
Institut Eurécom
Department of Corporate Communications

2229, route des Crêtes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-09-231

A Document-based Dynamic Workflow System

April 10th, 2009
Last update April 10th, 2009

Mohammad Ashiqur Rahaman and Yves Roudier

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {mohammad.rahaman,yves.roudier}@eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: BMW Group Re-
search & Technology - BMW Group Company, Bouygues Télécom, Cisco Systems, France Télécom,
Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.

A Document-based Dynamic Workflow System

Mohammad Ashiqur Rahaman, and Yves Roudier

Abstract

A typical workflow is specified by a set of predefined tasks executed in a
sequence flow in which business objects represented as documents are han-
dled to reach a business goal. Workflow actors with precise roles handle doc-
uments reflecting the results of executed tasks. However, increasing agile
nature of business processes implies neither the potential tasks nor their se-
quence flow can be defined a priori. In this context, a document-based work-
flow (DocWF) in which the handled documents may preserve the statefulness
of a business process helping an actor to define potential tasks and their se-
quence flow at runtime.

In this paper, we present a formal model of a DocWF to address agile
business processes. We first classify the associated entities and their relation-
ships in a meta-model. To this end, a formal execution model of a DocWF
system is provided. We illustrate a dynamic execution with an electronic
health record (EHR) generation workflow that handles an XML document of
EHR.

Index Terms

Potential Task, Knowledge-base, Document-based Workflow

Contents

1 Introduction 1

2 Document-based Workflow (DocWF) 3
2.1 DocWF Terminologies . 3
2.2 DocWF Meta Model . 4

3 A Formal DocWF Model 6
3.1 DocWF Model Definitions . 7
3.2 DocWF Status Transition Rules 11
3.3 A DocWF Execution Example 14
3.4 Workflow Patterns in DocWF . 16

4 Related Work 17

5 Conclusion 18

v

List of Figures

1 Document-based Workflow (DocWF) Terminologies. 2
2 DocWF Meta model. 4
3 Document Meta-model. 5
4 A fictitious electronic health record (EHR) document of a patient

should be handled in a EHR generation workflow. Different por-
tions of the EHR (d1, d2, d3, d4, d5) need to be handled during work-
flow execution. 6

5 A behaviour model of a DocWF design time objects (final states
are omitted). 8

6 A behaviour model of a DocWF run time objects after receipt of
documents/document portions (final states are omitted). 9

7 A dynamic execution of Electronic Health Record (EHR) genera-
tion workflow. 11

vi

1 Introduction

Today’s business processes with certain business goals are executed in dy-
namic, uncertain and data centric environments. Uncertainty includes diverse as-
pects of a workflow and its associated environment such as changes in the business
goal and data, execution errors such as unavailability of workflow actors, violations
of policies, lack of evidence of workflow actors’ eligibility (e.g. missing creden-
tials), or even incompletion of goals and data that may not yet reflected in the
handled business documents. These uncertainties amount to lack of statefulness
of workflow execution and thus inability to define and execute suitable tasks at
runtime.

Unlike task-based workflow process that is structured apriori in a sequence of
task flow to decide what should be the task in a business process, a DocWF focuses
on what can be the task to achieve a business goal rather than what should be done.
A user (i.e. a workflow actor), with a comprehensive knowledge of the business
process domain, pro-actively determines on how the goal can be reached. The role
of a DocWF system is to assist the actors rather than instructing them.

Existing knowledgebase (KB) containing legacy business processes, best prac-
tices etc. of an organization can be a recipe for future business process needs. For
example, in a conference proceeding process the tasks in a sequence flow (i.e. pub-
lishing call for papers by the organizers→ submitting several papers by the authors
→ reviewing the papers by PC members → selecting accepted papers by the PC
chairs → sending notifications with the reviews to the authors → submitting the
camera-ready versions by the authors and finally → publishing those in the pro-
ceedings) can be used as a recipe for a research project proposal granting workflow
as both business processes have similar goals (i.e. to be successful to publish papers
and to have approvals of research funds respectively) with similar tasks. However,
in agile business scenarios like health care, natural calamities one can not decide
upon suitable tasks a priori as each incident has individual peculiarities. Many au-
thors also argue that existing workflow management systems [1–8] proved to be
limited in dealing with such dynamic nature of a workflow. A simple workflow
model may fail or block in an exceptional situation unless the user gets into the
backend [9] which is infeasible as actors are forced to bypass the workflow sys-
tems quite frequently. To address this issue, several research communities [1–3, 7]
are devoted to devise techniques for flexible workflow management.

In business processes, actors primarily handle business documents or portions
thereof from their creation to destruction, archiving or version consolidation (col-
lectively termed as document handling). For the conference proceeding process,
several actors (i.e. organizers, PC members, authors and attendees) handle research
papers in a sequence of tasks. In addition to document handling in such a DocWF
system needs to tackle several security aspects. For example: a PC member may
not be allowed to review a paper of which he is a co-author (i.e. conflict of interest),
authors affiliations should be anonymous (i.e. access control), the same paper must
be reviewed by at least three reviewers and once the PC chair takes the decision

1

Document-based Workflow
(DocWF)

Business Goal

Potential Tasks

Data Flow

Free Tasks

Recipe Tasks

has initiates

Sub goals

achieved by feed into

can be

handles

have sequence flow

Documents Roles

or
Recipe Flow

Free Flow
or

Workflow Actors

defined by
executed by

Security requirements

comply with

defined by

has

Goals define abstract
tasks

Definition, creation,
version, archiving,

destruction

Document access
control, usage control,

etc.

From Knowledge
base (best

practices, business
process, etc.)

From Knowledge
base (best

practices, business
process, etc)

captured in documents

instantiates

Figure 1: Document-based Workflow (DocWF) Terminologies.
of acceptance/rejection no new reviews of the same paper are not considered (i.e.
usage control).

To cope with the agile business nature, recent industry adoption of SOA-based
business process tools and frameworks [10,11] emphasis reuse of existing capabil-
ities and their governance as key factors. Regarding reuse, our approach utilizes
the KB of an organization to determine whether existing capabilities can be a help
to solve a current business need. Governance rules (e.g. legal) for handling doc-
uments and their security can be supported in that approach with a set of rules
forming a policy-base. We believe that a document-based workflow system must
support (1) runtime definition of tasks and their sequence flow and (2) document
handling and security aspects. For (1) our DocWF system allows runtime definition
of tasks and their sequence flow based on the statefulness of a DocWF execution
captured as a DocWF status(see Section 3). A BPEL analogy would be: unlike
invoking services in a pre-defined sequence of <invoke> elements at runtime a
DocWF system defines those before invoking. A task can be essentially a human
task or a web service. Document handling and security aspects must be enforced
in distributed fashion as documents can be handled by services hosted in different
business boundaries. In our previous work [12], we developed a distributed access
control enforcement mechanisms for XML documents relying on a distributed key
agreement protocol which is equally applicable in a workflow context. In [13], we
proposed an XML tree comparison technique that can be directly used for version-
ing and archiving of XML documents.

In this paper, we provide a formal foundation of a DocWF) system by focusing
on its dynamic aspects. Section 2 introduces different terminologies of a DocWF
followed by a meta-model showing the relationships of different entities in such a
system. Section 3 describes the formal model of DocWF system and illustrates the
model with an example. Section 4 positions our work with related literature and
finally Section 5 concludes the paper.

2

2 Document-based Workflow (DocWF)

A DocWF is a document oriented business process that is capable of assisting
workflow actors at runtime to decide upon (i.e. define and execute) potential tasks
to reach a business goal.

2.1 DocWF Terminologies

Figure 1 illustrates the document-based workflow terminologies. A DocWF
system has to achieve a business goal from which a set of subgoals can be derived.
Goals are abstract definitions of potential tasks that will be executed by actors. In
the conference proceeding process, the business goal is to organize the conference
whereas a subgoal is to publish papers in the proceedings of the conference by
authors (i.e. actors).

The main concept of a DocWF system is the documents in which data are in-
stantiated during a workflow execution. A goal achievement instantiates data flow
in documents. Based on the achieved and remaining goals and consultation of the
KB, potential tasks are defined and their execution handles the documents which
is reflected either by creating new documents or updating existing documents by
legitimate actors who possess credentials (proving the roles).

A goal achievement implicitly may enable subsequent goals and documents to
be handled until the business goal is not achieved. Actors may trigger tasks from
a pool of defined tasks called recipe tasks in a predefined sequence which we term
as recipe flow, if the goals can be achieved by those recipe tasks in that recipe
flow. Examples of such DocWF systems are: conference proceeding, research pro-
posal granting, employee performance evaluation, leave approval, tax evaluation
processes.

Example 1 A research proposal granting process can follow the conference pro-
ceeding process as a recipe process. Several actors (i.e. proposal writers, review-
ers, granting authority) can handle research proposals in a sequence of recipe
tasks: publishing call for research proposals by the organizers → submitting sev-
eral proposals by the authors → reviewing the proposals by reviewers → selecting
accepted proposals by the authorities → sending notifications with the reviews to
the authors → submitting the final versions by the authors and finally → granting
funds for the accepted research projects.

However, there might be exceptional situations as indicated before that can not be
handled by any recipe process (from KB). In this context, potential tasks (i.e. free
tasks) and their sequence flow (i.e. free flow) may need to be defined at runtime
to achieve the business goal. Consider, in a clinical environment, a doctor orders
diagnostic tests for a patient, but cannot wait for the results in case of an emergency.
Thus she may start treatment for the emergency patient. As soon as the test results
arrive (in the middle of the current treatment), she might need to achieve a new

3

DocWF

Goal Potential Task Sequence Flow
1..*0..1

0..*

1..*1..*
0..*

1

Free Task Recipe Task Recipe Flow Free Flow

DocWF Role

Document Handling

 DefineDocument
 e.g. DefineGoal
DocWF Role Type

1..*

 ExecuteTask
 e.g. DefineTask

Task Role type
0..*

1..*

1..*

e.g. DefineFlow
Flow Role type

0..* 0..*

1..*

1..*

1..*

Document
1..*1..*

1..*

1..*

Design time entities Runtime entities

1..*

Execution history, document semantics, policy
Best practices, business process modles

Knowledge base (KB)

1..*

Figure 2: DocWF Meta model.

goal requiring a completely different treatment (i.e. free tasks) depending on the
result.

Workflow actors are such stakeholders with precise roles in a business pro-
cess who may also need to comply with security requirements. An actor possesses
domain knowledge but may require assistance in the form of statefulness in busi-
ness documents and DocWF execution to decide upon potential tasks. While we
consider the role hierarchy, role assignments and security aspects should be inte-
grated for a secure DocWF system, we do not discuss further these issues other
than showing their relationships in the DocWF meta-model.

2.2 DocWF Meta Model

An object oriented approach, in particular UML constructs, are used to describe
the relationships of DocWF entities as to deal with a complex DocWF system.
While the DocWF meta model contains design and run time entities separated by
a straight line, the DocWF role class is significant with respect to security in both
design and run time (see Figure 2).

DocWF is the main class in the DocWF meta model. A DocWF consists of
a business goal, documents, potential tasks and their sequence flow. One goal
can derive other subgoals and achievement of a goal instantiates data flow into
documents. These properties are represented by a recursive association of goals
that form a goal precedence and another association between goal and document
respectively (Figure 2).

As a DocWF is document centric an associated document meta-model showing
the relationships of involved entities in document handling, i.e. document concepts,
actors, document portion, version is provided in Figure 3. Document concepts

4

Document

Document Portion
1..*

has

Document Provider
(i.e. Workflow actor)

1..*
provided by

Document Consumer
(i.e. Workflow actor)

1..*
consumed by

Version0..*

has

Domain Concept

0..*
has

1..*
maps to

1 1

1
1

Figure 3: Document Meta-model.

and their relationship represent the business domain semantics which then can be
mapped to document portions []. For example, in a patient health care domain,
a business concept ’treatment’ can be mapped to <Medicine>, <Therapy> and
<Surgery> related XML fragments (see Figure 4).

To facilitate an actor to decide upon a potential task the organizational best
practices, legacy business process models, document semantics, execution history
of processes and policies are captured in the knowledge base (KB) class. As KB
class is not associated to other entities in the meta-model, KB can be consulted at
both design and run time of a DocWF.

Potential task definitions are associated with document definitions. In partic-
ular, one task may be associated to at least one document or document portion
and vice versa. Abstract definitions of potential tasks are made concrete in fur-
ther definitions of recipe and free tasks. Such concrete definitions of tasks can be
realized by the document semantics (e.g. domain concepts, document structure).
Consequently, Successful execution of a potential task handles one or more docu-
ments/document portions. The sequence flow among such tasks can also be defined
at run time (i.e. free flow). Intuitively, one or more tasks can be in one sequence
flow and vice versa.

The recipe and free tasks (and their flows) are important entities for agile busi-
ness processes. The recipe tasks and their sequence flow i.e. free flow taken from
other business processes of the KB might be directly applicable to achieve the goals
of a DocWF and as such promote the reuse of existing services. However, the free
tasks and free flow elements allow an actor to define tasks and their flow at run
time depending on the current business needs and thus to operate in an uncertain
environment.

There are multiple roles associated with a given DocWF process. In particular,
a role type for defining goals, document semantics and policy (i.e. class DocWF
role type) and a role type for defining a task (i.e. class task role type) and its se-
quence flow (i.e. class flow role type). The association classes link the DocWF role
class with other meta elements, i.e. Goal, Document, recipe task, recipe flow, free
task, free flow.

5

Task-based Workflow Case handling [9] Document-based Workflow
Focus Task Whole case Document data
Orientation Task Whole case Documents/business goal
Primary perspective Sequence flow Case data Document data
Task and Sequence flow definition A priori A priori Runtime
Process statefulness No No Yes
Reuse of processes No No Yes
Document handling No No Yes
Access control focus Task Task and case data for documents
Document usage control features No No Yes

Table 1: Differences between task-based workflow, case handling and document-
based workflow

<ElectronicHealthRecord id=1>
 <PatientInfo id = 1>
 <Name> Alec Stwert <\Name>
 <Address> ... <\Address>
 …..
 <\PatientInfo>
 <HealthInsurance id= 1>
 <Company> A <\Company>
 <Claim> .. <\Claim>
 …...
 <\HealthInsurance>
 <Symptoms>
 <One> .. <\One>
 <Two> .. <\Two>
 …...
 <\Symptoms>
 <DiagnosisTests>
 <One> .. <\One>
 <Two> .. <\Two>
 …...
 <\DiagnosisTests>
 <Treatment>
 <Medicine> … <\Medicine>
 <Therapy> … <\Therapy>
 <Surgery> … <\Surgery>
 …..
 <\Treatment>
<ElectronicHealthRecord>

g1
(Up-to-date

Patient
particulars)

g2
(Symptoms

identification)

g3
(Diagnosis

tests
results)

g4
(Successful
Treatment)

Figure 4: A fictitious electronic health record (EHR) document of a patient
should be handled in a EHR generation workflow. Different portions of the EHR
(d1, d2, d3, d4, d5) need to be handled during workflow execution.

3 A Formal DocWF Model

In this section, we present a formal model of a DocWF system followed by
its dynamic execution semantics with an example of EHR generation workflow

6

(Figure 4).

3.1 DocWF Model Definitions

We begin with design time objects of a DocWF system followed by runtime
objects for which behaviour models are depicted in state chart diagrams in Figure
5 and 6 respectively. Dotted arrow means that an enabled status may enable other
object’s status.

Goals and documents: Given a business goal G of a DocWF, the derived set
of subgoals is denoted as G = {g1, g2, ...gm} for m ≥ 1 subgoals. Let gi and
gj be two subgoals of G. If gj can not be achieved unless gi is achieved then
there is a goal precedence between them, denoted as gj > gi. Let D be a set
of documents/document portions denoted by D = {d1, d2,, dn}, for n ≥ 1,
that need to be handled when a DocWF is executing. For any two documents or
document portions di and dj , if dj can not be handled before di is handled then
there exists a precedence between di and dj , denoted as dj > di. For no such
precedence relation between two goals and two documents/document portions: gj/
gi and dj / di respectively. Intuitively, pairs of goal and documents/document
portions may also exhibit precedence relationship which implicitly sets constraints
for document handling with respect to a goal achievement. For two such pairs one
can be a successor of the other if for the goal and all the documents/document
portions of the former, i.e. gj and ∀dj , gj > gi and dj > di hold where gi and di

are the goal and documents/document portions of the other.
Policy: A set of rules each denoted by pi representing document handling con-

straints and security requirements form the policy base of a DocWF system. One
or more such rules may be enabled and need to be enforced for a goal achieve-
ment. Moreover, one rule may infer new rules as evaluation of a rule may enable
or derive other rules at runtime. For example, in Figure 4, a rule ’d1 and d2 should
not be updated by the same actor’ meaning once one actor updates any of the doc-
uments, her credential for the other document may be invalidated. In practice a
policy rule can specify any legal and security requirements. As we focus on the
dynamicity of a DocWF system, we consider the document handling constraints as
the simplest form of a policy rule in the rest of the paper. As such, if a policy rule
pi = {gi, {di}} is enforced a set of inferred policy rules e.g. pj = {gj , {dj}} are
enabled and denoted as pj > pi. Two policy rules having no precedence is denoted
by pj / pi.

Example 2 In Figure 4 the business goal of EHR generation workflow is to gener-
ate an EHR for a patient that derives a set of goals, G = {g1, g2, g3, g4}; g4 >g3 >g2

but g1 /g[2−4]; D = {d1, d2, d3, d4, d5}; d5 > d4 > d3 but d2 /d[1,3−5] and d1 /d[2−5].
Policies are p1 = {g1, {d1, d2}}, p2 = {g1, {d2}}, p3 = {g2, {d3}}, p4 = {g3, {d4}}
and p5 = {g4, {d5}} where p5 > p4 > p3 but p2 / p1, p3 / p[1−2].

Knowledge-base(KB): It is defined as a collection of organizational best prac-
tices, document semantics, process models, e.g. BPMN, process execution history,

7

defined

updated

Knowledge-base (KB)

not defined

defined

Goal

Derive subgoals and
there precedence

not defined

defined

Documents/ Document portions

Define document
semantics, structure
and their precedence

not defined

defined

Policy (KB)

Define
policy
rules

Figure 5: A behaviour model of a DocWF design time objects (final states are
omitted).
e.g. BPEL. For a hospital one best practice would be to record a new patient’s insur-
ance information. Document semantics can be represented by ontology concepts
using OWL [].

Now, we move to run time objects of a DocWF which are also depicted in a
SAM model in Figure 6.

Definition 1 Potential tasks: Let Ti be an executed task which enforced policy
rule pi and pj be an enabled rule after Ti’s execution. A new task Tj is a potential
successor task of Ti, denoted as Tj > Ti if either (1) both Ti and Tj are chosen
from a recipe process such that Tj > Ti in the recipe process or (2) if pj > pi

holds. If there is no task Tk such that Tj > Tk > Ti then Tj is the immediate
potential successor task of Ti, denoted as fij = 1 and otherwise fij = 0.

Two potential tasks Ti and Tj are independent when neither Tj > Ti nor Ti >
Tj . A directed graph G = (T,>) represents this precedence relationship among
potential tasks of T , where each potential task is a node in the graph and a directed
edge from a node Ti to node Tj satisfies fij = 1. In the rest of the paper, the term
’task’ refers to ’potential task’ unless otherwise stated.

Policy violation: It determines whether (1) an executed task enforced the pol-
icy rules for a goal by handling the associated documents/document portions, (2)
two documents/document portions can be handled in parallel or in a sequence. For
(1) the success of a rule enforcement can be verified by either manually observing
the documents or an automated verification service. For (2) if there exists no prece-
dence relation between any two enabled rules. Then a policy violation condition
for two potential tasks Ti and Tj is denoted by vij = vji = {0, 1}. di and dj can
be handled in parallel if (1) is successful and Ti and Tj are independent, denoted
by vij = vji = 0. If neither (1) is successful nor dj / di then only one of the doc-
uments/document portions can be handled in one task and the other is disabled for
the other task, denoted as vij = vji = 1. For example in Figure 4, the document
portions d1 and d2 can be handled in two parallel tasks: T1 =’updating patient
information’ and T2 =’updating her insurance information’ as p1 / p2. However,
the document portion d4 can not be handled before handling of d3 to achieve the
goal g2 =’Symptoms are identified’ as p4 > p3 and thus T4 > T3.

Definition 2 The preset of a potential task, denoted by ∗Tk, is a set of document
handling constraints ∗Tk = {(gi, {dj})|gi is the goal of Tk or gk > gi and dj are
the documents/document portions that are handled in tasks Ti where Tk > Ti or
dk > dj}.

Definition 3 The postset of an executed task, denoted by Tk
∗, is a set of document

handling constraints Tk
∗ = {(gi, {dj})|gi is the goal of Tk or gi > gk and dj are

the documents/document portions that need to be handled in task Tk or dj > dk}.

8

enbaled

violated

Policy

violated

not violated

Feasible condition

(2) Determine
policy

violation

not defined

defined

Potential Task

(4) Check
feasible

condition

defined

updated

Knowledge-base (KB)

(3) Decide
upon a

task

not violated

not achieved

achieved

Goal

executable

executed

not handled

being handled

Documents/
Document portions

handled

initial

updated

DocWF Status

final

(5) Apply
transition

rules

(1)Determine
enabled goal

and
documents

(6) Determine
achieved goal
and handled
documents

Figure 6: A behaviour model of a DocWF run time objects after receipt of docu-
ments/document portions (final states are omitted).

The preset of a task Tk is the collection of achieved goals and handled docu-
ments/document portions just before executing the task Tk. On the other hand,
the postset of an executed task represents the remaining goals to be achieved and
the documents that need to be handled for the successful execution of the workflow.
The facts of the KB and the dynamic knowledge of ∗Tk, Tk

∗ and policy violation
conditions enable an workflow actor to decide upon potential tasks (i.e. recipe or
free) for the remaining goals and documents/document portions to be handled (i.e.
what can be done rather than what should be done).

Workflow Pattern: For |∗Tk| ≥ 1, the potential execution of a task Tk will not
occur until all the subgoals are achieved by handling the associated documents.This
follows the classical AND workflow pattern [14]. An alternate of this is to allow
a potential task to be executed when some (not all) of the preceding goals are
achieved meaning some documents are handled. Unlike the policy violation condi-
tion, this is a relaxed constraint comparable to an OR workflow pattern. Intuitively,
the OR workflow pattern allows more flexibility than the AND pattern which can
also be seen as a special case of OR pattern. As such we define a feasible condition
that enables this OR pattern.

Feasible Condition: Let ∗Tk = {(gk1, {dk1}), (gk2, {dk2}), ...(gkl, {dkl})}, l ≥
1. We define a feasible condition to execute a task, denoted as C(Tk) = {C1, C2, ...Cm, },m ≥
1 such that

1. Ci ⊆ ∗Tk, i = 1, 2, ...m i.e. C(Tk) is a set of subsets of ∗Tk.

2. For any two Ci, Cj where i 6= j and di ∩ dj = ∅ for i, j ∈ {1, 2, ...m}.
This implies that the same document/document portion is not handled in two
different subsets.

3. Tk is potentially executable iff all documents/document portions in Ci ∈
C(Tk) are handled in achieving goals of Ci ∈ C(Tk). So, a task Tk can
be triggered by any subset of C(Tk), but only if all documents/document
portions in that subset are successfully handled.

9

A feasible condition serves two purposes: (1) it allows an actor to avoid block-
ing situation due to uncertainty and failures, such as a crucial goal would not be
achieved by some potential tasks because some previous goals are not achieved.
Making the documents/document portions that are being handled in unachieved
subgoals as part of C(Tk) enables a workflow actor to continue in a DocWF exe-
cution as some other achieved goals will let the item (3) of feasible condition be
true. (2) It allows an actor to keep track of unhandled documents in case those are
required to be handled again for further goal achievement. For simplicity, a feasi-
ble condition C is shown as a set of executed tasks instead of goal and documents
pairs in the rest of the paper.

To make a DocWF execution stateful, the modeling elements (e.g. ∗Tk,Tk
∗,C)

can be embedded as meta-data in the handled documents. However, handled docu-
ments/document portions themselves are testimony of statefulness as the instanti-
ated data in the documents are the result of a DocWF execution.

Task state: The state of a task (i.e. executed or potential) Ti, denoted as S(Ti),
in a DocWF execution is an integer value in {0, 1, 2, 3} such that:

1. S(Ti) = 0, i.e. Ti is not executed before and not a potential task.

2. S(Ti) = 1, i.e. Ti is not executed before and is a potential task.

3. S(Ti) = 2, i.e. Ti was successfully executed before and not a potential task.

4. S(Ti) = 3, i.e. Ti was successfully executed before and is a potential task.

For any new task (i.e. recipe or free), its state value indicates whether it can be
a potential task or not. By the above definition of task state, only those potential
tasks having a value either 1 or 3 can be executed.

Based on the task state value we define a DocWF status that represents current
execution status of a DocWF system.

Definition 4 DocWF status: A DocWF status of a DocWF execution is described
as an array of the state values of executed tasks. Let S be a DocWF status of p
executed tasks then S = {S(T1), S(T2), ..., S(Tp)}.

Now, we formally define our DocWF model.

Definition 5 DocWF: A document-based workflow is a tuple DocWF = (G, D, T, F, P,C, SI , SF),
where

1. G = {g1, g2, ...gm}, m ≥ 1, is a set of goals derived from a business goal G.

2. D = {d1, d2, ..., dr}, r ≥ 1, is a set of documents/document portions that
need to be handled.

3. T = {T1, T2, ...Tn}, n ≥ 1, is an incremental set of executed tasks where a
task is defined as either a free or a recipe task.

10

Ti

Ti

Potential task

Executed Task
Ti

Decide upon
taskEnforced

policy rule

Enabled
policy rule

Legend

T0
p0

p1 , p2

p1 > p0

p2 > p0

(a)

T0

Ti

T2

p3

p1 , p3

p3 > p1

p3 > p2

p1

(b)

T0

Ti

T2

p1 , p3

p3 > p2

p1

(c)

T3

p3 p4 > p3

p4

p0 p0 T0

Ti

T2

p1 , p3

p3 > p2

p1

(d)

T3

p3
p5 > p4

p4p0 T4

p5

T0

Ti

T2

p1

(e)

T3

p3

p4p0 T4
p5

p2

T5 T0

Ti

T2

p1

(f)

T3

p3

p4p0 T4
p5

p2

T5 T4

p4

T4 T5

p5(g)

C(T4)
C(T4)

C(T5)

Figure 7: A dynamic execution of Electronic Health Record (EHR) generation
workflow.

4. F = [fij]|T |×|T | is a sequence flow matrix of the tasks of T . i.e. fij = 1 if
Tj > Ti otherwise fij = 0 for i = 1, 2, ...|T | and j = 1, 2, ...|T |.

5. P = [pij]|T |×|T | is a policy violation matrix of the tasks of T , i.e. vij = vji ∈
{0, 1} for i = 1, 2, ...|T | and j = 1, 2, ...|T |.

6. C = {C(T1), C(T2), ...C(T|T |)} is the set of feasible conditions of the indi-
vidual potential task.

7. SI ∈ {0, 1, 2, 3}|T | is the initial status of the DocWF.

8. SF ∈ {2, 3}|T | is the final status of the DocWF.

As T is incremental, the matrices F and P and the feasible condition C are also
incremental along the execution. At initial status SI , for a task Tj ∈ T , if there is
no Ti such that Tj > Ti, i.e. fij=0 then SI(Tj) = 1; otherwise SI(Tj) = 0. Note
that, initial status may consist of state values of executed tasks (i.e. 2,3). As such
a DocWF execution may be started from an unfinished workflow execution as op-
posed to a task-based workflow which is typically in a blocking situation in case of
an exception. On the other hand, in the final status SF , all the documents/document
potions are handled and all the goals and thus the business goal is achieved (implies
a potential task is executed at least once as denoted by {2, 3}).

Knowledge-base update: The knowledge base gets continuously enriched by
adding the execution history, semantics of the handled documents for an achieved
business goal which can be used further.

3.2 DocWF Status Transition Rules

The dynamic execution of a DocWF system is governed by a set of status tran-
sition rules based on which the incremental set of executed tasks T is built. Any
chosen task (i.e. recipe or free) has an initial state value of 0. Let Ti be a po-
tential task and there is no task Tk such that Ti > Tk then the state value of Ti is
Sa(Ti) = 1 (Rule A). If the new status resulted from a successful execution of Ti is
Sb, then the execution of Ti is denoted by Sa(Ti)Sb. This implies Sb(Ti) ∈ {2, 3}
(Rule B).

Now, ∀Tj (i.e. potential tasks) such that Tj > Ti, the state value of Tj at
DocWF status Sb is determined by (1) If Tj = Ti then fij = 1 and the state value

11

of Tj at new status is: Sb(Tj) = 3; (Rule C) (2) If Tj 6= Ti then the state value of
Tj at new DocWF status Sb depends on the state value of Ti at the status Sb. There
are four possibilities depending on the policy violation and feasible condition:

• Rule I - Sb(Ti) = 2 and vij = vji = 1:
(a) If ∃C ′ ∈ C(Tj) such that Sb(Tk) ∈ {2, 3} for any Tk ∈ C ′, then fij = 1
and Sb(Tj) = 1;
(b) Else if ∃k, j Tk=j ∈ C(Tj) such that Sb(Tk=j) = 2 then fij = 1 and
Sb(Tj) = 2;
(c) Else fij = 0 and Sb(Tj) = 0.

• Rule II - Sb(Ti) = 2 and vij = vji = 0:
(a) If Sa(Tj) = 1 then Sb(Tj) = 2;
(b) Else if ∃k, j Tk=j ∈ C(Tj) such that Sb(Tk=j) = 2 then fij = 1 and
Sb(Tj) = 3;
(c) Else fij = 1 and Sb(Tj) = 1.

• Rule III - Sb(Ti) = 3 and vij = vji = 1:
(a) If ∃C ′ ∈ C(Tj) such that Sb(Tk) ∈ {2, 3} for any Tk ∈ C ′, then fij = 1
and Sb(Tj) = 1;
(b) Else if ∃k, j Tk=j ∈ C(Tj) such that Sb(Tk=j) = 2 then fij = 1 and
Sb(Tj) = 2;
(c) Else fij = 0 and Sb(Tj) = 0.

• Rule IV - Sb(Ti) = 3 and vij = vji = 0:
(a) If Sa(Tj) = 1 then Sb(Tj) = 2;
(b) Else if ∃k, j Tk=j ∈ C(Tj) such that Sb(Tk=j) = 2 then fij = 1 and
Sb(Tj) = 3;
(c) Else fij = 1 and Sb(Tj) = 1.

According to the above transition rules, a potential task Tj’s state value at a new
DocWF status Sb is 0 iff one of the following holds:

• Tj is just chosen as a recipe or a free task.

• If the state value of the task Ti in Sb is 2, and the violation condition vij =
vji is 1; meaning the associated documents/document portions can not be
handled as feasible condition is false in the current DocWF status (Rule I(c)).

• If the state value of the task Ti in Sb is 3, and the violation condition vij is 1;
meaning the associated document/document portion can not be handled as
feasible condition is false in the current DocWF status (Rule III(c)).

A potential task Tj’s state value at a new DocWF status Sb is 1 iff one of the
following holds:

• If the state value of the task Tj in Sa was 0; meaning it is ready to be exe-
cuted. (Rule A)

12

• If the state value of the task Ti in Sb is 2, and the policy violation condition
vij is 0; meaning the associated document/document portion can be handled
immediately (Rule II (c)).

• If the state value of the task Ti in Sb is 2, and the policy violation condition
vij = vji is 1 and at least all tasks in one of Tj’s feasible condition sets is
successfully executed; meaning if some of the preceding goals are achieved
if not all then a subsequent document/document portion can be handled for
an enabled goal (Rule I(a)).

• If the state value of the task Ti in Sb is 3, and the policy violation condition
vij is 0; meaning the associated document/document portion can be handled
immediately (Rule IV (c)).

• If the state value of the task Ti in Sb is 3, and the policy violation condition
vij = vji is 1 and at least all tasks in one of Tj’s feasible condition sets is
successfully executed; meaning if some of the preceding goals are achieved
if not all then a subsequent documents/document portions can be handled for
an enabled goal (Rule III(a)).

A potential task Tj’s state value at a new DocWF status Sb is 2 iff one of the
following holds:

• If the state value of the task Ti in Sb is 1, and the goal is achieved after
its execution; meaning associated document/document portions are handled
completely (Rule B).

• If the state value of the task Ti in Sb is 2 or 3, and the policy violation
condition vij = vji is 1 but the task Tj is executed before; implies the goal
is achieved by handling associated documents/document portions (Rule I(b)
and Rule III(b) respectively).

• If the state value of the task Ti in Sb is 2 or 3, and the policy violation
condition vij is 0 and previously the state value of Tj was 0; meaning the
execution of Tj should handle the associated documents/document portions
and the goal should be achieved (Rule II(a) and IV(a) respectively).

A potential task Tj’s state value at a new DocWF status Sb is 3 if the following
holds:

• If the state value of the task Ti in Sb is 1, and the goal is not achieved yet after
its execution; meaning associated document/document portions are handled
partially and the same task may need to be executed later (Rule B).

• If the state value of the task Ti in Sb is 2, and the policy violation condition
vij=vji is 1 and the task Tj is executed before; but the goal is not achieved
yet; implies the same task may need to be executed later to handle associated
document/document portions (Rule II(b)).

13

• If the state value of the task Ti in Sb is 3, and the policy violation condition
vij is 0 and the task Tj is executed before; but the goal is not achieved yet;
implies the same task may need to be executed later to handle associated
document/document portions (Rule IV(b)).

• If the same task Ti is potentially executable leading to a self loop (Rule C).

The transition rules take uncertainty into consideration during DocWF execu-
tion to decide upon a potential task to execute. For example, in the electronic health
care record generation workflow of Figure 4 it is possible to perform additional di-
agnosis tests, i.e. T4 while doctors are doing treatment, i.e. T5; even doctors can
postpone the treatment and asks for additional diagnosis tests for further treatment
(explained in the following).

3.3 A DocWF Execution Example

We now illustrate an execution example of the fictitious electronic health record
generation workflow (EHR) by applying our DocWF modeling approach (see Fig-
ure 4 and 7). The business goal G of the EHR workflow is to generate a complete
EHR document D containing patient information d1, patient’s insurance informa-
tion d2, the symptoms of the patient d3, possible diagnosis test results d4 and treat-
ment information d5, i.e. D = {d1, d2, d3, d4, d5}. The workflow actors are hospi-
tal administrative employees, nurses, pathologists and doctors. Human actors are
assumed to illustrate transitions. However, any automated service can be an actor
as long as transition rules are implemented in the service.

We show each transition by instantiating the DocWF modeling elements (i.e.
executed tasks, sequence flow matrix F and policy violation matrix P which shows
the enabled policy rules precedence relation and in turn determines the values of
feasible condition C), enabled policy rules and DocWF status. Assume a new
patient enters into a hospital, denoted by the task T0 which initiates the EHR gen-
eration process (Figure 7(a)).

p0 = {∅, ∅}
T = {T0}
F =

[
0
]

P =
[
0
]

C(T0) = {∅}
SI = S0(T0) = 1

The goal g1 is to record the patient particulars into d1 and d2. As the patient is
a new one, according to the best practices for a patient management from the KB
of the hospital, the administrative employees decide two potential recipe tasks T1,
i.e. taking patient information and T2, i.e. taking her insurance details to execute
(Figure 7(b)). Moreover, both tasks can be performed in parallel as p2 / p1. This is
because d1/d2 to achieve the same goal g1. As such f01 = f02 = 1 is set for Figure
7(b). The tasks T1 and T2 might not be performed if the patient was previously ad-
mitted in the hospital and as such patient’s particulars would have had recorded al-

14

ready. This can be obvious for instance from a BPMN model of the EHR process in

the KB. Now, the DocWF system has: p1 = {g1, {d1, d2}}, p2 = {g1, {d2}}
T = {T0, T1, T2}

F =

0 1 1
0 0 0
0 0 0

 P =

× 0 0
0 × 0
0 0 ×


C(T1) = C(T2) = {{T0}}
S1(T0) = 2 Rule B
S1(T1) = S1(T2) = 1 (Rule II(c))

While the administrative employees are recording patient particulars in tasks
T1 and T2, the goal g2 is to identify the problem symptoms of the patient. Now, the
nurses can already record the problem symptoms of the patient, (i.e. task T3) into
d3 as neither d3 > d2 nor d3 > d1 holds (i.e. neither p2 > p1 nor p1 > p2). As
such T3 is independent of T1 and T2 as the policy violation conditions v13 and v23

are not violated. (Figure 7 (c)). If the task T1 is executed then it leads to:
p3 = {g2, {d3}}, p2 = {g1, {d2}}
T = {T0, T1, T2, T3}

F =


0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , V =


× 0 0 0
0 × 0 0
0 0 × 0
0 0 0 ×


C(T3) = {{T0}}
S2(T0) = 2 (Rule B)
S2(T1) = 2 (Rule II(a))
S2(T2) = 1 (Rule II(c))
S2(T3) = 1 (Rule A)

Note that, state value of the task T2 is 1 considering that patient insurance
details is not yet recorded in d2. Now, the goal, i.e. g3 is to perform diagnosis
tests for which the potential task T4 can not be triggered unless the symptoms are
recorded in d3, i.e. there is a policy violation condition between the potential tasks
T4 and T3, i.e. v34 = v43 = 1. So, when d3 is filled in with symptoms, the patient
is asked to take some diagnosis test in the pathology department, i.e. T4 (Figure 7
(d)). The DocWF system now have:

p4 = {g3, {d4}}
T = {T0, T1, T2, T3, T4}

F =


0 1 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 P =


× 0 0 0 0
0 × 0 0 0
0 0 × 0 0
0 0 0 × 1
0 0 0 1 ×


C(T4) = {{T0}, {T3}, {T1, T2}}
S3(T0) = 2 (Rule B)
S3(T1) = 2 (Rule II(a))
S3(T2) = 1 (Rule II(c))
S3(T3) = 3 (Rule B)
S3(T4) = 1 (Rule III-a)

As soon as the diagnosis test results are recorded in d4, the goal g4 is to per-
form the treatment that results into updating the document portion d5. The respon-
sible doctor may start treatment, i.e. the potential task T5, by advising, instructing
medicines, therapy, surgery etc. (Figure 7(e)). This results:

15

p5 = {g4, {d5}}
T = {T0, T1, T2, T3, T4, T5}

F =


0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 P =


× 0 0 0 0 0
0 × 0 0 0 ×
0 0 × 0 0 0
0 0 0 × 1 1
0 0 0 1 × 1
0 0 0 1 1 ×


C(T5) = {{T0}, {T4}, {T3}, {T1, T2}}
S4(T0) = 2 (Rule B)
S4(T1) = 2 (Rule II(a))
S4(T2) = 2 (Rule II(a))
S4(T3) = 3 (Rule B)
S4(T4) = 3 (Rule B)
S4(T5) = 1 (Rule III-a)

Note that, f23 = 1 indicating that

patient insurance details have been recorded in d2. The state value S4(T4) = 3
implies the diagnosis tests can be performed i.e. T4 at later time if needed. Now,
the doctor may need to start treatment in emergency basis even if some diagnosis
results are not recorded in d4. However, at a later time the doctor may need some
other pathology diagnosis test records before advancing further in the treatment. It
indicates that the d4 may need to be handled again while the doctor is performing
the treatment (see Figure 7 (f)).

p4 = {g3, {d4}}
T = {T0, T1, T2, T3, T4, T5, T4}

F =


0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0

 P =


× 0 0 0 0 0
0 × 0 0 0 0
0 0 × 0 0 0
0 0 0 × 1 1
0 0 0 1 × 1
0 0 0 1 1 ×


C(T4) = {{T0}, {T3}, {T1, T2}, {T5}}
S5(T0) = 2 (Rule B)
S5(T1) = 2 (Rule II(a))
S5(T2) = 2 (Rule II(a))
S5(T3) = 3 (Rule B)
S5(T5) = 3 (Rule B)
S5(T4) = 1 (Rule III(a))

Now, if the treatment is successfully

completed after receiving the diagnosis results (Figure 7 (g)), the DoCWF execu-
tion will reach a final status as the business goal is achieved.

3.4 Workflow Patterns in DocWF

As described before in Sectioins 3.1 and 3.2, OR pattern is followed in DocWF
execution to enable workflow actors to cope with uncertainty and exceptions. This
is particularly achieved by the feasible condition that allow actors to define and
execute potential tasks based on the current DocWF status as shown in the ex-
ample. Along this line various worflow patterns [14] such as sequence, parallel,
synchronize and loops also prevail in a DocWF execution:

16

• Sequential pattern: In the EHR workflow execution example, tasks T3 and
T4 are executed sequentially as p4 > p3 which in turn makes T4 > T3. This
is represented as f34 = 1 in the sequence flow matrix.

• Parallel pattern: In the example, tasks T1 and T2 are executed in parallel as
the goal g1 to be achieved in these two tasks does not require documents to
be updated that have any precedence relation. This is specified in the policy
violation matrix as v12 = v21 = 0.

• Synchronize pattern: Very often, to handle a document/document portion in
a DocWF requires other documents/document portions to be handled before.
This document precedence makes a potential task to wait for other tasks to
be executed successfully. The resulting synchronization can be captured in
the feasible condition of a potential task. Consider, in Figure 7, the task
T3 needs to wait for the updates of document portions d1 and d2 that are
performed in T1 and T2. This can be specified in the feasible condition of
T3, C(T3) = {{T1, T2}}, means T1 is synchronized with T2 and vice versa
for T3.

• Loop pattern: This pattern can also prevail in a DocWF execution where
some document/document portions need to be handled repeatedly. For ex-
ample, in Figure 7 (f), new diagnosis records may need to be appended to d4

in task T4 based on which further treatment can be performed. So, tasks T4

and T5 can be performed repeatedly until treatment is not finished.

4 Related Work

Although we are not aware of other proposals which can be directly compa-
rable with our approach, many researchers have addressed dynamic workflow as-
pects in the last decades that vary diversely. Document oriented workflows pro-
posed in [15–19] largely follow the task-based approach where [15] describes a
document oriented workflow for a manufacturing process and [16] demonstrate the
usage of XML technology to realize a document and workflow based collaborative
system. X-folders described in [18], triggers a task from a predefined orchestrated
tasks depending on a given state of the documents inside a folder. In our earlier
work [12], we developed a secure XML document-based collaboration that allows
exchanges of fine grained documents among anonymous actors. Upon receipt of
such documents, our approach of a DocWF can be applied to reach a business
goal.

While the authors in [2, 20–22] describe various workflow models to support
business processes, in [1–8], authors pointed out the necessity of flexible workflow
management system as typical workflow models are not made for uncertainty or
exception handling.

The authors in [9] proposed a case handling approach to support business pro-
cesses where each case is handled in isolation (i.e. for each instance). While we

17

consider the problem area of case handling is close to our problem area of ag-
ile business processes, they still consider the tasks and their sequence flow of a
case can be specified a priori. Our approach is fundamentally different from this
as we allow dynamic task definition and its enactment (i.e. service provisioning).
We pointed out the differences in the Table 1 of a DocWF system with traditional
workflows and the case-base handling approach.

The author in [23] describes a goal oriented workflow modeling technique to
generate alternative workflows whenever necessary. Our proposed DocWF system
differs with that approach in two aspects: (1) unlike the goal of [23] which depends
on stakeholders goal, our model supports derivation of subgoals including security
goals from a business goal independently of actors involved; (2) a goal achievement
is recorded by data instantiation in the documents making a document a stateful
representation of a workflow which is not considered at all in [23].

The importance of applying formal approaches to the workflow modeling and
analysis has been recognized and many formal approaches for task-based work-
flows have been proposed in [24–27]. Unfortunately, a common major drawback
that in all the above formal approaches, only specialized users who have the exper-
tise in these respective formal methods can build their dynamic workflows. In our
approach, the formal model utilizes the business notions such as KB, documents,
goals, policy and the associated behavior is also depicted using intuitive status and
action management models.

5 Conclusion

We proposed a document-based dynamic workflow system that is particularly
suitable for agile business processes where required tasks and their sequence flow
may need to be decided dynamically. An actor in a DocWF can pro actively define
tasks to achieve goals. The described formal approach is business intuitive and
rule-based that captures various business notions and constraints. A problem with
such a rule-based system is possible conflicts, in particular if rules are introduced
by different actors. However, associating priorities with rules may resolve such
conflicts.

We are currently implementing this DocWF system and investigating vari-
ous security issues (e.g. document usage control) including conflicts in such a
document-based workflow which we believe is equally important in an agile busi-
ness process.

References

[1] “Adaptive workflow systems,” 2000.

[2] “Business process management, models, techniques, and empirical studies,”
London, UK, 2000.

18

[3] “Document-oriented and process-oriented views in lightweight workflow,
http://www.cis.unisa.edu.au/ cisrmt/unpublished/taggdocprocwf01.doc,”
School of Computer and Information Science University of South Australia
Mawson Lakes, SA 5095, 2001.

[4] A. Agostini and G. D. Michelis, “Improving flexibility of workflow manage-
ment systems,” in Business Process Management, Models, Techniques, and
Empirical Studies. London, UK: Springer-Verlag, 2000, pp. 218–234.

[5] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow evolution,” in ER ’96:
Proceedings of the 15th International Conference on Conceptual Modeling.
London, UK: Springer-Verlag, 1996, pp. 438–455.

[6] C. A. Ellis and K. Keddara, “A workflow change is a workflow,” in Business
Process Management, Models, Techniques, and Empirical Studies. London,
UK: Springer-Verlag, 2000, pp. 201–217.

[7] W. M. P. van der Aalst and S. Jablonski, “Dealing with workflow change:
identification of issues and solutions,” International Journal of Computer
Systems Science and Engineering, vol. 15, no. 5, pp. 267–276, September
2000.

[8] M. Weske, “Formal foundation and conceptual design of dynamic adaptations
in a workflow management system,” in HICSS ’01: Proceedings of the 34th
Annual Hawaii International Conference on System Sciences (HICSS-34)-
Volume 7. Washington, DC, USA: IEEE Computer Society, 2001, p. 7051.

[9] W. M. P. van der Aalst and M. Weske, “Case handling: a new paradigm for
business process support,” Data Knowl. Eng., vol. 53, no. 2, pp. 129–162,
2005.

[10] “IBM BPM suite, http://www-01.ibm.com/software/info/bpm/offerings.html.”

[11] “SAP NETWEAVER BPM White Paper,
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/lib-
rary/uuid/d014cef6-37cf-2b10-e8ae-871324d54d8d.”

[12] M. A. Rahaman, Y. Roudier, and A. Schaad, “Distributed Access Control
For XML Document Centric Collaborations,” in The 12th IEEE Enterprise
Computing Conference (EDOC 2008), IEEE, Ed., September 2008. [Online].
Available: http://www.lrz-muenchen.de/∼edoc2008/researchPaperProgram.
html

[13] ——, “A Secure Comparison Technique for Tree Structured Data,” in The
Fourth International Conference on Internet and Web Applications and Ser-
vices (ICIW 2009) (to be published), May 24-28, 2009 - Venice/Mestre, Italy,
IEEE, Ed.

19

[14] A. t. H. Wil van der Aalst, “Workflow patterns,
http://www.workflowpatterns.com/.”

[15] S. Morschheuser, H. Raufer, and C. Wargitsch, “Challenges and solutions
of document and workflow management in a manufacturing enterprise: A
case study,” in HICSS ’96: Proceedings of the 29th Hawaii International
Conference on System Sciences Volume 5: Digital Documents. Washington,
DC, USA: IEEE Computer Society, 1996, p. 4.

[16] M. I. PODEAN, “Document and workflow management in collaborative sys-
tems, babes-bolyai university of cluj-napoca,” in Economy Informatics, 1-
4/2008, Working paper, 2008.

[17] T. Wewers and C. Wargitsch, “Four dimensions of interorganizational,
document-oriented workflow: A case study of the approval of hazardous-
waste disposal,” vol. 4, Jan 1998, pp. 332–341 vol.4.

[18] D. Rossi, “Orchestrating document-based workflows with x-folders,” in SAC
’04: Proceedings of the 2004 ACM symposium on Applied computing. New
York, NY, USA: ACM, 2004, pp. 503–507.

[19] K.-J. Stol, “A framework for document-oriented, workflow-enabled appli-
cations, computing science. university of groningen,www.cs.rug.nl/ aiel-
lom/tesi/stol.pdf,” Tech. Rep.

[20] S. Jablonski and C. Bussler, “Workflow Management: Modeling Concepts,
Architecture, and Implementation, international thomson computer press,
london, uk, 1996,” Tech. Rep.

[21] e. L. Fischer, “Workflow Handbook 2001, Workflow Management Coali-
tion,future strategies, lighthouse point, florida, 2001,” Tech. Rep.

[22] e. P. Lawrence, “Workflow Handbook 1997, workflow management coalition.
john wiley and sons, new york, 1997,” Tech. Rep.

[23] W. N. Robinson, “Goal-oriented workflow analysis and infrastructure,” in
Georgia State University, Working paper, 1996, pp. 96–07.

[24] W. M. P. v. d. Aalst, “Verification of workflow nets,” in ICATPN ’97: Pro-
ceedings of the 18th International Conference on Application and Theory of
Petri Nets. London, UK: Springer-Verlag, 1997, pp. 407–426.

[25] A. H. M. T. Hofstede and M. Weske, “Business process management: A sur-
vey,” in Proceedings of the 1st International Conference on Business Process
Management, volume 2678 of LNCS. Springer-Verlag, 2003, pp. 1–12.

[26] W. T. A. M. Jiacun Wang, Daniela Rosca and M. Stoute, “An intuitive formal
approach to dynamic workflow modeling and analysis,” in Business Process
Management. London, UK: Springer-Verlag, 2005, pp. 137–152.

20

[27] D. Rosca, S. Greenspan, and C. Wild, “Enterprise modeling and decision-
support for automating the business rules lifecycle,” Automated Software
Engg., vol. 9, no. 4, pp. 361–404, 2002.

21

