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Abstract—In this work we tackle the problem of on- not been studied extensively in the context of on-line
line backup and storage with a peer-to-peer approach. We backup and storage applications. The lack of attention
propose a novel system architecture involving the users’ to peer selection is mainly due to the structured ap-
devices that con_federate b_y p_ooling_ their resources and proach suggested by current design of such applications,
offer an alternative to capltal-|nten5|ye data-centers._lh e.g. Wuala [2]. In a structured approach (based on a
contrast to current peer-to-peer architectures that build .7 . AN
upon distributed hash-tables, we investigate whether an distributed has'h taple (DHT)), peer selectiorimplicit
uncoordinated approach to data placement would prove Pecause data is uniformly stored on peers based on the
effective in providing embedded incentives for users to consistent hashing concept[5]. The main benefit of DHT-
offer local resources to the system. By modeling peers asbased approaches is that they achieve load balancing
selfish entities striving for minimizing their cost in partic- by spreading data on every peer, irrespectively of their
ipating to the system, we analyze equilibrium topologies characteristics. However, peer heterogeneity in terms of
that materialize from the process of peer selection, whergb  the amount of resources they dedicate to the system
peers establish bi-lateral links that involve storing data cannot be easily taken into account. As a consequence,

in a symmetric way. System stratification, colluding peers -, oy stems require an additional layer to elicit users’
with similar contribution efforts, is an essential outcomeof .
cooperation to the system.

the peer selection process: peers are lured to improve the | i
“quality” of local resources they provide to reach lower In this work, we propose an unstructured architecture

operational costs. Our results are corroborated by both and study an uncoordinated, utility-based peer selection
a game-theoretic analysis and a numerical evaluation of algorithm. We present a system design that enables on-
several system configurations. line backup and storage service in which the ISP is only
involved in monitoring the edge devices that form the
P2P network. Monitoring serves the purpose of building
During the last few years the on-line backup and global ranking of peers in terms of theirofiles i.e.,
storage market has witnessed an increasing interds amount and quality of resources they offer to the
from both academia and industry. Current commercigystem. Distributed monitoring could be foreseen, but it
solutions and research projects present a variety isfoutside of the scope of this work. Nevertheless, peers
approaches to the problem of reliable, scalable aade responsible for building up their neighborhood which
available on-line storage for heterogeneous users reqwil store their data: peer selection is modeled as a game
ing to store and access a large amount of data (ugemwhich users selfishly minimize the cost they bear for
generated content, personal data, etc.) from anywh@ming the system by adjusting their profile.
on the Internet [1]-[4]. From an architectural point of We show that the peer selection process reaches an
view on-line backup and storage services can be brokequilibrium in which the system istratified peers with
down into those based on server farms [1] and thosenilar profile cooperate by building bi-lateral links
embracing the peer-to-peer (P2P) paradigm [2], [3]. Othvat are used to exchange and store data. The higher
goal is to design a server-less P2P architecture wherdéie peers’ profiles are, the less costly the service they
peers (e.g. users’ set-top-boxes (STBs) deployed by theiceive from one another is. The consequence of system
Internet Service Provider (ISP)) optimize the amount atratification is a natural incentive for peers to improve
local resources they dedicate to the system. the amount and quality of resources they offer to other
Specifically, the focus of this paper is on tipeer peers. Due to the bi-lateral nature of data exchange
selectionalgorithm, which is used by peers to decidamong peers, the presence of a central server to store
where to place fractions of data they need to store excess data that cannot be placed in the P2P network is
backup. To the best of our knowledge, peer selection hast required.

. INTRODUCTION



The paper is organized as follows: in Sec. lll w®ur work is related also to the “selfish neighbor se-
overview the design of our system, we discuss its kégction” problem, initiated with the seminal work on
components and propose an objective function that destwork creation games [12]. Related to the formula-
scribes and drives the behavior of peers involved in tiien of peer selection that we study in this paper, the
P2P backup and storage application. Sec. IV is devotedcoordinated creation of routing overlays have been
to the definition of peer selection, by casting the probleimvestigated in [13].
as a game. We then take an algorithmic perspectiveDespite a large literature on P2P storage and backup
and discuss on the implication of an uncoordinategpplications, to the best of our knowledge, the ques-
peer selection process. Finally, in Sec. V we presentian of whether it would be possible to design a P2P
numerical evaluation of the peer selection process. Wgstem with incentiveembeddedn the early stages
review related works in Sec. Il and conclude in Sec. Vbf the system architecture, without requiring additional

Il RELATED WORK mechanisms, has not been addressed in prior works.

P2P approaches to on-line backup and storage have [1l. SYSTEM DESIGN
proliferated in the research literature, and the littlecgpa |, his section we present an overview of our system.

we devote to the state-of-the art in this paper cann@le assume the related application to be executed as a
give justice to all of them. OceansStore [7], FarSite [8o1ice on users’ STBs which allows end-users to set
and TotalRecall [9] represent influential design of such strap value to the amount of dedicated resources:
systems, the first based on a mesh of peers that cOopejRi& s can select the service on-line time and the fraction
in storing replicas (for active data) or redundant (fof¢ pangwidth (both up-link and down-link) allocated
!oerm_anent data).blocks, the second using a dlSthbut?&l,the backup and storage service. On the ISP side,
iterative, randomized placement algorithm to place dgfg, 45sume the presence of a monitoring infrastructure
replicas and the last using a DHT-based approach jfaq\ring the status of the devices and the amount
selecting the placement of erasure coded data blockp.ayailaple bandwidth dedicated to each of them. We

[10] discusses on the benefits of using network codings the execution of the basic algorithms that constitute
in alleviating the costs of data maintenance as opposgd application to edge devices to minimize the ISP
to approaches based on source, and erasure COding'implication in operating the system.

The hybrid P2P design of aforementioned Wuala [2] Let Z denote the set of peers taking part to the system.

and AIIMyDgt_a [3] requires a centralized componen_t tB_\/ery peeri splits its content to be stored in the system
ensure a minimum storage space to end users Whichis, " it gjzed pieces, and is responsible for establishing
complemented by stor_agg space at all ayaﬂable peq@ical) links to remote peers that will potentially store
takl_ng pa_rt o the gppllcatlon. In Wuala, files are splity data,i.e. thepeer selectioralgorithm is explicit. Any

up into pieces, \,Nh'Ch are _encryptgd and spread on tlﬂﬂ( between two peers is assumed todyenmetric both
PZP network, with each piece be'”g_ storgd on at Ie%ﬁds of the link are required to store data for each other.
five different peers. pata placement IS ach|eveq throug@e denote by:; the indicator vector of links established
a double DHT layer, in which super-nodes are in charg peeri: [ni| = T, n; = (li1,ligs o li7) andli; — 1

of uniformly spreading the data on storage nodes. Inceg- peeri has a link to peeb’aﬁé péee}j has a?ink to
tives constitute a key component of Wuala: users m eri. Furthermore, let alse;: denote the number of
offer an amount of local space inversely proportionLglita pieces peerstores on pejej. In order to maintain

o their on-line t|mé_[6] and super node; are 'nVO_IV?dsymmetric collaborationg;; = c;;, otherwise linki; ;
in constantly checking that this constraint is Sat'Sf'egannot be established ’

Additionally, a distributed reputation mechanism Serves . ihe following we focus on the design issues we

the purpose of providir_wg tit—for—t_at incent_ives for USer3ddressed in our P2P backup and storage system, while
to allocate a large fraction of their bandwidth to the Pzg detailed description of the peer selection process is

network. . .
iven in Sec. V.
Several works have defined subtle economic fram%-

works to design and analyze incentive schemes to eX- Data availability
force user cooperation (e.g., [11] and references therein)The first and foremost issue of a distributed storage

The probability for a user to be found on-line should dideast SYStem is to ensure dam’a”ab”ity- Due to the uncoor-
0.17. dinated nature of the P2P setting we are considering,



in which peers may join and leave at any time, per- Our objective in this work is two-fold. Firstly, peers
sistent data storage is difficult to achieve and calls fehould be compelled to offer a fraction of their local
sophisticated data management mechanisms. Replicagtorage to other peers in the system; secondly, we want to
or redundancy have been suggested as effective meangrtwvide incentives for users to increase the on-line time
cope with poor peer availability [9], [14]. In our systemand bandwidth they dedicate to the service. Intuitively,
we adopt data redundancy using erasure coding: backhe first objective refers to the “quantity”, while the
data is split intoc unit-sized pieces which are thersecond goal addresses the “quality” of resources a peer
encoded to obtain blocks. The key property of erasureoffers. Besides the specific incentive mechanism used to
codes is that the original data can be reconstructed frachieve these goals, measuring the amount of resources a
any ¢ fragments, where the combined size for the peer dedicates to the system also represents an important
fragments is approximately equal to the original datasue. In this work, we leverage on the monitoring capa-
size. We termk = n/c the redundancy factor of thebilities of the ISP, and on its intentions to use them. Since
coding scheme. The value bfmust be set appropriately,the application is assumed to operate on ISP-owned
depending on the desired per data availability targ&TBs, that provide controlled and secure environment,

which can be expressed as [9]: the ISP is able to offer the additional backup and storage
n service to its subscribers for a relatively low cost of
1l—e= Z ( ,)pi(l —p)"t monitoring by exploiting its already deployed hardware
i=c resources.

wherep is the averageon-line time of peers that com-

pose the system, andis the probability that the data is Peer characteristics are encoded into a single scalar
unavailable. The expression to compute the redundan@ue, «, that we term theprofile. We suggest the
factor, given a target data availability, an average oa-lifollowing heuristic to computex. The ISP estimates
time, and the number of fragmentswrites as [9]: the redundancy factok; peer: would impose on the
) 2 0p) ) system using a combination of the on-line timgand

) (U\/p( ) | \/o pU=p +4p> ) the dedicated bandwidth. &; is obtained from Exp. 1

2 where the average on-line timg is substituted by
bret/bi

h is th ber of standard deviati . i . The latter term modulates; by the fraction of
wher€o IS the number ot standard deviations in a norm andwidthb; compared to a reference valtg ; which
distribution for the required level of file availabilty

i , S .2, issetto c7(b;). Hence, the redundancy facthy is
Given an average peer on-line availabilipy it is max;ez (bi) y factby

slightly overestimated: this is intentional and serves as
common to assume global redundancy factor for the gnty

) . - n additional incentive for peers to improve the qualit
whole system. This is done for example in tradltlonéal P prove 9 y
of resources they offer (note that large implies high

P.2P systems_such as ngla..The price of unreliable pe eréundancy due to low peer availability). Then the profile
with low on-line availability is then shared among al

. : : . . _of peeri is given bya; = £+ Vi Z. Peer profiles
system pa_r'qmpants. This potennallly unfa_lr design Chg'%re used in two fIavors:Ztheykéonstitute a global ranking
;ﬁg (k))ﬁr mgfra;ee?eégroonugr osrlijttk)ltrls Incentive mechanls%sat is used during the execution of the peer selection

P 9 ' mechanism and also they dictate, for a particular peer, the

B. Incentives and fairness exact amount of storage space that should be dedicated

We now define the resources that peeontributes to © the system. Peer holding profile a; who needs to
the system: they play important roles for the P2P back§Pre ¢: chunks will be required to offer an amount of
and storage application. local space of; = 2+ = cik; Vi € T.

« storage space; € N, that is the amount of encoded

data chunks a peer stores locally for other peers: This definition implies that peei will allocate an
on-line availability, p; € [0,1], expressed as gamount of storage space equal to the number of encoded
[ ] = 1 (3 ) 1

probability for peeri to be found on-line: chun_ks it would inj:ect into a syste_m consisting of peers
« bandwidthb; = min{u;,d;}, where u;, d; repre- with its same profile. Thesymm_etrlcnature_ of data ex-
sent respectively the upload and download capacﬁlpange in our system and tk#ict correlationbetween
allocated by the user to the P2P application. the load |mposgd on the system and the amount o_f .stor-
age each peer is compelled to offer render an additional
“Data availability of 0.9999 results ia = 3.7. mechanism to enforce peers’ contribution unnecessary.




C. User model the section discussing the implications of the solution to

As opposed to selecting remote storage locatioH Stable exchange game from a system’s perspective.

uniformly at random, in our system peers build theik The stable exchange game
neighbor set while trying to optimize a local objective

function that we now describe in detail. For sake océ We cast the peer selection process as a game, labeled

e stable exchange game, that is built on the user model
efined in Sec. Ill.
Definition 2: The stable exchange game can be de-

simplicity, let's assume every peer will store the sa

amount of data chunks in the system, thatds:= ¢

Vi€ Z. We now introduce the cost function peer _

minimizes when establishing links to remote peers. Notfér?ed as follows:

that in the presented theoretical model we consider a* < depicts the strategy sets available to playsrs:

static system set where no application-level churn occurs. (Si) Vi € Z; S; accounts for the combination of the

Once the synchronized process of peer selection reaches WO strategic variablesy; € [0,1] andn; C N; =

a steady state for all peers, that is, no peer has an {{i, g, cij} - 5 €{Z\ i}, cij € Njgmin (6,61 15

incentive to re-wire to other remote peers, the actual® Ci denotes the cost to playeéron the combination

data transfer will take place. The cost functiGn we of the strategy sets.

define in this sectiomimicsthe “physical” key factors  In the stable exchange game every peer seeks to min-

that affect the behavior of a real-world P2P backup arfize its cost by setting appropriately the two strategic

storage application. variablesa; andn; in response to the strategic choice
Definition 1: The costC; that peeri with profile o; Of other players. The creation of a link between two

“pays” for a neighborhood; is C; = D;(a;,ajen,) + Pe€rsis conditioned to a bilateral agreement [18], which

O;(a;) + Ei(a;), where the additive terms represent:. depends on peers’ profiles and storage requirements.
Degradation cos{D;) is a function of peei’s profile The optimal user strategy; = (of,n;) € S; is

and of the profilen; of every peerj that is selected to obtained by solving the equatioarg ming, ,, (Ci(si)))-

be in the neighbor set;: the technique based on erasurtd (Nash) equilibriumC;(s;,s* ;) < Ci(s;, s*;) for any

codes used in the system guarantees a certain probabpigyeri and for any alternative strategy tupdé # s,

to recover encoded chunks if every encoded chunk cahere s*; = (a_;,n_;)* depicts the composition of

be placed on a different remote peer, hence the degequilibrium strategy tuples of players other than

dation cost accounts for the decreased data availabilityThere are three forces that drive the decision process

occurring when the sizg;| of peeri’s neighborhood is of player i, expressed in the hybrid cost functiah.

not sufficient to store one unit of encoded data on eaCh the one hand, the opportunity cost pushes player

neighbor; increasey; because this implies a lower redundancy fac-
Opportunity cost(O;) describes the price payed bytor k; hence a decreased amount of local storage offered

peeri for the loss of local storage space dedicated to the system. On the other hand, the effort cost drives

the service; playeri to a lowerq;, i.e., reduced on-line probability;
Effort cost(E;) accounts for the cost incurred by peeand allocated bandwidthy. The degradation term helps
i to maintain the profiley;. in balancing the two first opposing forces: depending

on storage requirements, the number and profiles of

IV. USERDRIVEN PEER SELECTION remote peers, peer could be better off increasing or
In this section we study the peer selection proceggcreasingy;.

using tools akin to non-cooperative game theory. First, o .

we give a formal definition of the game that involve8: An algorithmic perspective

a peer: participating to the P2P backup and storage In this work we split the optimization problem that
application. We then focus on the algorithmic nature dfie players face regarding their strategic variableand

the optimization problem imposed by the peer selection profile selection and neighborhood construction are
process. As illustrated in [16] and [17], we cast the prolnterleaved The profile selection is implemented using a
lem as amatching gamen which: i) players optimize technique based on the simulated annealing method [19]:
the profile selection using techniques belonging to tlie each iteration of the best-response algorithm, players
family of simulated annealing [19]; ii) players execute arandomly increase or decreaseby a discrete, fixed
extended version of Irving’s algorithm [15] to the stablgalue andestimatethe alteration of their costs due to the
fixtures problem to find a stable matching. We conclud#ange. Only a new value ef that entails lower total



cost is adopted, and a new neighbor selection procésst-response algorithm. The set of players does not
is thus started. The consequence is that we let playgasy in time and we uniformly at random generate a
create their peerings from scratch in every iteration bbotstrap profiled; € [0.1,1] Vi € Z. We assume that
the best-response algorithm. In practice, however, tlpseri storesc; = ¢ = 10 units of data in the system
does not mean that repeated peerings will involve actwald holdsC; = Dj(i, ajen,) + Oi(as) + Ei(oy) =

data transfers: once a stable matching is found for evi coan +ay

peer, the storage process takes place. This interlea\%em

technique has been illustrated in [16], in which we shofunction if peeri's neighbor set is sufficiently large to
that every new instance of the stable matching proble®iocate one encoded block per neighbor, the predomi-
that arise when peers update their profiles can be solvent effect in the degradation cost becomes the “quality”
in linear time using an extension [17] of the Irving'®f peeri’s neighborhood given by the profile; of its

+ (4 ) +a2. In this heuristic cost

C; Q;

algorithm to the stable fixtures problem [15]. members i(e., lower quality implies increased costs).
o _ _ Moreover the opportunity cost expresses, given pser
C. Implications of user-driven peer selection bootstrap profilec; that we label “effort-less profile”

The iterated-best response algorithm builds the saAd the amount of data to be stored in the system,
lution to the stable exchange game, which is a stalifee amount of local storage peérwill be compelled
overlay graph representing (logical) neighborhood relte offer relatively to the effort-less amount. Due to the
tions among peers taking part to the backup and storagadomized nature of our algorithm, the results presented
application. The price to pay for the advantages of ia the following are averaged over 10 simulation runs.
system based on symmetric and unstructured peering reQur goal here is to examine the properties of the
lations we discuss here may appear tasbalabilityand equilibrium of the stable exchange game and to compare
computational issues. Although our solution yields lineaquilibrium solutions to a simulated DHT-based system
runtime, with the knowledge of the equilibrium stratifiin which peers do not optimize their bootstrap profile,
cation result one might propose even faster approachidsch remains fixed in time, and select remote peers
for a real system. In a practical implementation, wheteniformly at random. Our evaluation is based on the
asynchronous user arrivals and leaves may happen, ¢chenulative distribution function (CDF) of equilibrium
operation of a single peeris very simple: based on itsuser profiles, and the redundancy factbysvi € 7 (we
current profilea;, the peer queries the 1Séhly for the compute k; using respectively the worst, mean and
required number of other peers with a similar profilanedian profile ofi's peers).
to be able to store; units of data. As shown in [17], We now letZ = 100 and carry out a comparative anal-
we know that any random deviation from this behaviorsis of the user driven peer selection (labestchtegic
would not be worth. Furthermore, due to the bi-latergleer selectiopagainst a random peer selection strategy
nature of peering agreements, a peer will not be abileat mimics a DHT-based system (labeleshdom peer
to “cheat” and request the ISP for peers with higheelectio. The implicit hypothesis, to make the two
profiles, as any tentative of establishing a link to thosmses comparable, is that peers evaluate their costs with
peers will fail. A secure and unique identification schentbe same cost function that we defined above also when
is however required to prevent attackers from tamperitigey cannot optimize the variables andn;.
with our scheme, e.g. by “spoofing” identities. In our We observe in Fig. 1 that the majority of peers apply
agenda we plan to implement the necessary secumtysubstantial improvement to their profiles as compared
measures (data encryption, user authentication, backapthe initial profile distribution (that is kept in the
verification), and we address application-level chuuen,( random selection), which corroborates our analysis on
dynamic user set) issues that require to reshape ¢l incentive properties of our peer selection mechanism.
model to asynchronous user memberships. Fig. 2 illustrates the impact of the peer selection
process from a system point of view: we plot the
redundancy factor adopted by each peer in the system,

In this section we focus on a numerical evaluatiowhen using the random or strategic peer selection policy.
of the peer selection process we discussed in Sec. IN.the random case every peer uses the same redun-
The results we show in this section are based on thancy factors considering the system lowest, average and
following assumptions. We assume a synchronous setedian profiles respectively. Due to the uniformity of
ting, in which time is slotted, and implement the iteratethe bootstrap profile distribution, the median and mean

V. NUMERICAL EVALUATION



1 ‘ ‘ ‘ ‘ robust against peers that deviate from the normal system

operation. The analysis of our peer selection mechanism

08 ' | through a numerical evaluation of a synthetic system
06 | shows that it provides built-in incentives for peers to
LBL , improve the quality of resources they offer to the system.
0.4 ] We achieved this property due to the outcome of peer

o2 — strategid selection..e., system stratification
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