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Abstract—In this paper we analyse unitary beamforming in
MIMO broadcast channels where the entries of the beamforming
matrix are of constant modulus (CUBF). We provide a general
formal description for the beamforming matrices. We show that
this description encompasses currently applied constructions such
as those based on the Householder transformation. Among other
properties the CUBF proves to be particularly robust to channel
feedback errors. We propose an iterative construction of the
CUBF which maximizes the sum-rate of the system. Furthermore
we provide numerical results that show significant gains of the
CUBF compared to existing techniques.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have the
potential to significantly increase the achievable capacity of a
radio link to a Single-User (SU) [1], [2]. Although high indi-
vidual data rates are often a compelling marketing argument
in emerging wireless standards, most of the network operators
are interested in increasing their cell throughput or to distribute
data rates more uniformly among the users in a cell. This can
be achieved if the transmitter employs its antennas to commu-
nicate to Multiple non-cooperative Users (MU-MIMO) on the
same time-frequency resource. The resulting MIMO Broadcast
Channel (BC) has been extensively studied in the past years
and many efforts have been made to find transmission schemes
that achieve the capacity of the MIMO-BC. In contrast to
SU-MIMO, accessing the MIMO-BC capacity is a inherently
more difficult problem but it turns out that sharing the MIMO
channel between multiple users utilizes the system resources
more efficiently [3].

To reduce the interference caused by the imperfect spatial
separation of the receivers the transmitter spatially encodes
the signal prior to the transmission. This precoding operation
and consequently the sum-rate are highly dependent on the
Channel State Information available at the Transmitter (CSIT).
The full capacity region of the MIMO-BC is achieved by
Dirty-Paper Coding (DPC) [4]. This optimal technique is still
too complex to be implemented in current wireless systems.
It has been shown that suboptimal linear precoding schemes
of moderate complexity such as Zero-Forcing Beamforming
(ZFBF), Regularized ZFBF (R-ZFBF) [5] or Unitary Beam-
forming (UBF) [6] achieve a large portion of the MIMO-BC
capacity.

In this paper we study UBF where the entries of the beam-
forming matrix are further constrained to be of equal modulus.
This kind of beamformer has several advantages in the case
of uniform user power. As all beamforming vectors are or-
thogonal the receiver can compute the Signal-to-Interference
and Noise Ratio (SINR) solely from its channel estimate and
beamforming vector. Furthermore, the (average) powers on
the different transmit antennas are equal, independent of the
UBF setting. This is advantageous when power amplifier non-
linearities and efficiency are taken into account. Moreover
UBF is more robust to errors in the CSIT [6]. For these reasons
unitary matrices have been adopted in 3GPP LTE [7] for SU-
MIMO precoding and are the current assumption for MU-
MIMO beamforming. To further reduce the parameterization
of the UBF matrices and hence reduce the amount of feedback
required in the uplink, people often further constrain the
UBF matrices to have entries of equal magnitude, leading
to CUBF (Constrained or Constant modulus UBF). In fact,
3GPP LTE defines a finite set of CUBF precoding matrices
referred to as a codebook. Among other results we show
that the quantization represented by this codebook leads to
high suboptimality if applied to MU-MIMO beamforming.
Although CUBF represents further constraining on already
constrained UBF matrices, apart from the parameterization
parsimony, it possesses the advantage of preserving equal
transmit antenna powers even under unequal (e.g. optimized)
user powers.

This work studies UBF where all entries have a constant
modulus. Our analysis is based on complex Hadamard matri-
ces [8], [9] and we study their application to beamforming in
the MIMO-BC. To develop a generic construction of the CUBF
we use an equivalence relation that allows to structure the
problem. One key contribution of this paper is the proposition
of a new CUBF design which is based on CSIT. We show that
the CUBF generated by the Householder transformation, used
in 3GPP LTE, is only one particular subset of the complete
set of CUBF matrices. Therefore this restricted set leads
to a significant performance loss. In order to evaluate the
sum-rate performance we propose an iterative algorithm for
the parametrization of the CUBF. Moreover, the impact of
imperfect CSIT on the sum-rate of the system is investigated.

Notation: In the following boldface lower-case and upper-



case characters denote vectors and matrices, respectively. The
operators (·)T, (·)H and tr(·) denote transpose, conjugate trans-
pose and the trace operator, respectively. The expectation is
E[·] and diag(x) is a diagonal matrix with vector x on the main
diagonal. The N ×N identity matrix is IN = [e1, . . . , eN ].

II. SYSTEM MODEL

Consider the scenario where one transmitter with M an-
tennas communicates to N ≥ M single-antenna receivers.
We consider random user scheduling, thus there are always
K = M users selected for transmission. A beamforming
vector vk is assigned to each of the K users. We define the
beamforming matrix as V = [v1, . . . ,vK ] ∈ CM×K . The
transmit signal is formed as

x =
K∑

k=1

√
pkvksk (1)

where pk and sk (|sk|2 = 1) are the power and the information
symbol of user k, respectively. Denote Rx = E[xxH] the trans-
mit signal covariance matrix and W = diag([p1, . . . , pK ]) .
Thus the sum-power constraint imposes

tr(Rx) = E[tr(WVHV)] ≤ P (2)

where P is the total available transmit power. We consider
narrow-band transmission. Hence for every channel use the
received symbol vector reads

y = Hx + n (3)

where H is the channel matrix H = [h1, . . . ,hK ]H ∈ CK×M

and hk ∈ CM×1 (k = 1, 2, . . . ,K) models the channel
from the transmitter to user k. The noise vector is Gaussian
distributed with n ∼ CN (0, σ2

nI) and thus we define the
signal-to-noise ratio (SNR) as P/σ2

n. In particular the received
signal of user k is given by

yk =
√

pkhH
kvksk +

K∑
j=1,j 6=k

√
pjhH

kvjsj + nk (4)

where the first term on the right-hand side is the useful signal
of user k. The second term is the inter-user interference
resulting from the residual correlation between the users’
beamforming vectors vj and channel hk. The last term is the
additive noise. As a result the SINR for user k is given by

γk =
pk|hH

kvk|2∑M
j=1
j 6=k

pj |hH
kvj |2 + σ2

n

(5)

The instantaneous sum of the user rates is

R =
K∑

k=1

log2 (1 + γk) (6)

The long-term average of the instantaneous sum-rate over the
channel realizations of a given distribution.

R̄ = EH[R] (7)

In Section VI we measure the performance in terms of ergodic
sum-rate.

Note that the {γk} in (5) are invariant to the following
transformation

ṽ = ejθv with θ ∈ [0, 2π) (8)

Consequently the sum-rate (6) does not change when multi-
plying each beamforming vector with ejθ. Thus, the optimal
beamforming vectors V are not unique. This implies that the
first row of V can be dephased i.e. the first row contains only
real values.

III. UNITARY BEAMFORMING

Linear beamforming techniques are attractive because they
offer a good trade-off between performance and complexity.
Among them ZFBF and R-ZFBF achieve the full multiplexing
gain [5], [10]. In this Section we briefly introduce unitary
beamforming to lay the basis for the CUBF in Section IV.

Consider the group of unitary matrices U(M). Thus, a
unitary beamforming (UBF) matrix Vu ∈ U(M) satisfies

VuVH
u = VH

uVu = IM (9)

i.e. all beamforming vectors are mutually orthogonal and of
unit norm. Hence the UBF is never able to cancel all inter-user
interference except if the user channels H form itself a unitary
matrix. Furthermore with equal power allocation pk = P/M ,
(5) simplifies to [11]

γk =
‖hk‖2ρ2

k

‖hk‖2(1− ρ2
k) + Mσ2

n
P

(10)

with ρ2
k = |h̄H

kvk|2, h̄k = hk

‖hk‖ . Here, ρ2
k can be interpreted as

the alignment of a users’ beamforming vector with its channel
direction.

Note that γk in (10) solely depends on user k. The optimiza-
tion of the UBF with respect to (6) is a non-convex problem
and to the authors’ knowledge no closed-form solution exists.
As a consequence of (8) there remain M(M−1) free param-
eters for the construction of a UBF.

In [6] an iterative optimization method based on successive
Givens rotations was presented. The idea is that every unitary
matrix can be represented as a product of Givens rotations and
every Givens rotation matrix can be optimized separately. In
case of CUBF matrices this kind of optimization is impossible
since the multiplication of two CUBF matrices does not
maintain the constant modulus property.

IV. UBF WITH CONSTANT MODULUS ELEMENTS

In this section we provide the mathematical framework
for the construction of unitary beamforming matrices with
constant modulus entries Vcu.



A. Description of Hadamard Matrices

We first have to introduce various definitions that we will
use later to parametrize the CUBF.

Definition 1: A square matrix A of size M where the
entries are of equal modulus |aij |2 = 1

M ; i, j = {1, . . . ,M},
is called normalized Hadamard matrix if

AAH = IM (11)

The set of normalized complex Hadamard matrices of size M
is denoted HM . In the unnormalized case: AAH = M IM .

Definition 2: [8], The complex Hadamard matrices
{A, Ã} ∈ HM are equivalent, written A ∼= Ã, iff there exist
diagonal unitary matrices Dr,Dc and permutation matrices
Pr,Pc such that1

A = DrPrÃPcDc (12)

There are M ! row and column permutations. The equivalence
class of A ∈ HM is

QM (A) = {B ∈ HM |A ∼= B} (13)

The set of equivalence classes GM is GM = HM/∼=.

B. Equivalence Classes

Interestingly, the complete set of equivalence classes GM is
only known for M <6. The problem of finding all equivalence
classes for dimensions M≥6 remains unsolved and a catalog
of known equivalence classes can be found in [8]. In the
following we give a short overview of the (unnormalized)
equivalence classes for M = {2, . . . , 5}.

1) M = 2: There is only one equivalence class G2 =
Q2(F2) with

F2 =
[
1 1
1 −1

]
(14)

The real Hadamard matrix coincides with the discrete Fourier
transform (DFT) matrix F2, where FM of size M

FM (m,n) = e−j 2π
M (m−1)(n−1) ; m,n = {1, . . . ,M} (15)

2) M = 3: There exists only one equivalence class equal
to the DFT matrix G3 = Q3(F3).

3) M =4: Here, there exists a continuous family of equiva-
lence classes with one free parameter G4 = {Q4(Qo

4(θ)); θ ∈
[π
2 , 3

2π)}.

Qo
4(θ) =


1 1 1 1
1 −1 ejθ −ejθ

1 1 −1 −1
1 −1 −ejθ ejθ

 (16)

Note that the real Hadamard matrix Qo
4(π) and the DFT matrix

F4
∼= Qo

4(
π
2 ) are special cases of (16).

4) M =5: All complex Hadamard matrices are equivalent
to the DFT matrix G5 = Q5(F5).

1In this definition transposition and complex conjugate are excluded since
they are meaningless in the application of beamforming

C. Parametrization of CUBF in MIMO BC

In general, the set of CUBF matrices is equal to the set of
normalized complex Hadamard matrices HM . The description
of HM is solely given by the equivalence relation (12) and the
equivalence classes (13) and can be used to parametrize the
CUBF. However, depending on the objective function, some
parameters in the general description become obsolete. If the
beamforming matrix Vcu is intended to modify the SINR of
each user (and hence the sum-rate) the diagonal unitary matrix
Dc in (12) can be omitted due to the invariance to the trans-
formation in (8). Consequently the diagonal unitary matrix Dr

in (12) takes the form Dr = diag([1, ejϕ1 , . . . , ejϕM−1 ]) with
ϕi ∈ [0, 2π), i = {1, ...,M−1}.

One may remark that the equivalence relations in (12)
involve continuous parameters (phases in the diagonals) and
discrete parameters (permutations). One may think of counting
the number of continuous parameters by subtracting from
the 2M2 real entries the number of real constraints imposed
by CUBF: M2 due to unitarity, (M − 1)2 for the constant
element magnitudes (suffices to apply to a (M−1)× (M−1)
submatrix), and M (for a first row of all 1’s). One ends up
with M − 1, which correspond to the Dr just mentioned. The
mystery is then the appearance of θ in Qo

4(θ). The explanation
is that counting the obvious constraints must lead to redun-
dancies. The appearance of the additional free parameters can
be explained as follows. (Unnormalized) complex Hadamard
matrices can in fact be constructed recursively as follows: [9]

V(A,B) =
[
A B
A −B

]
where A and B are itself complex

Hadamard and hence allow equivalence transformations as in
(12). Now, for A they do not need to be applied since they
can equivalently be applied to V. However, since B appears
both as B and −B, not all equivalences on B show up in
V. At M = 4, we can take A = B = F2, but the one such
equivalence that needs to be allowed at the level of B is DB
with D = diag([1 ejθ]). So we get for M = 4: V(F2,DF2).

If M = 4 another construction of CUBF matrices via the
Householder transformation exists which is used in current
practical systems [7]. The set of all CUBF matrices generated
by the Householder transformation is

V =
{

V = IM − 2
uuH

uHu

∣∣∣∣ u ∈ CM×1; |ui| = 1; u1 = 1
}

.

(17)
The construction of a CUBF via the Householder transfor-
mation describes only a subset of all possible CUBF i.e.
V ⊂ H4. To prove V ⊂ H4 observe that V ∼= Qo

4(π)
as Qo

4(π) = 2PrD1DHVDD1Pc with D = diag(u),
D1 = diag([1,−1,−1,−1]), Pc = [e1, e2, e4, e3] and Pr =
[e1, e3, e2, e4]. Hence V is the subset of H4 that stems from
the unique real equivalence class Qo

4(π). Thus restricting
Vcu ∈ V leads to a significant performance loss as we show
by simulation in Section VI.

V. OPTIMIZATION OF THE CUBF
We choose to maximize the sum-rate in (6). In general the

beamforming vectors {vk} and the user powers {pk} have to



d0(k, m) = |akm|2 + |bkm|2
d1(k, m) = 2|akm| · |bkm|
δkm = ∠bkm − ∠akm

d2(k, m) = d1(k, m) cos δkm

d3(k, m) = d1(k, m) sin δkm

TABLE I
AUXILIARY VARIABLES

be computed according to the following optimization problem

{v?
k, p?

k} = arg max
{vk},{pk}

{
K∑

k=1

log (1 + γk)

}
(18)

s.t. : tr(Rx) ≤ P ; VHV = IM ; |vij |2 = 1/M ∀i, j

where γk is defined in (5). The problem above is non-convex in
{vk} and {pk} and difficult to solve. However, the description
of the CUBF introduced earlier allows us to tackle the problem
in (18).

In the following we will assume equal power allocation i.e.
pk = P/M . Some aspects of the optimal power allocation
strategy are discussed in Section VII.

A. Optimal Parametrization of the CUBF

Under the assumption that there are always K = M users
available for transmission and that the transmit power is
equally divided among them we can formulate the optimiza-
tion criterion as follows

{D?
r ,G?

M ,P?
c ,P

?
r} = arg max

Dr,GM ,Pc,Pr

{
K∑

k=1

log (1 + γk)

}
(19)

where γk is defined in (10). The diagonal unitary matrix
Dr contains M −1 angles. The optimal permutation matri-
ces Pr,Pc have to be found by exhaustive search. Denote
A = {ϕ1, . . . , ϕM−1, θ} the set of angles to be optimized.
Note that only for M = 4 the set A contains the additional
angle θ. After some algebraic manipulation (19) takes the form

{D?
r ,G?

M ,P?
c ,P

?
r} = arg min

Dr,GM ,Pc,Pr

{
K∏

k=1

(
1 + βk − ρ2

k

)}
(20)

where βk = σ2
nM

‖hk‖2P . This is still a non-convex optimization
and the global optimum can only be found by exhaustive
search. Subsequently we present an iterative algorithm to
calculate the optimal set of angles A. However, this algorithm
can not be guaranteed to converge to the global optimum.

B. Iterative Optimization Algorithm

A joint optimization of the angles in A is too involved,
therefore we optimize the angles one by one while the others
are fixed. We can write

Mρ2
k(ϕm) = |akm + bkmejϕm |2 (21)

where ϕm ∈ A and akm, bkm are constants. With the substi-
tution

sm = tan
ϕm

2
(22)
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Fig. 1. 2 × 2 MIMO, sensitivity to errors in CSIT, SNR = 15 dB

and with the auxiliary variables in Table I, we obtain from
(21)

Mρ2
k(sm) = d0(k, m)− d2(k, m)− 2

d3(k, m)s− d2(k, m)
1 + s2

(23)
From (20) we have the objective function

Fm(sm) =
M∏

k=1

(
1 + βk − ρ2

k(sm)
)

(24)

By setting dFm(sm)
dsm

= 0 we have

dFm(sm)
dsm

= −2MsmGm + (1 + s2
m)

dGm

dsm
= 0 (25)

where Gm =
∏M

k=1

(
c2(k, m)s2

m + c1(k, m)sm + c0(k, m)
)

with

c2(k, m) = d2(k, m)− d0(k, m) + βkM (26)
c1(k, m) = 2d3(k, m) (27)
c0(k, m) = −d0(k, m)− d2(k, m) + βkM (28)

To solve (25) we have to find the real roots of a polynomial
of degree 2M . Once the roots have been found we undo the
substitution in (22) and evaluate (20) to obtain the optimal
solution ϕ?

m. The same approach is used to find θ?.

VI. SIMULATION AND RESULTS

In this section we compare the CUBF with the codebooks
of CUBF matrices (CB-CUBF) defined in 3GPP LTE [7]. In
case of M = 2 the codebook contains the identity matrix
and two rotations of the DFT matrix according to (12) with
ϕ1 = {0, π

2 } and Pr =Pc = I2. The codebook for 4 transmit
antennas is a subset of V defined in (17) generated by 16
vectors u where the elements of u are taken from a 8-PSK
constellation and u1 =1. The optimal CB-CUBF is computed
at the transmitter by exhaustive search based on the available
CSIT. The performance metric is the achievable ergodic sum-
rate (7). Throughout this section we average our results over
10.000 independent Rayleigh fading channel realizations.
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Figure 1 shows the sensitivity of CUBF, CB-CUBF and
ZFBF to erroneous CSIT He which is modeled as He =√

1− σ2
eH + σeN where the entries of H and N are i.i.d.

Gaussian with zero mean and unit variance. From Figure 1 it
can be observed that CUBF and CB-CUBF outperform ZFBF
starting from σ2

e = 0.22 and σ2
e = 0.5, respectively. ZFBF,

that achieves high sum-rates under the assumption of perfect
CSIT, experiences a severe performance loss as soon as the
CSIT is erroneous. In practical systems such a scheme is not
attractive since it requires highly accurate CSIT which entails
an enormous feedback overhead.

Figures 2 and 3 present the sum-rate performance for a
2× 2 and 4× 4 MIMO system, respectively. We observe that
the CUBF significantly outperforms the CB-CUBF in both
MIMO configurations. At an SNR of 20 dB the gain is about
40 % and 30 %, respectively.

VII. DISCUSSION

Though joint CUBF and power allocation optimization is a
subject of ongoing research, it has two simple limiting cases,
the low and the high SNR regimes.

For BC at low SNR it has been shown in [12] that TDMA
is optimal, i.e. TDMA achieves asymptotically the same sum-
rate as DPC. Therefore, it is not surprising that optimized

CUBF with power allocation assigns all available power to
the strongest user (single stream transmission is optimal at low
SNR) and that this achieves a rate close to the sum-capacity.
The optimal constant modulus beamforming vector is given
by Equal Gain Transmission (EGT) [13] to the user whose
channel h = [h1, . . . , hM ]T has the largest 1-norm. Thus
v = 1/

√
M [1, e−j(∠h2−∠h1), . . . , e−j(∠hM−1−∠h1)]H where

∠x denotes the phase of x.
In the high SNR regime CUBF is interference limited. The

optimization problem in (20) becomes min
∏K

k=1(1−ρ2
k). The

optimal solution is clearly again to put all power on one user,
since in this case the inter-user interference is zero and rate
saturation is avoided, and the optimal CUBF corresponds again
to EGT to the user with largest 1-norm.

VIII. CONCLUSION

In this paper we present the unitary beamformer with
constant modulus elements and relate its construction to the
problem of parametrizing complex Hadamard matrices. We
show that the construction by the Householder transformation
covers only a small subset of all possible CUBF matrices and
therefore leads to a performance loss. Furthermore we show
that CUBF is superior to ZFBF beamforming techniques under
imperfect CSIT.
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