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Abstract—In this work we tackle the problem of on-
line backup and storage with a peer-to-peer approach. We
propose a novel system architecture involving the users’
devices that confederate by pooling their resources and
offer an alternative to capital-intensive data-centers. In
contrast to current peer-to-peer architectures that build
upon distributed hash-tables, we investigate whether an
uncoordinated approach to data placement would prove
effective in providing embedded incentives for users to
offer local resources to the system. By modeling peers as
selfish entities striving for minimizing their cost in parti c-
ipating to the system, we analyze equilibrium topologies
that materialize from the process of peer selection, whereby
peers establish bi-lateral links that involve storing data
in a symmetric way. System stratification, colluding peers
with similar contribution efforts, is an essential outcomeof
the peer selection process: peers are lured to improve the
“quality” of local resources they provide to reach lower
operational costs. Our results are corroborated by both
a game-theoretic analysis and a numerical evaluation of
several system configurations.

I. INTRODUCTION

During the last few years the on-line backup and
storage market has witnessed an increasing interest
from both academia and industry. Current commercial
solutions and research projects present a variety of
approaches to the problem of reliable, scalable and
available on-line storage for heterogeneous users requir-
ing to store and access a large amount of data (user
generated content, personal data, etc.) from anywhere
on the Internet [1]–[4]. From an architectural point of
view on-line backup and storage services can be broken
down into those based on server farms [1] and those
embracing the peer-to-peer (P2P) paradigm [2], [3]. Our
goal is to design a server-less P2P architecture wherein
peers (e.g. users’ set-top-boxes (STBs) deployed by their
Internet Service Provider (ISP)) optimize the amount of
local resources they dedicate to the system.

Specifically, the focus of this paper is on thepeer
selectionalgorithm, which is used by peers to decide
where to place fractions of data they need to store or
backup. To the best of our knowledge, peer selection has

not been studied extensively in the context of on-line
backup and storage applications. The lack of attention
to peer selection is mainly due to the structured ap-
proach suggested by current design of such applications,
e.g. Wuala [2]. In a structured approach (based on a
distributed hash table (DHT)), peer selection isimplicit
because data is uniformly stored on peers based on the
consistent hashing concept [5]. The main benefit of DHT-
based approaches is that they achieve load balancing
by spreading data on every peer, irrespectively of their
characteristics. However, peer heterogeneity in terms of
the amount of resources they dedicate to the system
cannot be easily taken into account. As a consequence,
such systems require an additional layer to elicit users’
cooperation to the system.

In this work, we propose an unstructured architecture
and study an uncoordinated, utility-based peer selection
algorithm. We present a system design that enables on-
line backup and storage service in which the ISP is only
involved in monitoring the edge devices that form the
P2P network. Monitoring serves the purpose of building
a global ranking of peers in terms of theirprofiles, i.e.,
the amount and quality of resources they offer to the
system. Distributed monitoring could be foreseen, but it
is outside of the scope of this work. Nevertheless, peers
are responsible for building up their neighborhood which
will store their data: peer selection is modeled as a game
in which users selfishly minimize the cost they bear for
joining the system by adjusting their profile.

We show that the peer selection process reaches an
equilibrium in which the system isstratified: peers with
similar profile cooperate by building bi-lateral links
that are used to exchange and store data. The higher
the peers’ profiles are, the less costly the service they
receive from one another is. The consequence of system
stratification is a natural incentive for peers to improve
the amount and quality of resources they offer to other
peers. Due to the bi-lateral nature of data exchange
among peers, the presence of a central server to store
excess data that cannot be placed in the P2P network is
not required.
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The paper is organized as follows: in Sec. III we
overview the design of our system, we discuss its key
components and propose an objective function that de-
scribes and drives the behavior of peers involved in the
P2P backup and storage application. Sec. IV is devoted
to the definition of peer selection, by casting the problem
as a game. We then take an algorithmic perspective
and discuss on the implication of an uncoordinated
peer selection process. Finally, in Sec. V we present a
numerical evaluation of the peer selection process. We
review related works in Sec. II and conclude in Sec. VI.

II. RELATED WORK

P2P approaches to on-line backup and storage have
proliferated in the research literature, and the little space
we devote to the state-of-the art in this paper cannot
give justice to all of them. OceanStore [7], FarSite [8]
and TotalRecall [9] represent influential design of such
systems, the first based on a mesh of peers that cooperate
in storing replicas (for active data) or redundant (for
permanent data) blocks, the second using a distributed,
iterative, randomized placement algorithm to place data
replicas and the last using a DHT-based approach in
selecting the placement of erasure coded data blocks.
[10] discusses on the benefits of using network coding
in alleviating the costs of data maintenance as opposed
to approaches based on source, and erasure coding.

The hybrid P2P design of aforementioned Wuala [2]
and AllMyData [3] requires a centralized component to
ensure a minimum storage space to end users which is
complemented by storage space at all available peers
taking part to the application. In Wuala, files are split
up into pieces, which are encrypted and spread on the
P2P network, with each piece being stored on at least
five different peers. Data placement is achieved through
a double DHT layer, in which super-nodes are in charge
of uniformly spreading the data on storage nodes. Incen-
tives constitute a key component of Wuala: users must
offer an amount of local space inversely proportional
to their on-line time1 [6] and super nodes are involved
in constantly checking that this constraint is satisfied.
Additionally, a distributed reputation mechanism serves
the purpose of providing tit-for-tat incentives for users
to allocate a large fraction of their bandwidth to the P2P
network.

Several works have defined subtle economic frame-
works to design and analyze incentive schemes to en-
force user cooperation (e.g., [11] and references therein).

1The probability for a user to be found on-line should beat least
0.17.

Our work is related also to the “selfish neighbor se-
lection” problem, initiated with the seminal work on
network creation games [12]. Related to the formula-
tion of peer selection that we study in this paper, the
uncoordinated creation of routing overlays have been
investigated in [13].

Despite a large literature on P2P storage and backup
applications, to the best of our knowledge, the ques-
tion of whether it would be possible to design a P2P
system with incentivesembeddedin the early stages
of the system architecture, without requiring additional
mechanisms, has not been addressed in prior works.

III. SYSTEM DESIGN

In this section we present an overview of our system.
We assume the related application to be executed as a
service on users’ STBs which allows end-users to set
a bootstrap value to the amount of dedicated resources:
users can select the service on-line time and the fraction
of bandwidth (both up-link and down-link) allocated
to the backup and storage service. On the ISP side,
we assume the presence of a monitoring infrastructure
measuring the status of the devices and the amount
of available bandwidth dedicated to each of them. We
push the execution of the basic algorithms that constitute
the application to edge devices to minimize the ISP
implication in operating the system.

Let I denote the set of peers taking part to the system.
Every peeri splits its content to be stored in the system
in ci unit-sized pieces, and is responsible for establishing
(logical) links to remote peers that will potentially store
its data,i.e., thepeer selectionalgorithm is explicit. Any
link between two peers is assumed to besymmetric: both
ends of the link are required to store data for each other.
We denote byni the indicator vector of links established
by peeri: |ni| = I, ni = (li,1, li,2, ..., li,I) and li,j = 1
iff peeri has a link to peerj and peerj has a link to
peer i. Furthermore, let alsocij denote the number of
data pieces peeri stores on peerj. In order to maintain
symmetric collaboration,cij = cji, otherwise link li,j
cannot be established.

In the following we focus on the design issues we
addressed in our P2P backup and storage system, while
a detailed description of the peer selection process is
given in Sec. IV.

A. Data availability

The first and foremost issue of a distributed storage
system is to ensure dataavailability. Due to the uncoor-
dinated nature of the P2P setting we are considering,
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in which peers may join and leave at any time, per-
sistent data storage is difficult to achieve and calls for
sophisticated data management mechanisms. Replication
or redundancy have been suggested as effective means to
cope with poor peer availability [9], [14]. In our system
we adopt data redundancy using erasure coding: backup
data is split intoc unit-sized pieces which are then
encoded to obtainn blocks. The key property of erasure
codes is that the original data can be reconstructed from
any c fragments, where the combined size for thec
fragments is approximately equal to the original data
size. We termk = n/c the redundancy factor of the
coding scheme. The value ofk must be set appropriately,
depending on the desired per data availability target,
which can be expressed as [9]:

1 − ǫ =

n
∑

i=c

(

n

i

)

pi(1 − p)n−i

wherep is the averageon-line time of peers that com-
pose the system, andǫ is the probability that the data is
unavailable. The expression to compute the redundancy
factor, given a target data availability, an average on-line
time, and the number of fragmentsc writes as [9]:

k =

(

σ

√

p(1−p)
c +

√

σ2p(1−p)
c + 4p

2p

)2

(1)

whereσ is the number of standard deviations in a normal
distribution for the required level of file availability2.

Given an average peer on-line availabilityp, it is
common to assume aglobal redundancy factor for the
whole system. This is done for example in traditional
P2P systems such as Wuala. The price of unreliable peers
with low on-line availability is then shared among all
system participants. This potentially unfair design choice
can be mitigated through subtle incentive mechanisms
and our peer selection algorithm.

B. Incentives and fairness

We now define the resources that peeri contributes to
the system: they play important roles for the P2P backup
and storage application.

• storage space,̂ci ∈ N, that is the amount of encoded
data chunks a peer stores locally for other peers;

• on-line availability, pi ∈ [0, 1], expressed as a
probability for peeri to be found on-line;

• bandwidthbi = min{ui, di}, where ui, di repre-
sent respectively the upload and download capacity
allocated by the user to the P2P application.

2Data availability of 0.9999 results inσ = 3.7.

Our objective in this work is two-fold. Firstly, peers
should be compelled to offer a fraction of their local
storage to other peers in the system; secondly, we want to
provide incentives for users to increase the on-line time
and bandwidth they dedicate to the service. Intuitively,
the first objective refers to the “quantity”, while the
second goal addresses the “quality” of resources a peer
offers. Besides the specific incentive mechanism used to
achieve these goals, measuring the amount of resources a
peer dedicates to the system also represents an important
issue. In this work, we leverage on the monitoring capa-
bilities of the ISP, and on its intentions to use them. Since
the application is assumed to operate on ISP-owned
STBs, that provide controlled and secure environment,
the ISP is able to offer the additional backup and storage
service to its subscribers for a relatively low cost of
monitoring by exploiting its already deployed hardware
resources.

Peer characteristics are encoded into a single scalar
value, α, that we term theprofile. We suggest the
following heuristic to computeα. The ISP estimates
the redundancy factorki peer i would impose on the
system using a combination of the on-line timepi and
the dedicated bandwidthbi. ki is obtained from Exp. 1
where the average on-line timep is substituted by
p

bref /bi

i . The latter term modulatespi by the fraction of
bandwidthbi compared to a reference valuebref which
is set tomaxi∈I(bi). Hence, the redundancy factorki is
slightly overestimated: this is intentional and serves as
an additional incentive for peers to improve the quality
of resources they offer (note that largeki implies high
redundancy due to low peer availability). Then the profile
of peer i is given by αi = 1

ki
∀i ∈ I. Peer profiles

are used in two flavors: they constitute a global ranking
that is used during the execution of the peer selection
mechanism and also they dictate, for a particular peer, the
exact amount of storage space that should be dedicated
to the system. Peeri holding profile αi who needs to
store ci chunks will be required to offer an amount of
local space of̂ci = ci

αi
= ciki ∀i ∈ I.

This definition implies that peeri will allocate an
amount of storage space equal to the number of encoded
chunks it would inject into a system consisting of peers
with its same profile. Thesymmetricnature of data ex-
change in our system and thestrict correlationbetween
the load imposed on the system and the amount of stor-
age each peer is compelled to offer render an additional
mechanism to enforce peers’ contribution unnecessary.
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C. User model

As opposed to selecting remote storage locations
uniformly at random, in our system peers build their
neighbor set while trying to optimize a local objective
function that we now describe in detail. For sake of
simplicity, let’s assume every peer will store the same
amount of data chunks in the system, that is:ci = c
∀i ∈ I. We now introduce the cost function peeri
minimizes when establishing links to remote peers. Note,
that in the presented theoretical model we consider a
static system set where no application-level churn occurs.
Once the synchronized process of peer selection reaches
a steady state for all peers, that is, no peer has an
incentive to re-wire to other remote peers, the actual
data transfer will take place. The cost functionCi we
define in this sectionmimics the “physical” key factors
that affect the behavior of a real-world P2P backup and
storage application.

Definition 1: The costCi that peeri with profile αi

“pays” for a neighborhoodni is Ci = Di(αi, αj∈ni
) +

Oi(αi) + Ei(αi), where the additive terms represent:
Degradation cost(Di) is a function of peeri’s profile

and of the profileαj of every peerj that is selected to
be in the neighbor setni: the technique based on erasure
codes used in the system guarantees a certain probability
to recover encoded chunks if every encoded chunk can
be placed on a different remote peer, hence the degra-
dation cost accounts for the decreased data availability
occurring when the size|ni| of peeri’s neighborhood is
not sufficient to store one unit of encoded data on each
neighbor;

Opportunity cost(Oi) describes the price payed by
peer i for the loss of local storage space dedicated to
the service;

Effort cost(Ei) accounts for the cost incurred by peer
i to maintain the profileαi.

IV. U SER-DRIVEN PEER SELECTION

In this section we study the peer selection process
using tools akin to non-cooperative game theory. First,
we give a formal definition of the game that involves
a peeri participating to the P2P backup and storage
application. We then focus on the algorithmic nature of
the optimization problem imposed by the peer selection
process. As illustrated in [16] and [17], we cast the prob-
lem as amatching gamein which: i) players optimize
the profile selection using techniques belonging to the
family of simulated annealing [19]; ii) players execute an
extended version of Irving’s algorithm [15] to the stable
fixtures problem to find a stable matching. We conclude

the section discussing the implications of the solution to
the stable exchange game from a system’s perspective.

A. The stable exchange game

We cast the peer selection process as a game, labeled
the stable exchange game, that is built on the user model
defined in Sec. III.

Definition 2: The stable exchange game can be de-
fined as follows:

• S depicts the strategy sets available to players:S =
(Si) ∀i ∈ I; Si accounts for the combination of the
two strategic variables:αi ∈ [0, 1] andni ⊆ Ni =
{{i, j, cij} : j ∈ {I \ i}, cij ∈ N[0,min (ĉi,ĉj)]};

• Ci denotes the cost to playeri on the combination
of the strategy sets.

In the stable exchange game every peer seeks to min-
imize its cost by setting appropriately the two strategic
variablesαi and ni in response to the strategic choice
of other players. The creation of a link between two
peers is conditioned to a bilateral agreement [18], which
depends on peers’ profiles and storage requirements.
The optimal user strategys∗i = (α∗

i , n
∗
i ) ∈ Si is

obtained by solving the equation:arg minαi,ni
(Ci(si))).

In (Nash) equilibriumCi(s
∗
i , s

∗
−i) ≤ Ci(s

′
i, s

∗
−i) for any

player i and for any alternative strategy tuples′i 6= s∗i ,
where s∗

−i = (α−i, n−i)
∗ depicts the composition of

equilibrium strategy tuples of players other thani.
There are three forces that drive the decision process

of player i, expressed in the hybrid cost functionCi.
On the one hand, the opportunity cost pushes playeri to
increaseαi because this implies a lower redundancy fac-
tor ki hence a decreased amount of local storage offered
to the system. On the other hand, the effort cost drives
playeri to a lowerαi, i.e., reduced on-line probabilitypi

and allocated bandwidthbi. The degradation term helps
in balancing the two first opposing forces: depending
on storage requirementsci, the number and profiles of
remote peers, peeri could be better off increasing or
decreasingαi.

B. An algorithmic perspective

In this work we split the optimization problem that
the players face regarding their strategic variablesα and
n: profile selection and neighborhood construction are
interleaved. The profile selection is implemented using a
technique based on the simulated annealing method [19]:
in each iteration of the best-response algorithm, players
randomly increase or decreaseα by a discrete, fixed
value andestimatethe alteration of their costs due to the
change. Only a new value ofα that entails lower total
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cost is adopted, and a new neighbor selection process
is thus started. The consequence is that we let players
create their peerings from scratch in every iteration of
the best-response algorithm. In practice, however, this
does not mean that repeated peerings will involve actual
data transfers: once a stable matching is found for every
peer, the storage process takes place. This interleaving
technique has been illustrated in [16], in which we show
that every new instance of the stable matching problem
that arise when peers update their profiles can be solved
in linear time using an extension [17] of the Irving’s
algorithm to the stable fixtures problem [15].

C. Implications of user-driven peer selection

The iterated-best response algorithm builds the so-
lution to the stable exchange game, which is a stable
overlay graph representing (logical) neighborhood rela-
tions among peers taking part to the backup and storage
application. The price to pay for the advantages of a
system based on symmetric and unstructured peering re-
lations we discuss here may appear to bescalabilityand
computational issues. Although our solution yields linear
runtime, with the knowledge of the equilibrium stratifi-
cation result one might propose even faster approaches
for a real system. In a practical implementation, where
asynchronous user arrivals and leaves may happen, the
operation of a single peeri is very simple: based on its
current profileαi, the peer queries the ISPonly for the
required number of other peers with a similar profile,
to be able to storeci units of data. As shown in [17],
we know that any random deviation from this behavior
would not be worth. Furthermore, due to the bi-lateral
nature of peering agreements, a peer will not be able
to “cheat” and request the ISP for peers with higher
profiles, as any tentative of establishing a link to those
peers will fail. A secure and unique identification scheme
is however required to prevent attackers from tampering
with our scheme, e.g. by “spoofing” identities. In our
agenda we plan to implement the necessary security
measures (data encryption, user authentication, backup
verification), and we address application-level churn (i.e.,
dynamic user set) issues that require to reshape our
model to asynchronous user memberships.

V. NUMERICAL EVALUATION

In this section we focus on a numerical evaluation
of the peer selection process we discussed in Sec. IV.
The results we show in this section are based on the
following assumptions. We assume a synchronous set-
ting, in which time is slotted, and implement the iterated

best-response algorithm. The set of players does not
vary in time and we uniformly at random generate a
bootstrap profileα̂i ∈ [0.1, 1] ∀i ∈ I. We assume that
peer i storesci = c = 10 units of data in the system
and holdsCi = Di(αi, αj∈ni

) + Oi(αi) + Ei(αi) =
∑

j∈ni

(

cijαi

ci

)1+αj

+

(

α̂i

αi

)2

+α2
i . In this heuristic cost

function if peeri’s neighbor set is sufficiently large to
allocate one encoded block per neighbor, the predomi-
nant effect in the degradation cost becomes the “quality”
of peeri’s neighborhood given by the profileαj of its
members (i.e., lower quality implies increased costs).
Moreover the opportunity cost expresses, given peeri’s
bootstrap profileα̂i that we label “effort-less profile”
and the amount of data to be stored in the system,
the amount of local storage peeri will be compelled
to offer relatively to the effort-less amount. Due to the
randomized nature of our algorithm, the results presented
in the following are averaged over 10 simulation runs.

Our goal here is to examine the properties of the
equilibrium of the stable exchange game and to compare
equilibrium solutions to a simulated DHT-based system
in which peers do not optimize their bootstrap profile,
which remains fixed in time, and select remote peers
uniformly at random. Our evaluation is based on the
cumulative distribution function (CDF) of equilibrium
user profiles, and the redundancy factorsk̂i ∀i ∈ I (we
compute k̂i using respectively the worst, mean and
median profile ofi’s peers).

We now letI = 100 and carry out a comparative anal-
ysis of the user driven peer selection (labeledstrategic
peer selection) against a random peer selection strategy
that mimics a DHT-based system (labeledrandom peer
selection). The implicit hypothesis, to make the two
cases comparable, is that peers evaluate their costs with
the same cost function that we defined above also when
they cannot optimize the variablesαi andni.

We observe in Fig. 1 that the majority of peers apply
a substantial improvement to their profiles as compared
to the initial profile distribution (that is kept in the
random selection), which corroborates our analysis on
the incentive properties of our peer selection mechanism.

Fig. 2 illustrates the impact of the peer selection
process from a system point of view: we plot the
redundancy factor adopted by each peer in the system,
when using the random or strategic peer selection policy.
In the random case every peer uses the same redun-
dancy factors considering the system lowest, average and
median profiles respectively. Due to the uniformity of
the bootstrap profile distribution, the median and mean
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Fig. 1. Equilibrium distribution of profiles for strategic peer
selection.
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Fig. 2. Redundancy factor adopted by each peer (sorted by their
profile) for random and strategic peer selection.

redundancy factors coincide (around 2 as indicated in
the figure with a dashed horizontal line); the worst case
redundancy factor is 10 (which corresponds to the y-
axis limit). Instead, the strategic peer selection resultsin
stratification: peers with high profiles (close to 1) will use
a lower redundancy factor than peers with lower profile.

VI. CONCLUSION

We presented a novel system architecture for on-line
backup and storage applications which involves an ISP
and end-users’ devices embracing the P2P paradigm
whereby the system capitalized on storage resources
already deployed at the edge of the network. We pro-
posed a peer selection mechanism that allows peers
to take selfish data placement decisions which results
in an unstructured system that requires no additional
mechanisms to align user incentives towards a good
system operation. Peer selection has been modeled with
the tool-set of non-cooperative game theory and we took
an algorithmic perspective to efficiently compute stable
solutions, moreover we identified a simple way of imple-
menting our mechanism in a decentralized way which is

robust against peers that deviate from the normal system
operation. The analysis of our peer selection mechanism
through a numerical evaluation of a synthetic system
shows that it provides built-in incentives for peers to
improve the quality of resources they offer to the system.
We achieved this property due to the outcome of peer
selection.i.e., system stratification.
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