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ABSTRACT

Precise automatic music transcription requires accurate mod-
eling and identification of the spectral content of the audio
signal. But music can not be reduced to a succession of notes,
and an accurate transcriptor should be able to detect other per-
formance characteristics, such as slow tempo variations or,
depending on the instrument detecting some interpretationef-
fects. In a pedagogic way a student could want to improve
his level and a good challenge will be to estimate the qual-
ity of play of musician. In this paper we present some of the
most common playing defects and interpretation effects and
we propose a way for detecting them.

Index Terms— Automatic ornemantation, signal pro-
cessing, Harmonic analysis, Acoustic applications, peaks
subtractions

1. INTRODUCTION

Music transcription is the process of creating a musical score
(i.e. a symbolic representation, such as a MIDI file, of the mu-
sic within) from an audio recording. In the traditional sense,
automatic transcription implies the estimation of severalfea-
tures such as the pitch and duration of individual notes.

But music can not be reduced to a succession of notes, and
an accurate transcriptor should be able to detect other perfor-
mance characteristics, like interpretation effects. The tools
built for automatic transcription can also be used in a peda-
gogic way such as a student could want to improve his level
with the help of a software. This means that the software
should be able to detect some defects. For a violin it can be
used for improving the use of the bow, for a wind intrument it
can be the constancy of the blow.

In this paper we want to review some interpretation effects
of some instruments and playing defects to adress a way for
detecting and evaluating them. We want to emphasize the
utility of the instrumental noise for this kind of study.
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The paper is organized as follow first we explain the used
harmonic plus noise decomposition for the problem, then we
will describe some interpretation effects, playing defects and
some associated characteristics. After we present some re-
sults about their detections, finally we conclude.

2. HARMONIC PLUS NOISE DECOMPOSITION

2.1. Model

Musical signals are often modeled as the sum of sinusoids
[1] and the estimation of their parameters has been dealt with
extensively in the literature [2, 3]. We consider the estimation
of the parameters of a sinusoidal signals(t) given by :

s(t) = x(t) + n(t), (1)

x(t) =

N−1
∑

n=0

An(t) cos(2π
fn(t)

fs

+ φn(t)) (2)

Here,An(t), fn(t) andφn(t) are the amplitude, the frequency
and the phase of the partialn of the signal at timet, respec-
tively. The sinusoidal part is defined byx(t), the noise part
by n(t) andfs is the sampling frequency.

2.2. Method

The musical signal, which is by nature non-stationary, is
piece-wise analyzed [1]. The synthesis method consists of
estimating the parameters of each frame, generating each
partial signal by using the purely sinusoidal model and then
reforming the complete signal by using an overlap and add
method. The noise is extracted by subtracting the synthesized
signal from the original noisy signal.

The parameters are estimated by peak picking in the spec-
trum [2], but the estimation is rather bad. For obtaining bet-
ter performance quadratic interpolation is performed on each
peak [4], but due to the interferences from the others peaks
it remains a bias. The first task is to find theNb principle
peaks in the spectrum. Taking a fixed value for peaks has
some drawbacks: In the case of pure noise, the sinusoidal sig-
nal part will be estimated by the noise’s dominant peaks and



the resulting estimate SNR will be bounded at a lower value.
Equivalently, for a rich spectrum there will be some harmon-
ics in the noise. After we have found the peaks, we choose one
and we calculate the interference of the peaks include into the
± ∆f interval. For each peak of this interval, we estimates its
frequency and amplitude by parabolic interpolation and then
we calculate its phase by linear interpolation. When the inter-
ference is cleaned from the peak of interest, we interpolateits
parameters. For the parabolic interpolation we use:

Ym′ = SdB(fm + m′), m′ = −1, 0, 1 (3)

WhereSdB(f) = 20 log10(|X(f)|), andX(f) is the Fourier
Transform ofx(t). The estimate frequency is given by

fest
m = fm +

1

2

Y+1 − Y−1

Y−1 + Y+1 − 2Y0
, (4)

and the corresponding amplitude by

Sest
dB = Y0 −

fest
m

4
(Y−1 − Y+1), Aest

m = 10
1

20
Sest

dB . (5)

For estimating the interference of the nearest peak, we have
to obtain an expression of the perturbation due to the presence
of other peaks in the spectrum on the peak of interest. In our
case, we use a Hann window of sizeL given by :

w(n) = 0.5 − 0.5 cos(2π
n

L
), 0 ≤ n < L (6)

The Hann window is temporally finished, so we express it
with the rectangular window :

r(n) =

{

1 , 0 ≤ n < L

0 , otherwise
(7)

We can rewrite :

w(n) = [0.5 − 0.5 cos(2π
n

L
)] r(n) (8)

= 0.5 r(n) − 0.25 e2iπ n
L r(n) − 0.25 e−2iπ n

L r(n)

The DFT of the rectangular function is :

R(f) =
L−1
∑

t=0

(e−2iπft) = e−iπf(L−1) sin(πfL)

sin(πf)
(9)

So for the Hann window we obtain :

W (f) = 0.5 R(f) − 0.25 R(f −
1

L
) − 0.25 R(f +

1

L
) (10)

After the estimation of the parameters of each peak, we sub-
tract their contribution given by :

W est
m (f) =

Nb∈∆f
∑

n=1
n6=m

Aest
n W (f − fest

n )eiφest
n + ... (11)

+

Nb∈∆f
∑

n=1

Aest
n W (f + fest

n )eiφest
n

f = [fm − 1, fm, fm + 1] (12)

Here, Aest
n ,fest

n and φest
n are the estimate’s parameters and

fm the frequency corresponding to a maximum of the peri-
odogram. The second term is only used in the case of low
frequency andφn is defined by :

φest
n = φ⌊fest

n ⌋ + (fest
n − fn) (φ⌈fest

n ⌉ − φ⌊fest
n ⌋) (13)

When the contributions are subtracted, we interpolate the
value of the parameters on the peak of interest.

2.3. Synthesis, Noise extraction and SNR estimation

For the synthesis signal ˆX(t), we use the parameters esti-
mated before and we create a partial signal with the model.
The total reconstruction of the signal is made by using the
overlap and add method and by using the same window as
that for the analysis. Then, we subtract the noise estimates
from the original signal and compute the SyNR (Synthesis to
Noise Ratio) given by :

SyNR = 10 log10(

∑

i
ˆXi(t)

2

∑

i (Xi(t) − ˆXi(t))2
) (14)

3. APPLICATION TO ACOUSTIC INSTRUMENTS

3.1. Introduction

The audio signals are modeled as a sum of sinusoids with
time varying parameters. However, in this model the nature
of the instruments is completely ignored [5]. The sound of a
wind instrument is composed of blow, for a violin the sound
is generated by the friction of the bow on the string and more
generally for the touch or string instrument the sound is dueto
striking. When we extract the sinusoidal part of the signal, we
obtain a noise composed, in the best case, by the background
noise and the instrumental noise. In this situation estimating
the SNR can allow us to detect some musical characteristics.
The noise part have received a great interested in the field of
onset detection and tempo estimation [6] because it empha-
size the percussif event (non sinusoidal).

3.2. Bass : Slap detection

The slap is a very common technique in bass playing. The
strike consists of hitting the strings with the thumb, in thebe-
ginning of the fretboard, like a hammer. The resulting sound
is almost completely percussive upon the strike, and after-
wards the sinusoidal regime appears. Note that a note played
by slap has a small duration compare to a note played with
the finger. Fig. 1 shows the result of the SNR estimation on
a bass sequence composed of two single notes. The first note
is played with the finger (sweet) and the second is played by
slap (percussive). As we expected, the SNR of the slap note
is small compare to the note played with the finger.
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Fig. 1. Estimation of the SNR for bass sequence of two notes,
the first is play with the finger and the second is play by slap.

Fig. 2. Estimation of the SNR for a Violin piece played by a
student.

3.3. Violin : The practice of the bow

When a violinist plays, he moves the bow upon the strings
and the sound is generated by the friction of this movement.
A well played note is constrained by at least four parameters:

• The speed of the displacement of the bow.

• The pressure exerted on the string.

• And the two orientations of the bow (on itself and on
the string).

A good player exercises constant speed and pressure, keeps
the bow completely parallel on the string and the displace-
ment orthogonal to the string. When one or more of these
constraints are not respected, the sound becomes more noisy.
In the worst case, we only heard the displacement of the bow.

Fig. 2 show a succession of notes played by a student.
Here we do not detail the attack detection method used for

finding the note. The black part corresponds to the detected
note, the line corresponds to the relative SNR and the SNR
is given by this value. The SNR is a quantity which is inde-
pendent of the volume and we can observe the difference in
the estimation of each note, the ground truth was realise by 3
people who have classified the notes according to their qual-
ities. We can thus qualify a good note and a bad note. Note
that this study can be applicable in a pedagogic way and we
do not take into account interpretation effects like hammering
or pizzicato. So, here, a good note has an SNR larger than
18 dB and a very bad note has a SNR smaller than8 dB. In
practice, all the thresholds have to be adjusted in accordance
with the background noise.

3.4. Piano : Sustain pedal detection

In a piano, the sound generation mechanism works as fol-
lows: when the musician presses a key, a hammer strikes the
string and this interaction triggers the note. When the key is
released, a damper comes to stop the vibration of the strings
and the note fades out. When the sustain pedal is pressed,
all the dampers of the piano are kept raised; this allows the
strings to keep vibrating after the key is released, and allows
strings associated to other keys to vibrate. If several notes
are played with the pedal, they will be mixed with a longer
duration. A second effect has yet to be noticed. As a matter
of fact, the two higher octaves of the piano do not have any
damper, but the use of the pedal still has an influence on the
sound. For this range of notes, the note does not last longer
with or without the pedal, but a natural reverberation due to
the resonance of the sound board appears and this sound leads
to an additional floor noise.

Similar observations can be found in previous work. [7]
proposes a polyphonic piano transcription system which de-
tects and takes into account the use of the pedal. The detection
of the pedal is based on an estimation of the noise floor. It is
estimated as the mean value of the Discrete Fourier Trans-
form (DFT) magnitude over the analysis frame, but only on
frequency bins considered as “not active” in the frame (not
associated with an actually played note - these frequencies
are determined by a varying threshold). Another modelling
of the sustain pedal can be found in [8]. Through the analysis
of middle-range piano notes, playedlegato with and without
the pedal, the authors point out three features that should be
able to discriminate between notes played with and without
the pedal, and be useful for piano synthesis: noise floor, de-
cay time of the partials and amplitude beating.

Since the sustain pedal is generally used for simulation of
a long note which is not easy to play, a way for estimating the
pedal will be to track all the note and to decide if it’s possible
to play them without the pedal (like if we found more than ten
notes at the same time). So the only difference between a long
note played with or without the use of the pedal is the noise
floor. As presented in [9] the analysis is performed after the
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Fig. 3. Estimation of the total power of an AR of the Noise.

attack (after a duration of250ms) and on a duration of250ms

but the used database is the isolated notes of one of the piano
of the RWC Database. The isolated notes represents all the
notes of the piano with three kind of playing for each notes
(Piano, Mezzo andForte).

Figure 3 show the result of the simulation, we have mod-
eled the noise as an AR process of order one which is more
robust to variability. In fact, due to the resonance the spec-
trum of the estimated noise is flatter with the pedal and quite
less powerfull at the origine than the non-pedal case. It’s for
what it’s less powerfull. The two classes are not well defined
but it can be used as a another hint for detecting the pedal.

3.5. Guitar : Interpretation effects

There exists a lot of interpretation effects for the guitar,here
we focus on three of them which have a similar caracteristic:
the bend, the hammer and the slide. The bend is the action of
deforming the string by pulling it up or down for increasing
its length and changing the frequency. For the hammer, af-
ter a played note another finger come and strike another frette
and become the new note. The slide, also called Glissando, is
the action of sliding the finger to anoter frette. The common
characteristics of this effects is that they only have one attack
for several frequency variation, and except for the bend, the
variation is at least a half tone. The bend can have a continu-
ous frequency variation and it’s limited to at most two tones.
The hammer is limited by the length of the hand but can also
be performed with open string so there’s no restriction about
the frequency variaton range. As for the hammer the slide can
also have great variation.

After the detection of an attack the frequencies are tracked
and if we found a variation of at least a quarter tone without a
new attack the note is judged as one of the three cases explain
above. As we want to detect the attack, which is the transient

part of the note, the onset detection is done on the derivative
of the energy of the signal. For emphasise the attack we use
both the signal and the Half Wave Rectified (HWR) signal
[10] and we keep the common onset.

The fundamental frequency is found, demodulated and
low pass filtered, after we apply a Pisarenko method for track-
ing the frequency. We construct the correlation matrix for two
consecutive sample asR = AH

n,n+1 An,n+1, whereH denote
the hermitian andA is the low pass filtered demodulated sig-
nal, we use a singular value decomposition ofR = UDUT

with T the transpose operator, we apply a Vandermond vector
to the eigen vector :[U1 U2]T [1 z−1] = U1 + U2 z−1 = 0
we found the polez and we estimate the instantaneous fre-
quency. The test data set includes some monophonic and
mono-instrumental recording, for the rest we define the ef-
fects byB for the bend,H for the hammer,S for the slide
andP for the played case. The first set is composed by four
successions of two notes played alternatively, the first note is
always played (P), the second is played or reached by one of
the above effects and the last one is played or is the opposite
(design by off) of the effect. The data are played on different
strings and notes and follow this scheme:PPP -PHHoff -
PSSoff -PBBoff (6*12 notes). The sond data set includes
other notes (2 notes by set), the first is played and the second
is an effect, and represents 24*2 notes.

figure 4 show the results of the onsets detection (the de-
tection function, the adaptive theshold and the onsets), the
instantenaous frequency, and amplitude of the fundamental.
The adaptive threshold takes as input the first onset (detected
when the energy of the signal grows sensibly), if the value of
the detection function is upper than ten percents of the last
maximum it becomes the new one. For the frequency three
line show the position of the previous and next half tone (in
Midi). On our dataset, the system find all the played note
(60/60), it interprets some effect as played note (8/60) and
it detects some artefact note (4/60), which can be post fil-
tered by considering the enveloppe variation. Note that the
onset detector is not able to work in other case (Mono-phonic,
Mono-Instrumental).

3.6. Guitar : Pizzicato

On bowed string instruments (violin, cello etc.) it’s a method
of playing which consist on plucking the strings with the fin-
gers, rather than using the bow. The sound produce is very
different, short and percussive rather than sustained. On the
guitar, it’s associated to a kind of plucking, which reach the
sound of a pizzicato on a bowed string instrument. For the
guitar, pizzicato is often called Palm mute and it’s done dif-
ferently. Palm mutes are executed by placing the side of the
picking hand across all of the strings and very close to the
bridge before or during the attack. This produces a muted
sound. While rare in classical guitar technique, palm mut-
ing is a standard technique on an electric guitar, Plam mute is
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Fig. 5. Short Time Fourier Transform, The song is composed
of Non-Pizzicato and Pizzicato notes.

more used when the musician play with a pick. For more de-
tails, the hand operate a low pass filtering (as for the damper
pedal of the piano), figure 5 illustrates this effect. This results
an attenuation of the power of the harmonics. Here we present
some results for the guitar but the method can also be applied
to instruments which can use a mute style like piano, bass gui-
tar (rarely used) and obviously violin. Since previous remark,
the detection of a Mute note is done as follow: First the notes
are found using the same onset detector as previously, the
pitch is determined by using the subharmonic-to-harmonic ra-
tio method [11]. When the fundamental frequency and its har-
monics are founded we subtract the contribution of the sub-
harmonics to the harmonics. The sub-harmonic represents the
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Fig. 6. Signal and onsets (a), onsets detection function and
onsets (b), result of the detection (s).

valley between two succesive harmonics, the subtraction give
a relative harmonic to noise ratio which emphasise the dif-
ference between the mute and the non-mute case. The score
is given by the summation of the ratio of the fundamentale
with the harmonic to noise ratio. Note that we use this cri-
terium because it can be more robust in a polyphonic case, if
we adapt the position of the sub-harmonics. We have trained
a threshold using ten notes played in two cases, and we have
applied the detector to a piece containing 49 notes, the system
gave us a total score of 90 percents of good recognition. One
mute note was interpretated as a normal note, and three for
the opposite case.



4. CONCLUSION AND FUTURE WORK

In this paper we have presented some characteristics of some
interpretation effects for differents intruments. We havefo-
cused on the importance of the noise for judge the quality
of play and the goal was to correcting some playing defects.
We have proposed some way for detecting some interpreta-
tion effects via some simple criterium. A lot of work is again
needed, only one criterium is not enough robust to variability,
and all the detectors have to be implemented in an automatic
transcription system.
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