

Abstract—This paper discusses how to extend service

discovery mechanisms to support a scalable querying and
indexing system that addresses security requirements related to
existing service discovery standards. Through the use of an onion
routing protocol, anonymizing the publication and the access to
service profiles, combined with a P2P registry infrastructure we
propose a scalable and secure service discovery architecture the
can be deployed over non trusted network domains.

Index Terms— security, service discovery, distributed hash
tables, onion routing, attribute based encryption

I. INTRODUCTION

Service discovery is a basic component of Service

Oriented Architectures (SOA) that enables the dynamic
detection of services available in the network, yet previously
unknown. Such a flexible mechanism unsurprisingly comes
with new security challenges regarding trust and privacy.
Private data exchanged during the discovery process can be
captured and reused for unwanted purposes. The openness and
criticality of the discovery protocol makes it a very likely
target of denial of service attacks. Most existing solutions to
secure discovery rely on trusted third parties such as security
modules, secure proxies, or trusted registries to encrypt the
data exchanged or to establish trust between service discovery
participants. This requirement for trusted third parties makes it
much harder for service discovery protocols to be deployed on
a large scale; even though services seem to be the essence of
ambient environment capabilities in pervasive computing,
such a requirement also makes it less likely for SOA to finally
make its way into such applications if service discovery
cannot be secured in a scalable fashion. Contrary to
centralized discovery architectures, in which the absence of a
service is detected at the registry, architectures with
distributed registries can propagate queries unresolved locally
to registries belonging to other domains and networks in order
to extend the search scope.

This paper discusses how to extend service discovery to
support the querying of service profiles stored in a Distributed
Hash Tables (DHT) of registries for P2P indexing. The

solution we propose provides a scalable discovery system that
addresses the security requirements defined in [1] and [2]
through the use of an onion routing protocol anonymizing the
publication and the access to service profiles.

II. RELATED WORK
A distributed architecture for service discovery was

proposed by Chakraborty et al. [3] that aims to provide an
insecure local service discovery in a P2P manner, using
advertisements between local peers and groups for scalable
service discovery. Services are categorized into hierarchical
groups according to their capabilities, each node of the system
being in charge of a group. A client request not matching
locally is forwarded to the node in charge of the group to
which the requested service belongs. Despite the authors’
claim concerning scalability, each node must know the whole
group hierarchy to route the request to a correct registry, an
unrealistic assumption for a system involving millions of
nodes throughout the world.

To our knowledge, the first study dealing with security and
particularly privacy for distributed and scalable discovery
architectures was proposed by Cardoso et al. [4]. It extends
the MUSDAC [5] middleware enabling interaction between
various service discovery protocols. In each local network, a
MUSDAC manager is deployed on top of the existing
discovery protocols as an interface handling inter-domain and
inter-network discovery and access requests. Extending the
discovery scope to other domains raises new privacy issues:
discovery information with private data should be protected,
which is addressed using a gradual trust model regulating the
execution of the discovery process. The scalability of this
approach is however strongly limited by the need to know the
public keys of all bridges and managers in particular in a
ubiquitous computing setting.

We proposed in [6] a first solution that relies on attribute
based encryption applied to messages exchanged between
registries, while matchmaking on a small part of the message
in clear. This solution is scalable enough but insufficiently
secure as it is possible for an attacker that analyses the traffic
to get information about the client’s intentions and to trace the
addresses of the node publishing services.

Slim Trabelsi1, Yves Roudier2

1SAP Labs France, 805, Avenue du Docteur Maurice Donat 06254 Mougins Cedex, France
2EURECOM, 2229 route des Crêtes, BP 193, 06904 Sophia-Antipolis, France

Slim.Trabelsi@sap.com, Yves.Roudier@eurecom.fr

Secure Service Discovery with Distributed
Registries

III. REQUIREMENTS
Scaling the discovery system does not mean sacrificing its

security. Most of the existing secure service discovery
solutions are relying on a local component in charge of
establishing a secure channel between clients and servers by
authenticating them and encrypting the messages exchanged.
As soon as the discovery system deals with multiple
distributed registries, it becomes a hard task to establish a trust
relationship with all these registries. The distributed discovery
system must therefore fulfill the following requirements:

• Scalability: no limitation related to the network
size and the number of clients or services.

• Efficient intra domain lookup: no restriction for
the request scope.

• Efficient matching and indexing: avoiding
collisions and bad matching performance values.

• Privacy protection: attackers must not know which
clients sent a request nor where the critical
services are located.

• Authentication: implicit or explicit authentication
for trust establishment

• Access Control: only authorized entities should
discover restricted resources (requests or profiles).

IV. A SCALABLE DISTRIBUTED REGISTRY MODEL

A. Distributed Architectures for Service Discovery
The main motivation of this paper is to achieve scalable and

distributed service discovery. Most scalability studies in the
domain suggested the use of distributed registries. The
indexing and routing operations essentially depend on the
architecture adopted to deploy registries (see Figure 1):

• Flat: all registries are interconnected and can
communicate through broadcast or multicast.
There is no specific indexing/retrieval strategy; in
case of new service request addressed to one of the
registries registry that does not store the relevant
information about the requested service, this one
will forward the request to the other registries in
order to find a matching to the query. Such an
architecture might work for a small number of
registries (less than 100) but becomes inefficient
for a huge number of registries where the anarchic
indexing/retrieval strategy generates increasingly
important messaging overhead and message
delivery latencies.

• Hierarchical: the registries are deployed as a tree
in which data is indexed according to a structure
distributed hierarchically through tree nodes.
Indexing and retrieval operations will represent in
the worst case log(n) operations. This architecture
overcomes the scalability and indexing limitations
of the flat architecture. However, in case of a
registry failure or shutdown, the recovery process
can be very costly and requires a replication

system and an important signaling procedure. This
could affect the availability of service discovery.

• DHT-based P2P: an alternative architecture
currently used in file sharing applications relies on
Distributed Hash Tables (DHTs) for indexing and
retrieval. Each peer (a registry in our case) is in
charge of indexing and maintaining a mapping
between names and values. Indexing is distributed
among the nodes, in such a way that a change in
the set of participants causes a minimal amount of
disruption. This allows DHTs to scale to an
extremely large number of nodes while handling
continuous node arrivals, departures, and failures.
This architecture can handle thousands of
registries with millions of data entries.

DHT based systems are clearly the most appropriate
solution for deploying a scalable and robust service discovery
system for most ubiquitous computing systems deployed over
the Internet. The rest of this paper discusses which security
measures can be adapted to their use.

Fig. 1. Alternative architectures for distributed registries

B. Distributed Hash Tables
A distributed hash table (DHT) is an indexing and location

system dedicated to peer-to-peer information storage. This
distributed system enables a user (node) to efficiently retrieve
the value associated with a given name. DHT-based indexing
systems work efficiently for millions of users and data. The
behavior of the system is strongly dependent on the
collaboration of nodes. Each node with a fixed identifier is
responsible for a range of key values representing a pointer to
a stored element. Each stored element has an index value
represented by a hash key. The key space is distributed among
participant nodes, each node being in charge of a partition, in
a circular fashion. If a new element is added to the system, the
name of this data is hashed. Depending on the hash key value,
the pointer to the data will then be assigned to the nodes in
charge of the correspondent key range. In order to retrieve this
data, a hash key is generated from the requested name: the
value of the obtained key gives an indication about the nodes
in charge of maintaining the information related to the stored
data. The request is then routed to the node that will return the
pointer for reaching the requested element.

DHT based systems provide interesting properties that can
be exploited in service discovery mechanisms:

• Decentralization : the system consists of many
autonomous clients without any central control

• Scalability : the system can adapt to a large number
of peers

• Fault tolerance : the network is resilient, especially

Flat
Hierarchical DHT

with respect to stale peers
• Load balancing : messages are routed in a balanced

fashion, which reduces the network overhead

C. Indexing and Data Retrieval
We selected the most scalable and reliable technology

currently deployed for distributed indexing, the DHT called
Kademlia [8], which provides a P2P storage and lookup
protocol. This protocol is installed as an external interface for
all the registries involved in the discovery system and
scattered all over the world. Using such an interface, active
registries can permanently update information about the stored
profiles like a P2P client with files it shares with others. In
case of a new service publication, the registry stores the new
entry locally. It then hashes the description name of the new
entry, and finally sends the key to the appropriate registry in
the indexing circle, with a pointer to the service entry. If a
client sends a service discovery request to the local registry,
the latter tries to find the service entry locally. If no entry is
found, the local registry hashes the query and forwards the
request to the registry in charge of the hashed key value that
points to the final registry.

For this purpose, we reuse the message format of Kademlia:
• STORE: To publish a <hkey, value> pair, the registry

locates the k nodes closest to the key and sends them
STORE RPC messages.

• FIND_NODE: To retrieve the node in charge of the
hkey corresponding to a published service, the
requesting registry sends a FIND_NODE message
containing a triple (IP address, port, nodeID) for the
contacts that it knows to be closest to the key.

• FIND_VALUE: If a corresponding value is present
on the recipient node, the associated data is returned.
Otherwise, the RPC request is equivalent to a
FIND_NODE and a set of k triples is returned in
response.

D. Inter-Registry Indexing and Data Retrieval
1) Inserting a new node

Each registry/node maintains a routing table to locate other
registries/nodes of the indexing circle. If a new node joins the
system, these routing tables must be updated.

Algorithm 1: Insert Node()

0. Begin
1. | if contact exists then
2. | | update contact information (IP address, keys, pointers);
3. | else
4. | | create new entry to the table;
5. | | insert the node contact information (IP address, keys, pointers);
6. | endif
7. End

Fig. 2. Algorithm for node insertion

In practice the routing table used by a node does not point
to all the nodes of the system (there are potentially millions of
them) but only to a few nodes representing a routing zone,
similarly to traditional routing tables for network routers. If a
new node joins one of these routing zones, his positions must
be added to the routing tables of the other nodes. The

algorithm describing a new node insertion is described in
Figure 2.

2) Publishing a new entry
The registry receiving a new service publication will

forward this new entry to the appropriate registry in the
indexing circle. If the entry already exists, the information will
be updated. The algorithm for a new key insertion is described
in Figure 3.

Algorithm 2: Adding new entry (key)

0. Begin
1. | if keyword had already sources then
2. | | create a new pointer for the existing keyword
3. | else
4. | | Add new <keyword, pointer> to the local record
5. | endif
6. End

Fig. 3. Algorithm for key insertion

V. SECURING THE ACCESS TO DISTRIBUTED REGISTRIES
The scalable indexing and retrieval part of the discovery

system described above must be protected against potential
threats that can affect the publish/request operations of the
service discovery.

A. Need for Anonymity
In a previous work [9], we proposed the use of an Attribute

Based Encryption (ABE) mechanism [7] to prevent discovery
messages against unauthorized access and to protect private
information contained in these messages. Using this
cryptographic mechanism, we are able to authenticate
messages and to disclose discovery related information to
authorized participants only. Applying this technique to a
distributed registry system raises some issues since registries
have no mean to decrypt discovery messages and to match
between client requests and service profiles. The solution that
we presented in [6] keeps the keywords to be matched in clear
and encrypts the rest of the message in order to let the
registries match the requests correctly. Unfortunately this
tradeoff introduces new threats related to privacy protection:
an untrusted registry or an external observer may intercept a
message and deduce the behavior of the client. We suggest
improving this solution by anonymizing the message senders:
the registry can then be reached without hiding matching
elements. Numerous anonymity techniques exist to protect
message senders. The most commonly deployed is based on
the use of proxies, placed between the endpoint users and the
rest of the network in order to relay all the traffic issued by the
users without showing the original address of the initiator.
This technique requires the deployment of one proxy per user
and does not protect against local traffic analysis that could be
used to identify the initiator address. Cryptographic mixes
overcome these limitations, which consist in creating a non
direct path between the sender and the receiver in which a
number of relays will exchange the initial message, each relay
hiding the information about its predecessor. With this
configuration, each node only knows the previous and the
next relays, the final receiver being unable to retrace the route

of the message. Several variants of this concept have been
produced over the years, notably Chaum Mixes [10], Onion
Routing [16], Web-Mixes [11], SG Mixes [12], and Crowds
[13]. All of these solutions provide a scalable and efficient
mechanism for anonymizing a forward path between a sender
and a receiver. There are some limitations concerning the
backward path for which these systems do not provide any
particular protection. Kate et al. [14, 15] fixed this problem by
devising a pairing-based onion routing protocol in which they
rely on pseudonyms to identify the nodes involved and to
facilitate a two way anonymous path construction. This
protocol is described in the next section. We chose to integrate
this anonymity mechanism for a secure service discovery
system relying on DHT-based registries.

B. Onion Routing and Pairing-Based Onion Routing
1) Onion routing

Onion routing [16] is a scheme for anonymous
communication in which users can communicate while hiding
their identities from third parties. This approach is called
Onion Routing, because it relies upon a layered object to
direct the construction of an anonymous, bidirectional, real-
time virtual circuit between two communicating parties, an
initiator and responder. Onion Routing hides routing
information through the routing of an encrypted data stream
follow a path through intermediary nodes until the destination.
To begin a session between an initiator and a responder, the
initiator node identifies a series of routing nodes forming a
path to the destination. The initiator constructs an onion
message which encapsulates that path. Figure 4 illustrates an
onion constructed by the initiator Node W for an anonymous
route to the receiver Node Z through intermediate routing
nodes X and Y. The initiator then sends the onion along that
route to establish a virtual circuit between himself and the
receiver Z.

The onion message structure is composed of a superposition
of encrypted layers. The core of this onion contains the clear
message to send. The basic structure of the onion is based on
the route to the receiver that is chosen by the initial sender.

Fig. 4. Onion message format [16]

Based on this route, the initiator encrypts first for the
receiver, then for the preceding node on the route, and so on
back to the first routing node to whom he will send the onion.
Each node knows who sent him an onion and to whom it
should pass that onion although it knows nothing about the
other nodes, how many layers there are in the chain, nor the
current layer’s place. The virtual circuit established between
the node W and the node Z is described in Figure 5.

Fig. 5. Onion routing virtual circuit [16]

The most famous anonymity software using this technique

is TOR1 (The Onion Router) that is originally sponsored by
the US Naval Research Laboratory that actually becomes an
open source project.

2) Pairing-Based Onion Routing
This section describes how the pairing-based onion routing

protocol works.
Pseudonyms and key agreements. In order to protect the

anonymity of users involved in the system, each node selects a
pool of pseudonyms for which they will generate private keys.
These pseudonyms will be announced to the other nodes of
the systems. When a node A wants to contact another one B,
A will use the pseudonym of B as a session key KBA to
encrypt the secure forward message. At the same time B using
the pseudonym of A and his own private key to build the
backward session key KBA used to secure the backward path.

Circuit construction. Before staring the contribution to the
routing system, a user has to create a set of routes
(information provided by directory servers with a list of
available routes). After choosing a circuit, the user has to
generate appropriate session keys for pseudonyms of each
node involved in the system in order to encrypt the onion
message. If one of the involved nodes receives the message, it
will decrypt its onion layer with its private key, derive the
backward session key, and forward the message to the next
pseudonym.

C. Anonymizing Publish / Request Service Discovery
Messages
This section describes the mechanisms used to protect

service discovery message exchange in the WS-Discovery
protocol [17] with distributed DHT-based registries.

Protecting the publish message: A server publishing a set
of restricted services to untrusted registries will first encrypt
all the data related to the identity, location and methods
provided by these services. Only encryption can hide this kind
of information. An ABE encryption can be applied to the

1 http://www.torproject.org/

publish message, the profiles of the users that are allowed to
decrypt the message and to discover the services being the
encryption key argument. A part of the publish message must
remain clear in order to enable an easy matching for the
registry. In order to be authenticated by the client, the server
has to sign the publish messages of his services using the
private keys related to his service profiles. Figure 6 illustrates
the construction of a partially encrypted publish message
restricted to users with the role {professor}.

Fig. 6. Publish (WS-Discovery Hello message) message structure

Anonymous publishing of services: The server must send a
secured publish message to the local registry without giving
information about the identity and endpoint address of the
services. Such information might be deduced by correlating
the service description (clear text in the message) and the
address from which the message is sent. The server selects an
onion routing path using the pseudonyms of the other nodes
belonging to the same registry and uses this anonymizing path
to securely send the message to the registry. The anonymous
reverse path is used to return publication acknowledgements
with a unique identifier that can be used by the server to
update or deregister its services. Figure 7 details the message
sequence to perform an anonymous service publication using i
> 3 intermediary onion routing nodes.

Fig. 7. Anonymizing publish messages

Protecting request message: in order to authenticate the
published services and verify the authenticity of the published
services, a user can verify the ABE signature of a selected
service by using the description attributes of the service as a
key for signature verification. For this reason, the request
message does not need to be encrypted. Only correlation
between the requested service profile and the user’s address
must be prevented by making the request anonymous.

Anonymous service request: the same anonymity method is

used for the request and the publish actions. Before contacting
the local registry, the request message must be routed through
an onion mix to prevent any attempt of correlation between
the requested service and the requester identity. In this case
the user has to choose a path to the registry according to the
pairing-based onion routing protocol.

Fig. 8. Anonymizing request messages

VI. ARCHITECTURE FOR A SECURE DISTRIBUTED REGISTRY-
BASED SERVICE DISCOVERY

This section describes the steps executed during a secure
service discovery relying on untrusted distributed registries
(see Figure 9). As we explained previously our system relies
on an important number of untrusted registries distributed all
over world wide network. These registries are communicating
through Kademlia for an optimal indexing and retrieval of
services. Clients and services have to anonymize their requests
before accessing to their local registry in charge of publishing
and retrieving services. In this case we suppose that clients
and servers have a prior knowledge about the location of the
local registry.

Fig. 9. Architecture for a secure distributed registry-based service discovery

Setup: Clients and services create a list of anonymous

routes by requesting the pseudonyms of the nodes depending
on the same local registry.

Step (1) the registry chooses one or more anonymous paths
to the local registry then generates the publishing message
according to the pseudonyms of the nodes of the chosen route.
The publish message is routed anonymously to the local
registry that decrypts the content and stores the service entry
locally. The registry sends back an acknowledgement and a
unique ID through the same anonymous path.

<s:Envelope>

 <s:Header>Encrypt[Header]{Professor }
 </s:Header>

<s:Body> <d:Hello>

 <a:EndpointReference>

Encrypt[EndpointReference]{Professor }

 </a:EndpointReference>

 <d:Types>Printer</d:Types>

<d:Scopes>University</d:Scopes>

 <d:XAddrs>

Encrypt[XAddrs]{Professor }

 </d:XAddrs>

</d:Hello></s:Body></s:Envelope>

Step (2) after storing the service coordinates the registry
hashes the service description and publishes the key obtained
into the appropriate registry in charge of this value.

Step (3) the client chooses one or more anonymous paths to
the local registry then generates the request message
according to the pseudonyms of the nodes of the chosen route.

Step (4) the registry matches the request locally with the
published service profiles. If the service does not exist locally,
the registry hashes the request attributes to obtain a key. The
local registry contacts the remote registry in charge of this key
value in order to get the location of the registries that store the
information about the requested services.

Step (5) the local registry contacts the remote registry
holding the information about the requested services. The
remote registry matches the request locally and sends back a
response containing the entry related to the requested service.

Step (6) the local registry sends back the response to the
client using the same anonymous route initiated by the client.

VII. SECURITY EVALUATION
This section informally evaluates our solution with respect

to the security of service discovery.
Property 1: a user intercepting a clear message in the P2P

network cannot identify the service provider/ requester.
Proof: Private information contained in clear exchanged

messages are not labeled as private since the data holder is
completely anonymous. Due to the onion based anonymizing
routing, an attacker intercepting these data cannot link users
involved in the system to the discovery data exchanged.

Property 2: Private services are not accessible for
unauthorized users.

Proof: Published private services can be encrypt published
service profiles using an ABE encryption scheme to restrict
the access to the discovery of his service, metadata only being
kept in clear. Only users with the restricted profile and
corresponding ABE private key can access service
description.

Property 3: Fake published services are detected by users.
Proof: Upon receiving a response to his service request, a

client can verify the ABE signature attached against the
requested service profile.

Property 4: Registries cannot identify message sources and
destinations.

Proof: All discovery messages being anonymous, the
registry cannot affect the privacy of the participants.

VIII. CONCLUSION
This paper describes a scalable solution combining

anonymous routing and P2P indexing for securing service
discovery without relying on trusted registries. Our proposal is
based on a two layer approach: a first layer provides an
anonymous access through which clients and servers publish
their profiles or send requests to a set of local registries using
onion based routing. A second layer deals with the inter-
domain routing through which all local registries spread all

over the internet can communicate and exchange discovery
information using a P2P metadata exchange protocol such as
Kademlia and achieve a scalable indexing and retrieval of
service profiles. This architecture addresses scalability issues
of decentralized approaches to service discovery without the
usual requirement of deploying an infrastructure of trusted
third parties of centralized approaches.

REFERENCES
[1] S. Trabelsi, J. C. Pazzaglia, and Y. Roudier, “Enabling secure discovery

in a pervasive environment”, SPC 2006, 3rd International Conference on
Security in Pervasive Computing, April 18 - 21, 2006, York, UK - also
published in LNCS Volume 3934 , pp 18-31

[2] S. Trabelsi, Y. Roudier, and J. C. Pazzaglia, “Discovery: Threats and
solutions”, SAR-SSI 2007, 2nd Conference on Security in Network
Architectures and Information Systems, 12-15 June 2007, Annecy,
France

[3] D. Chakraborty, A. Joshi, Y. Yesha, T. Finin, "Toward Distributed
Service Discovery in Pervasive Computing Environments", Article,
IEEE Transactions on Mobile Computing, pp. 97- 112, 2006.

[4] R. S. Cardoso, P.-G. Raverdy, V. Issarny. "A Privacy-Aware Service
Discovery Middleware for Pervasive Environments", In Proceedings of
IFIPTM 2007 Joint iTrust and PST Conferences on Privacy, Trust
Management and Security. 2007.

[5] P-G. Raverdy, V. Issarny, R. Chibout, A. de La Chapelle. “A Multi-
Protocol Approach to Service Discovery and Access in Pervasive
Environments”, In Proceedings of MOBIQUITOUS – The 3rd Annual
International Conference on Mobile and Ubiquitous Systems: Networks
and Services. San Jose, CA, USA, 2006.

[6] S. Trabelsi and Y. Roudier, "Secure service publishing with untrusted
registries: Securing service discovery", SECRYPT 2007, International
conference on Security and Cryptography, July 28-31, 2007, Barcelona,
Spain

[7] V Goyal, et al, “Attribute-Based Encryption for Fine-Grained Access
Control of Encrypted Data”, Proceedings of 13th ACM Conference on
Computer and Communications Security (CCS 2006), Alexandria, USA,
October 2006

[8] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric”. In Proceedings of the
first International Workshop on Peer to Peer Systems IPTPS,
Cambridge, MA, USA, 2002.

[9] S. Trabelsi, J. C. Pazzaglia, and Y. Roudier, “Secure Web service
discovery: overcoming challenges of ubiquitous computing” ECOWS
2006, 4th IEEE European Conference on Web Services, 4-6 December,
2006, Zurich, Switzerland.

[10] D. Chaum, “Untraceable Electronic Mail, Return address, and Digital
Pseudonyms”, Communications of the ACM 24/2, pp. 84-88, 1981.

[11] O. Berthold, H. Federrath, and S. Köpsell. "Web MIXes: A System for
Anonymous and Unobservable Internet Access," H. Federrath, editor,
Designing Privacy Enhancing Technologies, LNCS 2009, pp 115-129,
2001.

[12] D. Kesdogan, J. Egner, and R. Büschkes. "Stop-and-Go-MIXes
Providing Probabilistic Anonymity in an Open System," Information
Hiding 1998, LNCS 1525, pp 83-98, Springer Heidelberg, 1998.

[13] M. Reiter, A. Rubin. Crowds: "Anonymity for Web Transactions," ACM
Trans. on Information and Systems Security, pp 66-92, 1 (1) 1998.

[14] A. Kate, G. Zaverucha, and I. Goldberg. “Pairing-Based Onion
Routing”, in proceedings of 7th Privacy Enhancing Technologies
Symposium (PETS 2007), 2007.

[15] Aniket Kate, Greg Zaverucha, and Ian Goldberg , “Pairing-Based Onion
Routing with Improved Forward Secrecy”, Cryptology ePrint Archive,
Report 2008/080, February 2008.

[16] D. Goldschlag, M. Reed, and P. Syverson, “Hiding routing information”.
In First International Workshop on Information Hiding, pp. 137–150,
(1996).

[17] WS-Discovery Specifications
http://msdn.microsoft.com/ws/2005/04/ws-discovery/

