, so that

aR(¢i) _ [1, ejQﬂ%dT sin(qb,;)’ s ej27rfC dr(n,—1) sin(gﬁ,;)]t

®3)

3In fact one discrete object (scatterer), which correspandene signal
component, is used to describe a mini cluster of very closelgexp scatterers.

4The proposed channel matrix representation is also valicufigr NLOS
environment where each AOA is linked with one AOD but not neadly
via a single scatterer.

AR = [ar(d1), .., ar(on,)] 4

Ar £ [ar(¢r), ..., ar(Pn,)] )

T £ Hrgrdiag(y) (6)

Dy, £ diag(ds,) @)

Fa., £ diag(fa,) (8)

v £ =diag([VPin, -, \/Pn.n.]) ©)
dy, 2 [e 2T emitmiAfT(10)
£5, = [ef2mieBtlan | ei2mieAtfang], (11)

IIl. DATA PREPROCESSING FOR-D ESPRIT

In order to implement the 4-D Unitary ESPRIT algorithm
and estimate the AOA, AOD, delays and Doppler shifts
directly from the received signal samples, we need to rewrit
the input-output relationship in a form such that the CIRnrat
inherits a shift invariance property in all four dimensiofmte
following 4 steps are required to achieve that.

1. Split the set of theV; N, received matrices (samples)
into L = LyL; subsetsS;, ;, of M = M;M; samples each.
Assuming that the subsefs, ;,, 1 < Iy < Ly andSy, ,,

1 <, < L, are padded with zero matrix entries if necessary,



My = Hf—ﬂ and M, =

2. Vectorize the receive signal matrices, so thatrthe, x 1
received signal vectorsg; ;, is given by:

Yipie = Digi, + Mg,

hy,i, 2 (X'Ar B AR)TFY VD, f1,m,

ipty —

wherel;, = J(; andm; =1 — | -2 | M;.
3. For each of the subsets, |e for< iy < Lyandl <

12
(13)

%W This separation of the datacentro-Hermitian matrix and subsequently into a real matri
is equivalent to a smoothing that ensures that more than daeget:
measurement vector will be used in the final formulation.

Y, = QI\/IND:{ Myin Y L] Qar
whereIl are permutation matrices obtained by reversing the
order of the rows ofl and Q are left IT-real matrices. A
common example of leffI-real matrix is

(25)

I Ry
—— o V2 o 26
Q ala v (26)
q Jtlq

for odd sizes, or by deleting the center row and column, one

I, < L,, do the following concatenations and vectorizations:can get the equivalent for even sizes. Due to the noise term

3a. Stack the column vectoss,;,, (It —1)M; +1 <i; <
I:M; of the corresponding subsgf , ;, to form matrixY; .,
of sizen,n; x M, and vectorize again to get:

Vi, = Wi, 4 0, (14)

hii, 2 (B, RXA @ AR, d,,  (15)
Fai, = a1, Fan] (16)

Ty, 2TF}, VDY (17)

wherel; = U—[ffJ andmys =1— MfJ M;.
3b. In a similar way, stack the column vectors,, (Iy —
)My +1 < iy < lyM; to form L = LyL, matricesY;,;,

and vectorize again to get:

Vi, = HA, + 1y, (18)
H £ (D, RF};,, RX'Ar K Ag) (19)
Dy, 2 [dio1)mt1s - - - ding,] (20)

= A (Iy=1) (lf 1)
Y = Dy T OFT )y (21)

4. Stack all generated vectors in a big matrix
Y = b:’llv te 7nyLf]
=HT + N (22)
where we have introduced

r= [;yllv"'a;nyLt] (23)
N = [y1,...,07,1,]. (24)

on the r.h.s. of eq. (22))(r is full rank, instead of rank
N;. This affects the solution of any ESPRIT algorithm, by
resulting in a number of estimates that is greater than the
number of parameters that need to be estimated. To mitigate
this, a rank reduction can be performed, using for exame th
SVD decomposition ofY,.. From the SVD, theV, dominant

left singular vectors, composingy,, can be derived. These
vectors span the signal subspace and tys can be used

to form the invariance equations in all four dimensions.
Specifically, letr denote one of the four dimensions of the
rotational invariant matrixd and let N, denote one of the
corresponding number of dafa,., n,, M, My}, on each of
these dimensions. Following the reasoning behind the EBPRI
algorithm, it is easy to show that

Ky 1 En.©, = Ky, 2En, (27)

where the matrices denoted By, ;, i = 1,2 are constructed
by transforming the selection matrices denoted/Ry accord-
ing to

Ky,1 = 2Re{Ql Jn Qr} (28)
Ky, 2 = 2Im{Q} Jn Qr} (29)

and the 4 selection matrices are given by
I, I, @Iy, @1, @ (00, —1yx11n, 1] (30)
T = Tary ® Lo, @ [0(n,—1) 1 Tn, 1] (X1) T @ L(31)
I, = Ing, @0, —1)xilng, 1] ®@ 1, @1, (32)
Ju, = Oyl ] @Iy, @1, @L, . (33)

The Invariance equations given by eq. (27) can be solved by
means of Least-Squares (LS) or any of its more advanced

It should be noted that this type of formulation is possihle d
to the fact thatl’, D;, and F,; are diagonal, which in turn
is a consequence of the fact that each path is distinct. Also
it becomes obvious that the matriR and not the original

transmitted matrixX plays the role of the unknown signal in

variants, to obtain the matricé,.. The LS solution yields
©, = (Kn, 1En.)"Kun, 2EnN, (34)
where(Ky, 1En,) " is

our model. (Kn, 1En,)" = (KN, 1En,)' KN, 1En,) " (Kn, 1En, )’
(35)
IV. 4-D ESPRIT FOR JOINTAOA, AOD, DELAY AND . . .
DOPPLER SHIET ESTIMATION while the Total Least-Squares (TLS) solution yields
0, =-V,V, (36)

A simple, yet efficiency way to increase the number of
the data used in the estimation process, while SlmUItamous 5This transformation forces the solutions of the algorithnli¢mn the unit
decrease the computational cost, is to transfdminto a circle and thus the name “Unitary ESPRIT”



TABLE |

whereV, and Vg, are the upper right and lower righf, x MT AND SCATTERERS COORDINATES
N, submatrices oV, which in turn is obtained from the SVD
of [K Ev K Ey | ie (mr,ymr) | (@s1,9s1) | (Ts2,Ys2) | (Ts3,Ys3) | (Ts4,Ysa)
Nr,1HNs SANp, 25N, : (30, 20)m (20,30)m | (35,20)m | (40,15)m | (15,25)m
Ky, 1En, Ky, 2Ey,] = USVT, (37)
From these matrices we can derive the LMDP estim
as follows. Define2,., r = 1,...,4 the N, x N, diagonal
matrices with diagonal entries |
omled, sin(g; RS R ——
= tan(%@sz)), r=1 (38) e
QWLd Sin 4 SNg?ﬂB] 25 30 35 40 o 5 10 15 SNgg‘IEI 25 30 35 40
Wip = tan(%(wl)), r=2 (39) .
—2mi ¢ A\ .
Wiy — tan(#fﬂ)’ r—3 (40)
27t At fa i
wia = an(M), r=4. (41) : 3
Each matrix €2, contains thelN; eigenvalues of the co

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

responding®,.. Thus, if ®, are available, one needs
compute their eigenvalues and then use the above equuuc..o _
to get the LMDP estimates. To avoid the need for pairing the Fig. 2.
estimates, joint diagonalization or triangularizationhighly
recommended, since it can achieve automatic pairing. tas i V. NUMERICAL EXAMPLES
direct consequence of the fact that the féur share the same '
set of eigenvectors in the absence of noise. In the presdnce dn this section we evaluate the performance of the proposed
noise, these sets are approximately the same. Following tRethod in terms of the RMSE of the LMDP estimates. We
work in [8], Simultaneous Schur Decomposition (SSD) will b&ill assume that the transmitter's ULA is equipped with four
utilized to compute the eigenvalues of the f@y = BR, B'. antenna elements and the receiver's ULA is equipped with
The SSD is an iterative procedure that tries to deri@ly two. The transmitted signal propagates through= 4
approximate upper triangular matrices simultaneouslyhgadistinct NLoS paths. The coordinates of the corresponcbig f
iteration has% N, (N, — 1) steps. It starts wittR,., = ©,, scatterers along with the coordinates of the MT are given in
r=1,...,4 and in each step the matriceRR.,. ;, are updated fable . The BS is assumed to be placed at the origin. The
as follows magnitude of the speed of the MT |is| = 1.5m/sec (average
R,; =B!, R, ; 1B, (42) walking speed) and the directiondss. N; = 40 time samples
) . ] with At = 1msec andN; = 8 frequency samples with
where the elementary Jacobi rotation mafl ;, () is cho- At — 10MHz are considered. The impact of the choice of
sen to minimize the following cost function the data smoothing numbers, and L, on the estimates of
4 4 the different LMDP was studied. The results indicated that
e(Bi,i,) = Z LR )| = t?"{z LR, LR, ;)T there is a trade-off between performance for different stss
r=1 r=1 43) of LMDP, rather than some optimal smoothing numbers that

£ denotes the strictly | tri | ¢ of trix. T minimize RMSE for all of them. The only restriction on the
enotes the strictly lower triangular part of a matrix. 11es moothing numbers is that their product must satisfy N,

Jacobi matrices are constructed from identity matrices, Y that the LMDP become identifiable. The results shown
replacing four of their entries as follows in the figures correspond té; = 2 and L; = 8. On a

RMSE ofsin(¢)

Bivis = —Biyi, = sin(a) (44) similar basis, for identifiability purposes, the largesttbé
Biir = Biyi, = cos(a) (45) four dimensionsV, must satisfy
1121 — Mgty — .
4
It is obvious that finding the matriB;,;,(«) that minimizes H N Nrmaz — 1 SN (46)
e(Bi,i,) in each step is equivalent to findirg The solution st " Nemaz

to this problem was given in [8]. After théN, (N, — 1) steps
have been completed, the final matrid®s. y (v, 1) serve as
starting pointsR,., and the operation can be repeated to yiel
matrices that are even closer to upper triangular. Aftetr gus
few iterations, the algorithm outpufs as the Jacobi matrix N
in each step and thus the cost function can not be minimized RMSE(piy) = %Z \flir — i (47)
further. =1

The carrier frequency i, = 1.9GHz and the transmitted
ailot signal is the training matribXX = I. We run N = 50
independent trials and averaged the results, thus the REISE i
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Fig. 3. RMSE ofsin() Fig. 5. RMSE ofAtf,

N of the algorithm was demonstrated fox 4 system in a NLoS
environment with four strong signal components. Resulbsvsh
that the RMSE of the estimates are very small even for
small to medium SNR5— 10dB). This excellent performance

wbo | along with its low computational cost make this algorithm an
P N S S S TR | attractive solution to any LMDP estimation problem.
SNR(dB) SNR(dB)
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