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Abstract

We propose a novel approach for face tracking, resulting in a visual feedback

loop: instead of trying to adapt a more or less realistic arti�cial face model to

an individual, we construct from precise range data a speci�c texture and wire-

frame face model, whose realism allows the analysis and synthesis modules to

visually cooperate in the image plane, by directly using 2D patterns synthe-

sized by the face model. Unlike other feedback loops found in the literature,

we do not explicitely handle the 3D complex geometric data of the face model,

to make real{time manipulations possible.

Our main contribution is a complete face tracking and pose estimation

framework, with few assumptions about the face rigid motion (allowing large ro-

tations out of the image plane), and without marks or makeup on the user's face.

Our framework feeds the feature{tracking procedure with synthesized facial

patterns, controlled by an extended Kalman �lter. Within this framework,

we present original and e�cient geometric and photometric modelling tech-

niques, and a reformulation of a block{matching algorithm to make it match

synthesized patterns with real images, and avoid background areas during the

matching. We also o�er some numerical evaluations, assessing the validity of

our algorithms, and new developments in the context of facial animation.

Our face tracking algorithmmay be used to recover the 3D position and ori-

entation of a real face and generate a MPEG 4 animation stream to reproduce

the rigid motion of the face with a synthetic face model. It may also serve as

a pre{processing step for further facial expression analysis algorithms, since it

locates the position of the facial features in the image plane, and gives 3D infor-

mation to take into account the possible coupling between pose and expressions

of the analysed facial images.

Keywords

Analysis/Synthesis Cooperation; Face Tracking; Face Modeling; Kalman Filter;
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1 Context

1.1 Facial Animation in MPEG 4

Facial animation is currently a hot topic for the MPEG 4 standard [1], which cre-

ated the Synthetic/Natural Hybrid Coding (SNHC) working group [2] to mix real

and computer{generated objects for the reproduction of real{world scenes. MPEG 4

proposes the use of a synthetic face model in a wide range of applications, from vir-

tual actors, video games, human{machine communication, story tellers on demand,

multimedia interactive environments, video{telephony and, as in the context of this

work, virtual conferencing [3, 4, 5, 6, 7]. Facial animations are controlled by face

animation parameters (FAP), which manipulate the displacements and angles of the

face's features.

MPEG 4 de�nes a stream syntax and a decoder for the synthetic face model,

but does not provide or impose any technique for obtaining the stream of facial

animations, which is where many contributions are still possible. For example, it

allows the use of text{to{speech systems for automated talking heads, or hand{

de�ned animations. However, animating a face model given the performance of a

real actor or user (face cloning), although it is an unsolved problem, remains a major

issue, and could ensure the acceptance and success of future services based on this

standard.

The main contribution of this paper is a rigid motion estimation algorithm of

a face in a video sequence, that achieves near real{time performance, without any

constraints on the user (no markers or makeup, unknown lighting and no speci�c

background), allowing large rotations of the head. O�ine, our framework can be

used to generate precise orientation parameters for a MPEG{4 animation stream

(FAP 48 to 50), regardless of the method used to obtain the other FAPs, be it

from speech, text and hand. It can be used, for instance, in conjunction with

other algorithms extracting facial expressions from images, or the animation rules

of automated talking heads to obtain head motions with life{like timings (timings

that happen to be di�cult to obtain with key{frame animation systems by hand,

even for animation experts). Online, apart from MPEG{4 systems, it can also be

integrated in a virtual teleconferencing system, recovering the head pose during the

session.

1.2 Face Cloning for Virtual Teleconferencing

Face cloning techniques are particularly useful for Virtual Teleconferencing systems,

which is the context of this work [8]: the key idea is to provide the participants with

a common meeting space as if they were all sitting in the same physical room, and

to o�er them individual points of view, in accordance with the virtual position they

occupy in the meeting space. In addition to more exible visualization possibilities,

such as the scene restitution from di�erent points of view [9], the model{based aspect

of face cloning allows the meeting to be run over low bit{rate networks, such as the

Internet, or mobile networks. However, due to the 3D and interactive nature of the

system, several constraints must be added to the face cloning algorithm:
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� the face analysis and synthesis frame{rates, and the image processing delays,

should be as low as possible;

� the clones can be rendered from any point of view, and a full 3D model is

needed (not only the frontal part of the face);

� the face cloning system should operate without colored marks taped on the

performer's face;

� it should deal with unknown lighting conditions and background;

� the motions and rotations of the user should not be restricted in front of the

camera;

� �nally, the clones should be visually realistic.

Several e�cient 2D face tracking algorithms exist in the literature, such as [10].

Nevertheless, when large motions are allowed by a face cloning system, tracking

the user's face in the video sequence without recovering the exact position and

orientation of the real face (i.e. its global motion) is pointless for such a system,

�rstly because facial expression analysis algorithms need to know the precise location

of the facial features in the 2D image, and secondly because some coupling occurs

between the pose and the facial expressions: for instance, when the performer looks

downward with a neutral expression, his mouth shape will change in the image

plane, and the system is likely to misinterpret it as a smile. Being aware of the

subject's pose may help the system solve this coupling. Therefore, 2D face tracking

techniques, like color segmentation, hidden markov models, deformable templates,

FFT... are more suitable for face recognition or lipreading applications [11].

Assuming that a face model is available (be it generic or person{dependent),

we will now concentrate on the di�erent image{processing approaches that allow

the 3D rigid motion of the user to be estimated, without any markers, voluntarily

omitting 2D{tracking algorithms.

1.3 Face Tracking and Global Motion Estimation

One method to estimate the rigid motion of an object is to use some kind of motion

information, like the optical ow, and interpret it using some shape model, even a

simple one. Azarbayejani et al [12] use feature point tracking, and project the 2D

points onto an ellipsoid to incorporate some 3D information for the rigid motion

estimation. Basu et al [13] regularize the velocity �eld of the user's face with a 3D

ellipsoidal model to determine the best �t between the position and orientation of

the model and the motion of the image pixels. DeCarlo and Metaxas [14] initialize

a polygonal head model on the user's face, and also regularize the optical ow in

terms of model displacements. Because their model has a shape closer to the real

face than the ellipsoid, their motion estimation is �ner. The main problem with

these approaches is that they are \blind", in the sense that they have no way to

ground the model to the real face, and errors in the estimation accumulate, resulting

in a lack of accuracy or tracking failures.
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To prevent cumulative estimation errors, an analysis{by{synthesis feedback loop

can be introduced at the encoder, adding some texture information to the shape of

the face model. Koch [15] extracts some texture from the �rst video frame to be

mapped onto a face model. Images are then synthesized from his parametric scene

description, and compared with the original input images of the camera to solve the

model's motion. Li et al [16] use the CANDIDE model and the texture from the �rst

image to iterate the motion estimation process until the synthesis error becomes sat-

isfactory. The strength of their algorithm is that no costly optical ow is computed,

instead, they have a direct computation approach, based on an aggregation of data,

which is more robust to noise. Eisert and Girod [17] perform the motion estimation

on the optical ow between the synthesized image of a realistic textured face model

and the real image. In [18], they add an illumination model to prevent breaking the

brightness constancy assumption of their optical ow computation. Although these

algorithms lead to simple formulations and fewer cumulative errors, interpreting the

pixel di�erences or the pixel velocity �eld can be costly, because of the linearization

of the model 3D displacements in the 2D image frame for each frame. As a result,

they do not claim to be real{time. Moreover, in principle, such algorithms can deal

with self{occlusions due to large rigid motion, and the coupling between the pose

and expression of the real face, but none of them report their ability to track large

head rotations.

Another approach is taken by Sch�odl et al [19]. The �rst image of the face is

projected on a generic polygonal face model, and tracking is achieved by synthesizing

the face model, and computing the error with the real images. The derivative of the

error with respect to the motion parameters is mapped to the intensity gradients

in the image, and a steepest descent is iterated until a local minimum of error is

reached. This is also a costly procedure, because the face model must be rendered at

each iteration, and changes of the face lighting, combined with the lack of precision

of the shape of their model, may lead to an incorrect registration of the synthetic

image.

1.4 A Novel Approach Based on Visual Realism

We noticed that in the literature, none of the face cloning or face tracking approaches

takes advantage of the visual realism of their face model to track and/or analyze

facial deformations in a more direct manner, as they all rely on the explicit use of all

the geometric information contained in the face model to perform the motion regu-

larization, even at the penalizing cost implied by the linearization of the motion of

the face vertices in the 2D image plane. We believe that a better alternative to reach

near real{time performance, is to use a realistic face model, let computer graphics

hardware translate the information of the 3D shape (including self{occlusions and

changes of lighting) into the 2D image plane, and work only at the image level, us-

ing little 3D information from the model. Con�rming the idea that a dense motion

estimation is not necessary, Jebara and Pentland [20] track a few facial features,

which are extracted from the �rst video frame, with correlation{based trackers, and

a Kalman �lter estimates the 3D motion and structure of the facial feature points.

Their system works in real{time, and allows large head rotations. Because they do

not have a face model, their algorithm cannot model self{occlusions or changes of
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lighting due to the face pose, resulting sometimes in incorrect registrations. To over-

come these limitations, we propose to update the tracked patterns with synthesized

images of the facial feature.

Therefore, we introduce a novel approach for a visual feedback loop, making the

analysis and synthesis modules cooperate only at the image level, without explicitely

handling the 3D geometric components of the face model within the loop. Our

point in this paper is to provide key elements on the advances permitted by such

a feedback, in particular to show how a realistic and precise face model, along

with appropriate photometric modelling techniques, can be used to robustly track a

real face, and accurately recover its rigid motion, with an uncalibrated camera, no

markers, unknown lighting conditions, and a non{uniform background.

Section 2 outlines our rigid motion estimation algorithm, as shown in Figure 1.

The next sections describe the technical issues that allow our analysis/synthesis

cooperation in the image plane. In section 3, we present a reconstruction tech-

nique that creates realistic face geometric models suitable for real{time synthesis.

Section 4 introduces a novel and e�cient 3D illumination compensation algorithm

while section 5 details the extended Kalman �lter that drives the feedback loop.

Section 6 describes the reformulation of the block{matching algorithm to track syn-

thetic patterns in real images, including the robustness to the speaker's background.

We discuss in section 7 the performance of our face tracking algorithm on a syn-

thetic sequence. Finally, the local animation possibilities of our models are given as

perspectives in section 8, as we are working on the extraction of facial expression

parameters from images, still using the visual appearance of our face model.

2 Outline of the Tracking Algorithm

We have written a face tracking and pose determination system which relies heavily

on the cooperation between analysis and synthesis techniques in the image plane.

The algorithm can be outlined as follows (see Figure 1, where the next numbered

steps are reported):

Initialization:

(a) the user aligns his/her head with the head model, or modi�es the initial pose

parameters to align the head model with his head. This �rst alignment ob-

viously requires some user intervention, but it has to be performed only once

per session, and we do not consider it as a major issue at the moment. In-

deed, some publications have proposed interesting automatic solutions, such as

frame{�tting [21, 22], or eigenfeatures [20];

(b) when completed, a 3D illumination compensation algorithm is run, to estimate

the lighting parameters that will reduce the photometric di�erences between the

synthetic face model and the real face in the user's environment;

Main Loop:

(i) a Kalman �lter predicts the head 3D position and orientation for time t;
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(ii) the synthetic face model is used to generate an approximation of the way the

real face will appear in the video frame at time t; this approximation includes

both geometric distortions, scales and shaded lighting due to the speaker's

pose; the black background of this rendering is used by the encoder as visual

clues about the location of the unkown environment with respect to the face

facial features, and it will not be used for the 3D parameters restitution;

(iii) patterns are extracted from the synthesized image, representing contrasted

facial features (like the eyes, eyebrows, mouth corners, nostrils);

(iv) a di�erential block{matching algorithm matches these patterns with the user's

facial features in the real video frame;

(v) the 2D coordinates of the found positions are given to the Kalman �lter, which

estimates the current head 3D position and orientation;

(vi) �nally, the �ltered parameters are quanti�ed, compressed and streamed to

the visualization entities, and the rigid motion of the face is recomposed by

a decoder, possibly from a di�erent point of view and a new background, or

even using a totally di�erent face model.

The strength of the visual feedback loop is that it implicitly takes into account

the changes of scale, geometry, lighting and background with almost no overload

for the feature{matching algorithm: due to the synthesis module that performs

a 3D illumination compensation scheme, the synthesized patterns will predict the

geometric deformations, the lighting and the background of the user's facial fea-

tures, making the di�erential block{matching pass more robust. This enhanced

analysis/synthesis cooperation results in a stable face tracking framework without

arti�cial marks highlighting the facial features, supports very large rotations out of

the image plane (see Figure 11), and even copes with low{contrasting lightings (see

the video demo [23]).

It is clear that such a feedback loop is successful because it combines a realistic

face model, e�cient lighting modelling techniques, a carefully designed Kalman

�lter to make up for the uncalibrated camera, and a block{matching algorithm that

handles the background interferences during large head rotations. The next sections

will deal with these points in details.

3 Geometric Modeling

We are currently using range data obtained from cylindrical geometry Cyberware

range �nders [24] to build person{dependent realistic face models. This part is

largely independent from the global motion tracking algorithm, and in fact, any

realistic face model could be integrated in the analysis/synthesis feedback loop, as

long as it is compatible with real{time visualization rates. We should mention here

that other techniques are available in the literature to obtain a textured wireframe,

using structured lighting for example [25]. In the next paragraphs, we will describe

a face model construction algorithm from range data, which provides a high degree

of realism while at the same time limitting the number of 3D primitives due to an

interactive re�nement procedure.
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Facial Feature extraction(iii)

Scene composition
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The user aligns his/her face to his/her head model

Figure 1: System overview: initialization, and face tracking loop | the numbered

items (a), (b) and (i) to (vi) are detailed in section 2.

3.1 Initial Data

Cyberware scanners produce a dense range image with its corresponding color tex-

ture (see Figure 2(a) and (b)). This dataset is a highly realistic representation of

the speaker's face. However, it cannot be used directly in a face cloning system for

several reasons. First, this dataset is very dense (an average of 1.4 million vertices)

and therefore is not well suited for real{time computations. Furthermore, due to the

limitation of the acquisition technology, the dataset is often incomplete and some-

times includes some outliers (as in Figure 2(a)). Finally, it is not suitable for local

deformation computations: it is just a 3D surface, with no anatomical knowledge

or built{in animations for the facial features.
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3.2 Mesh Construction

To achieve both visual realism and real{time computation, we need a geometric

model with a limited number of vertices but with enough details in order to dis-

tinguish facial features such as the lips or the eyebrows. We use a reconstruction

system based on deformable simplex meshes [26] to build such models. Unlike classic

approaches, those deformable models are handled as discrete meshes, not relying on

any parameterization. Because they are topologically equivalent to triangulations,

they can be easily converted as a set of triangles for display purposes or standard

3D �le formats like VRML [27]. Finally, they can represent geometric models inde-

pendently of their topology and they lead to rapid computations.

The di�erent stages of construction from a Cyberware dataset, where the hair in-

formation is missing and with some outliers, are shown in Figure 2. The deformable

model is initialized as a sphere (Figure 2(b)) and then deformed to roughly approx-

imate the face geometry (Figure 2(c)). The last stage consists in re�ning the mesh

model based on the distance between the range image and the surface curvature

(Figure 2(d)), by selecting the areas where more modelling precision is desired.

(a) (b) (c) (d)

Figure 2: Reconstruction of a geometric model from a Cyberware dataset: (a) initial

range data; (b) initialization; (c) main deformation; (d) mesh re�nement | We

have interactively selected the areas of interest (chin, ears, nose, lips) where the

re�nements are performed. The resulting mesh has 2084 vertices.

The face model is then texture{mapped by computing for each vertex of the

simplex mesh, its (u; v) coordinates in the range texture image. Since the deforma-

tion of each vertex requires the computation of its closest point in the range image,

we simply use the texture coordinates of the closest point. Where no range data

is available (at the hair level for instance), we project the vertex onto the image

plane through the cylindrical transformation of the Cyberware acquisition. This

algorithm therefore produces an accurate geometric and texture face model, and

has to be run only once for a given head model.

Although some authors reported that adapting a generic face model (CANDIDE)

is quite feasible [28, 29], we believe that their model could not suit our analy-

sis/synthesis feedback loop due to a low number of primitives, mainly because it
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would not provide enough lighting normals, which are crucial for the illumination

compensation procedure, discussed in the next section.

4 Photometric Modeling

4.1 Motivation

The goal of photometric modelling is to reduce the photometric discrepancies be-

tween the speaker's face in the real world environment and his synthetic model

directly at the 3D level within the visual feedback loop | otherwise, the block{

matching algorithm would constantly fail to match the tracked facial features, be-

cause it assumes that the brightness distribution and the shading of synthetic pat-

terns are close to the real facial features, which is far from being true by default (see

Figures 4(a) and 4(b)). This modelling can be seen as an alternative and elegant

technique to other 2D view{based techniques, such as histogram �tting [20]. In [18],

Eisert and Girod propose an algorithm to recover the 3D position and intensity of a

single in�nite light source from a static view assuming an initial guess of the position

prior to the motion estimation. Bozda�gi et al. [30] have a more complex approach

that determines the mean illumination direction and surface albedo to be included

in their Optical Flow equation for motion estimation. Both approaches are based

on a Lambertian illumination model (i.e. composed of ambient and di�use lighting)

without specular reections and cast shadows. However, in the real world, cast

shadows, and specular highlights (if the user does not have make{up), are likely to

occur on a face, and will be di�cult to compensate using only a single light as in

the previous algorithms.

In [31], Belhumeur and Kriegmann derive that the set of images of a convex

Lambertian object under all possible lighting conditions is a cone, which can be con-

structed from three properly chosen images, and empirically show that cast shadows

and specular reections generally do not damage the conic aspect of the set.

Motivated by the reconstruction possibility of an arbitrary illuminated view

from several object images, we propose to recover the face illumination from a single

speaker's view by using a set of light sources at di�erent in�nite positions. The main

advantage of our algorithm is that it can rely on graphics hardware acceleration and

compensate unknown light sources with ambient, di�use and specular components

at the 3D level in real{time. A similar idea, applied to interior design, can be found

in [32], where the scene's global lighting is computed from the illumination of some

objects painted by hand by the scene designer. In our algorithm, the synthetic scene

lighting is adjusted by observing the illumination of the facial features in their real

environment.

4.2 Proposed Algorithm

We propose to adopt the following general lighting model, including ambient, di�use

and specular reections induced by N independent in�nite light sources for a 3D

textured primitive, with an additional degree of freedom (a luminance o�set Lo�set,
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which will be justi�ed in section 4.5)

Lreal = Lo�set + Ltexture � (A+
i=N�1X
i=0

[(maxfli:n; 0g)�Di + (maxfsi:n; 0g)
shininess

� Si])
(1)

where Lreal denotes the luminance of a pixel in the real image, Ltexture the corre-

sponding texture luminance of the face model, A the global ambient light intensity,

Di and Si the di�use and specular intensity for the ith light, n and li the object

normal and the ith light source direction, si the normalized bisector between the ith

light source direction and the viewing direction, and �nally \shininess", the specular

exponent controlling the size and brightness of specular highlights.

One can readily verify that the rendered image pixels values in equation (1)

are linear with respect to the components of the light sources. All the unknowns

(the light source intensities, and the luminance o�set if needed) can be estimated

by a simple least mean square inversion for all the face pixels. Our algorithm thus

consists of the following steps:

� manually align the synthetic model with the speaker's image;

� extract, from the real speaker's image, pixel luminance values around the facial

features of interest. Over{bright pixels are discarded to avoid areas where the

camera sensor might have saturated (the luminance of such pixels would not

depend linearly on the contributions of the light sources);

� extract, from the synthetic image, the corresponding texture luminance val-

ues Ltexture and object lighting normals n;

� the light sources intensities A, Di, Si and the o�set Lo�set are �nally estimated

by solving equation (1) in the least mean square sense.

4.3 Numerical Evaluation on Synthetic Images

To validate the assumption that unknown light sources can be compensated by a

set of lights at prede�ned positions, we conducted experiments on synthetic images

in order to avoid problems of misalignment between a face model and an unknown

image. To that extent, four images of the same model were created respectively with

a left di�use illumination (3(a)), an ambient and left di�use lighting (3(b)), ambi-

ent, left di�use and specular components (3(c)), and ambient, di�use and specular

illuminations from two di�erent light sources (3(d)).

With these images, we performed two di�erent experiments, A and B:

(A) we compensated the face illumination with lights located at the same positions

as the sources used to synthesize the images, enabling and disabling the lu-

minance degree of freedom of equation (1). Such experiments can point out

numerical di�erences between the lighting model of equation (1), implemented

by oating point computations in our software, and the OpenGL lighting op-

erations, implemented by dedicated hardware;
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(a)

            

(b)

            

(c)

            

(d)

Figure 3: The synthetic test images used in the validation experiments A and B.

The reconstructed images are not displayed since no signi�cant di�erences are visible

| (a) left di�use illumination; (b) ambient and left di�use lighting; (c) ambient,

left di�use and specular lighting; (d) ambient, di�use and specular components from

two light sources.

(B) we then tried to measure the quality of the compensation using light sources

that are at completely di�erent locations from the original ones, to evaluate how

well unknown light sources can be simulated by lights at arbitrary positions:

we compensated for the face illumination with all the light sources on except

the ones used for the image creation (our software has seven prede�ned lights,

namely top, bottom, left, right, and three lights around the camera).

Table 1 presents the mean error and the root of the mean square error around

the model facial features. The conclusion is threefold:

� with synthetic lights at the right positions, experiments A prove that numerical

errors are marginal (but exist) in the algorithm, and that the equation (1) can

be correctly implemented by OpenGL;

� experiments B suggest that it is fairly reasonable to expect to compensate for

ambient, di�use and specular reections of unknown intensities and unknown
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Table 1: Illumination compensation errors (root of mean square error and mean

error in brackets) on synthetic images, for experiments A (compensation using the

same lighting directions as the original image) and B (compensation using all except

the same lighting directions as the original image).

Synthetic Images Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

Without compensation 77:66 [74:25] 87:31 [79:92] 86:79 [78:84] 44:27 [36:21]

Exp. A: lights at known positions 0:24 [0:06] 0:15 [�0:02] 0:15 [�0:02] 0:36 [0:00]

Exp. B: lights at unknown positions 0:30 [0:02] 4:12 [�0:20] 3:58 [�0:43] 3:56 [�0:14]

directions by a limited set of lights at prede�ned locations, without trying to

recover the lighting directions.

4.4 Experimental Results on Real Images

Figure 4 shows the illumination compensation for a real world case. It is clear

that without the compensation (Figure 4(a)), it would become di�cult for a block{

matching algorithm to match the synthetic facial features with the real ones (Fig-

ure 4(b)), not only because of the low brightness of the real image, but also because

of the shading of the face.

Table 2 displays the numerical errors, before and after the compensation. Our

algorithm greatly minimizes the gap between the synthetic and real images (4(c) and

4(b)) by dividing the root of the mean square error by 6:7, although the enhance-

ments are not as good as for the experiments on synthetic images only. We believe

that this is mainly due to the misalignment between the face and the synthetic

model, which cannot be perfectly matched \by hand", to the uncalibrated acquisi-

tion camera, which does not realize the same perfect perspective projection as the

one implemented in our synthesis module, and �nally to the texture map of the

face model: this texture map should actually correspond to the user's face viewed

in ambient lighting, but the scanning device has built{in bright light sources which

create parasitic di�use and specular reections on the user's face during the tex-

ture acquisition. These unpredictible di�erences are the reason why the brightness

o�set Lo�set was introduced in equation 1.

4.5 Justi�cation of Lo�set

We removed the term Lo�set from the lighting model, and reran the compensation

algorithm. In Table 3, we see that removing the o�set does not bring any signi�cant

degradation of the error between synthetic images, which means that equation (1)

without Lo�set corresponds to the lighting operations made by OpenGL to render

the synthetic test images.

However, for the compensation on a real image, removing Lo�set introduces a

higher error (see Table 4), which can be seen in Figure 4(d), leading to a face model
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(a)

            

(b)

            

(c)

            

(d)

Figure 4: Illumination compensation on a real face: (a) the speaker's head model

with no directional light source; (b) the speaker in a real environment; and the same

model with illumination compensation ((c) with and (d) without the illumination

o�set Lo�set).
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Table 2: Illumination compensation error (root of mean square error and mean error

in brackets) between a real and synthetic image.

Real Image (Fig. 4(b))

Without compensation (Fig. 4(a)) 62:42 [51:40]

With compensation (Fig. 4(c)) 9:31 [�0:02]

Table 3: Illumination compensation errors (root of mean square error and mean

error in brackets) on synthetic images, without using the illumination o�set. These

results should be compared to Table 1.

Synthetic Images Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

No compensation 77:66 [74:25] 87:31 [79:92] 86:79 [78:84] 44:27 [36:21]

Exp. A: known positions, without Lo�set 0:11 [�0:01] 0:09 [�0:01] 0:09 [�0:01] 0:36 [�0:04]

Exp. B: unknown positions, without Lo�set 0:39 [0:15] 4:12 [0:04] 3:56 [�0:02] 3:55 [�0:02]

more constrasted than the real face. In this case, the root of the mean square error is

only reduced by a factor of 4:1. Lo�set is therefore an appropriate degree of freedom

to make up for the non{ambient texture of the face model, and imprecisions due to

the face model's misalignment and the uncalibrated camera.

Table 4: Illumination compensation error (root of mean square error and mean

error in brackets) between a real and synthetic image, without the illumination

o�set. These results should be compared to Table 2.

Real Image (Fig. 4(b))

Without compensation (Fig. 4(a)) 62:42 [51:40]

With compensation, no Lo�set (Fig. 4(d)) 15:12 [�3:98]

4.6 Concluding Remarks About the Illumination Compensation

We do not claim that the proposed algorithm recovers the exact illumination of

the scene, but it helps smooth out the photometric discrepancies around the facial

features (not the whole face) between the feedback loop and the video input. Figure 4

shows that the distributions of dark and bright areas on the real and synthetic views
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are coherent. The main advantage of our algorithm is that the estimated lighting

parameters can be directly injected at the 3D level within the face synthesis module,

which is based on the OpenGL library, taking advantage of hardware accelerations

that are more and more common on entry-level graphics boards. Furthermore, the

lighting parameters estimation is straightforward and not CPU{demanding, since it

does not need to be constrained to output positive light intensities1 .

To set up the light positions in practice, we found a convenient solution by

de�ning an interface where the user can switch on and o� various light sources at

prede�ned positions like the ceiling, the camera, on the left and right hand{side...

according to his/her environment. As a conclusion, even if it requires some user

intervention, we do not think it damages the face tracking system usability, since it

has to be done only once at the beginning of the session. Furthermore, it contributes

to the realism of the model (with respect to the speaker's real view), and therefore

makes the tracking of real facial features from synthetic patterns by di�erential

block{matching possible, as described in the next sections.

5 Kalman Filter

Kalman �lters [33] are often used in head tracking systems for two di�erent purposes:

the �rst one is to temporally smooth out the estimated head global parameters, as

in [34], the second one is to convert the 2D facial features positions observations

into 3D estimates and predictions of the head position and orientation [12]. In our

application, the Kalman �lter is the central node of our face tracking system, since

it has three di�erent objectives: it recovers the head global position and orientation,

it predicts the 2D positions of the feature points for the block{matching algorithm,

and | this point is new | it makes the synthesized model have the same scale,

position and orientation as the speaker's face in the real view, despite the acquisition

by an uncalibrated camera.

5.1 Extended Kalman Filtering Theory

Let us �rst de�ne a few notations. What we want to estimate is the state vector

	t of a system at time t. 	t cannot be measured directly. Instead, we have access

to measurements st that depend non{linearly on the state vector by the relation

st = h(	t), and we have a general idea about the evolution of the system by 	t+1 =

a(	t). To reect the uncertainty of the observations and the dynamic evolution

of the system, two Gaussian white noises are introduced, denoted vt and wt, of

covariance matrices R and Q, and we have the system observation and evolution

equations:

�
st = h(	t) + vt

	t+1 = a(	t) + wt
(2)

The measurement and evolution functions are linearized respectively around the

1OpenGL can perfectly deal with negative lights.
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a priori estimate 	t=t�1 and the a posteriori estimate 	t=t with:

h(	t) � h(	t=t�1) + Ht(	t � 	t=t�1)

and a(	t) � a(	t=t) + At(	t � 	t=t)
(3)

by denoting Ht =
@h
@	

��
	t=	t=t�1

and At =
@a
@	

��
	t=	t=t

, the Jacobians of the mea-

surement model and of the dynamic model. After some matrix manipulations, the a

posteriori estimates and their error covariance matrices Pt=t are given by the �ltering

equations: 8<
:

Kt = Pt=t�1H
T
t

�
R+HtPt=t�1H

T
t

�
�1

	t=t = 	t=t�1 +Kt(st � h(	t=t�1))

Pt=t = (I �KtHt)Pt=t�1

(4)

and the a priori estimates with their error covariance matrices Pt+1=t by the predic-

tion equations: �
	t+1=t = a(	t=t)

Pt+1=t = AtPt=tA
T
t +Q

(5)

5.2 Interpretation of the Equations

By considering the equations in (4), the �lter produces 	t=t by rectifying the pre-

dicted estimate 	t=t�1 by the correction term Kt(st � h(	t=t�1)), based on the

di�erence between the real observations st and the predicted ones h(	t=t�1). An

interesting interpretation of the Kalman �lter behavior is that it iterates to make

the system state vector 	t=t �t both the observations st and the dynamic evolution

model represented by the equations in (5).

This \di�erential �tting" interpretation helps to understand why, with a carefully

chosen measurement model, the Kalman �lter is able to align the synthesized images

with the speaker's image even though the video camera is not calibrated: the idea is

to derive the observation function from the synthesis operations, so that st = h(	t)

is the vector of the 2D positions of the synthetic facial feature points in the image

plane. In this case, 	t includes the 6 degrees of freedom of the synthetic face in

the synthetic world, and the �lter will modify 	t to output the 2D positions of the

tracked facial features, thus aligning the speaker's face and the synthetic model.

5.2.1 Dynamic Model

The 6 parameters needed to render the synthetic head are

S = (tX ; tY ; tZ ; �; �; )
T

representing the 3 translations and the 3 rotations with respect to the X , Y and

Z axes, and they are included with their �rst{ and second{order time{derivatives

in the �lter state vector 	 = (ST ; _S
T
;
__S
T

)T for the dynamic model of the sys-

tem evolution, simply based on Newtonian physics under a constant acceleration

assumption:

St+dt = St + _Stdt+
1

2
__Stdt

2 (6)
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5.2.2 Measurement Model

Although the viewing camera is not calibrated, the observation model of the Kalman

�lter mimics a perspective projection of focal length F (see Figure 5). The actual

value of F is not sensitive for the tracking algorithm, as the Kalman �lter will adapt

its state vector computation to �t the observations, as if they had been viewed by

an ideal camera of this focal length.

Z
X

Y

World Axis Orientation

F

Object Plane

Image Plane

Camera Center

�Z

PO

pI
World Origin

Figure 5: Camera analogy for the view model, with PO = (X; Y; Z; 1)T , and pI =

(xI ; yI)
T =

�
XF
F�Z

; Y F
F�Z

�T
(only the negative part of the Z axis is seen by the

camera).

Considering the rigid transformation applied by the OpenGL library on the 3D

facial feature localization (x; y; z)T in head mesh coordinates, the �nal 2D measure-

ment (xI ; yI)
T in the image plane given the parameters S = (tX ; tY ; tZ ; �; �; )

T

and (x; y; z)T is

�
xI
yI

�
=

�
F

N

(c�cx� c�sy + s�z + tX)
F

N

((s�s�c + c�s)x+ (�s�s�s + c�c) y � s�c�z + tY )

�
(7)

with N = (�c�s�c + s�s) x + (c�s�s + s�c) y + c�c�z + tZ � F (for clarity

reasons, c�, s�, c�, s� , c and s respectively stand for cos(�), sin(�), cos(�), sin(�),

cos() and sin())

6 Tracking

6.1 Di�erential Block{Matching

The main complications encountered by a block{matching (or pattern correlation)

algorithm are, on the one hand, the local geometric distortions, scales of facial

features and changes of lighting due to the speaker's 3D motions, and on the other

hand, the large rotations out of the image plane: in this case, the facial features

might not �t in rectangular blocks, and the reference patterns are matched against

portions of other objects in the background. Both issues are addressed by tracking

synthetic facial features in the real speaker's view, as long as the block{matching

procedure is able to allow some photometric di�erences between the synthetic and

real patterns, and to be aware of the background pixels that are likely to interfere in

the correlation score for extreme head poses. Extending the theory presented in [35],
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we propose that a classic di�erential block{matching formulation be adapted to be

robust to the photometric model failures on synthesized features in section 6.1.1,

and support non{rectangular patterns and extreme orientations in section 6.1.2.

6.1.1 Photometric Robustness

The di�erential block{matching algorithm is derived by considering that a reference

pattern, denoted I(� = 0; � = 0) = (p1; � � � ; pm)
T (all pixels are placed in a column

vector), undergoes some perturbations � = (�1; � � � ; �n)
T (most often displacements

in the image, with sub{pixel precision). Writing a Taylor series expansion for small

perturbations between two consecutive frames, we have

I(�; �) � I(0; 0)+M�+ It� (8)

with M =
�

@I
@�1

(0; 0)j � � � j @I@�n
(0; 0)

�
and It =

@I
@t (0; 0). Solving for � in the least

mean square fashion yields

� = �(MTM)�1MT It (9)

which may be rewritten by identifying the lines of �(MTM)�1MT as

0
B@

�1
...

�n

1
CA =

0
B@

r1
...

rn

1
CA I t (10)

In equation (8), the � perturbations are general enough to represent a lo-

cal pattern rotation or scaling [35], and to integrate a luminance scale and o�set

perturbation in the case of a photometric model failure for a synthesized feature

( @I
@lum. scale

(0; 0) = I(0; 0) and @I
@lum. o�set

(0; 0) = (1; � � � ; 1)T). The luminance o�set

degree of freedom de�ned in the photometric model (equation (1)) is taken into

account, and need not be explicitly recovered during the matching procedure, since

only the translation parameters �1 = r1It and �2 = r2I t are computed from (9) to

be given to the Kalman �lter: the only overhead implied by additional degrees of

freedom takes place during the computation of �(MTM)�1MT , but they do not

mean more computations during the iterative estimation of �1 and �2.

6.1.2 Background Robustness

Used together, the Kalman �lter and the synthetic patterns can predict the back-

ground position near the participant's facial features due to the 3D pose: in Figure 6,

the synthesized model is rendered on a black background, which appears in the ex-

tracted rectangular nose pattern for this particular head orientation. The pattern

pixels are classi�ed into 2 subsets, I jF and IjB, whether they belong to the face or

to the background area2. We restrict the computation of the temporal gradient I t

2In practice, the background is drawn in black at the encoder level within the feedback loop, to
be easily segmented from the face regions.
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in equation (10) to I jF , so that the potential background objects in the real view

have no impact on the correlation.

Hence, the synthetic patterns are turned into visual clues to match only the

potential feature areas in the real speaker's image, and our tracking algorithm �nds

the correct best match despite other objects in the features neighborhood (see also

Figure 11 for extreme head rotations).                        

Figure 6: For this typical rotation, the synthetic background used by the encoder

appears in the tracked nose area. As its pixels would lead to a wrong match in the

real image, they are discarded by the tracker for the computation of the temporal

gradient I t. As a result, the tracker restricts itself only to the potential face pixels in

the video frame, and is able to �nd the right match despite the unknown background

in the real world.

Restricting I t in equation (10) to the I jF pattern subset, we get our modi�ed

block{matching algorithm giving the 2D displacement (dx; dy)
T of each feature area:

�
dx
dy

�
=

�
rx
ry

�0B@
g1
...

gm

1
CA with

�
gi = preali � p

synthetic

i if psynthetici 2 I jF
gi = 0 if psynthetici 2 I jB

(11)

7 Numerical Evaluation of the Global Motion Tracking

To assess the accuracy of the estimation of the global motion, we ran our algorithm

on a synthetic video sequence, where the parameters to be recovered are known,

using 12 tracked areas surrounding the main facial features, shown in Figure 7. The

face in this sequence oscillates around its initial position, undergoing respectively

3 translations along the X , Y and Z axes, 3 rotations around the same axes, and

a combination of all degrees of freedom. This sequence is can be viewed on the

web [36].

This sequence lasts 20 seconds, at 30 frames per second, for a total amount of

600 frames, and its resolution is 320 � 242 pixels. To make this evaluation more

signi�cant, a background image has been inserted behind the face model to mimick

the real world case shown by Figure 8. The images were rendered using an ideal

perspective camera, with a focal length of 2. The global motion parameters used

to synthesize the face model were obtained using a polynomial interpolator of third
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(a)

            

(b)

Figure 7: The 12 facial features used to evaluate the tracking algorithm: (a) feature

positions; (b) sizes of the tracked areas | Each eye represents 2 facial features, once

with the eyebrows, and once without them.

order between 23 keyframes, without enforcing the constant acceleration assumption

of the Kalman �lter. The maximum rotations are depicted in Figure 9, and are

large enough to verify the behavior of the tracking algorithm when the background

is likely to interfere with the face patterns. Rotations are expressed in degrees, and

translations in the face model coordinates: as the face vertices are scaled in the

range [�1; 1], a translation of +3 means a translation of about 1:5 times the face

size.
            

Figure 8: The real world sequence, which inspired the synthetic sequence of Figure 9

made to assess the tracking accuracy.

We plotted the recovered parameters against the true ones for the 600 frames in

Figure 10. It can be seen that the algorithm successfully recovers the rigid motion

of the face in the video sequence, but not surprisingly, the most di�cult parameters

to be recovered are the rotations around the X and Y axes, since they lead to non{

a�ne diplacements in the 2D image plane, and are solved by the linearization of

the observation model computed by the Kalman �lter at each frame. One may also

notice that the recovered parameters are noisy, especially when the true parameters

do not change. This is due to the Kalman �lter, which does not su�ciently smooth

out the a posteriori estimations. We could have obtained smoother results if we had

incremented the noise level of the observations in the �lter. However, there is always

21



            

Translation / Z : +3

            

Rotation / X : +22:82o

            

Rotation / Y : +35o

            

Rotation / Z : +33o

Figure 9: Maximum amplitude of the parameters used to evaluate the tracking

algorithm, with respect to the initial position. The X , Y and Z axes of rotation are

local to the head model (i.e. they are not related to the camera).

a compromise to be made between the smoothing capability of a Kalman �lter (by

decreasing the uncertainty of the predictions), and its reactivity to new situations

(by decreasing the uncertainty of the incoming observations): for instance, with the

noise settings used in this evaluation, it can be seen on the plots that the �lter

already tends to overestimate the parameters after a rapid transition.

Table 5 contains some statistics about the errors, and the signal to noise ratios

(SNR) of the estimated parameters. They show that the global motion parameters

are recovered quite well. The mean error is about 0:5% of the face scale for the

translation parameters, and about 1 or 2 degrees for the rotation parameters, which

makes the results quite fair. The largest errors are obtained during or after rapid

transitions, indicating that the prediction model of the Kalman �lter, assuming a

constant acceleration, may not be the most appropriate.

8 Conclusions About the Face Tracking Algorithm

In the previous sections, we proposed a face tracking framework which has the

possibility to feed the feature{tracking procedure with synthesized facial patterns,
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Figure 10: Real and recovered XYZ positions and orientations for the 600 frames.

implementing a visual feedback loop, thus solving the problems of lighting, scale

and geometric deformations of the face implied by its rigid motion, with no explicit

manipulation of the 3D geometry of the face model, as in other optical ow{based

techniques. Our face cloning module is designed to work in real{world lighting, with

few assumptions about the speaker's motion (allowing large rotations out of the im-

age plane), and without marks or makeup on the user's face (see Figure 11). To that

purpose, we presented geometric and photometric modelling techniques to make the

synthesized patterns closer to their real counterparts. We also reformulated a block{

matching algorithm to make it work with synthetic input data, and showed how to

handle the presence of the speaker's background in extreme positions. It is impor-

tant to note that such an analysis/synthesis cooperation is successful because of the

realism of our modelling techniques, and the design of the Kalman �lter to drive

the synthetic images. Our system is independent of any facial expression estimation

23



Table 5: Statistics about the tracking accuracy on a synthetic test sequence.

Max. Abs. Error Mean Error Variance 10 log
10
SNR

Translation

/ X 0.0681 (frame 510) 0.0231 2.0372�10�4 18.49

/ Y 0.0421 (frame 444) 0.0147 8.1550�10�5 19.70

/ Z 0.4235 (frame 589) -0.0567 3.9956�10�3 30.51

Rotation

/ X 3.4551 (frame 445) 0.9130 0.5732 15.43

/ Y 5.4403 (frame 531) -1.9609 1.5645 12.44

/ Z 1.7035 (frame 529) 0.0606 0.2428 25.87

algorithm, and can be used to generate a global animation stream for MPEG{4

encoders with life{like timings, leaving the task of facial expression animation to

other methods.

The result of the tracking algorithm on a real face can be seen in a video se-

quence available on the WWW [23]. The original analyzed sequence lasted 30 sec-

onds, and was captured in a 320 � 242 resolution at 10 frames per second. The

analysis/synthesis speed mainly depends on the workstation graphics hardware ac-

celeration and its video acquisition speed. On a O2 SGI workstation, the analysis

frame rate using 12 facial feature areas is:

� 1 image per second, when synthesizing patterns, computing the product �(MTM)�1MT ,

and updating the Kalman �lter for every frame;

� 10 frames per second, when disabling synthetic pattern calculation for every

frame, but still enabling the Kalman �lter | in this case, large face rotations

might cause the system to lose the user's head;

� full frame rate, when disabling both pattern synthesis and the Kalman �lter

| the system just tracks the facial features in 2D, without recovering the

head 3D pose, and becomes very sensitive to rotations.

One of the questions that might be raised about the robustness of the track-

ing is what happens when the user closes his eyes, or has a facial expression that

di�ers from the static expression of any feature area. In such a situation, some of

the individual trackers may lose their facial feature, but there are enough tracked

features to allow the outliers to be minimized by the Kalman �lter. The prediction

of the positions of the features in the next frame brings the trackers back in the

right area until they produce correct matches. It is clear that the system will be

even more robust if it can take into account the user's facial expressions, be they

obtained by image analysis, or other means (like processings on the audio signal to

infer the animation of the mouth).

24



                        

                        

                        

Figure 11: Head rotations supported by our face tracking system, without markers

and uniform lighting.

Perspectives: Synthesis of Facial Expressions

Now that we have a robust algorithm to track a human face and estimate its pose,

our current work focuses on the synthesis of facial expressions (local animations),

and their analysis by image processing only, still without any markers.

The face models constructed in section 3 are unanimated. To e�ciently generate

facial expressions, we implemented several original or well{known animation tech-

niques, operating on the 3D vertices, the texture coordinates attaching the vertices

to the texture image, or the texture image itself:

mesh deformations: by applying mesh morphing, it is possible to deform the

face shape, to close the eyelids or squeeze the mouth of the face model (see

Figure 12(b));

displacements of texture coordinates: extending the concept of mesh morph-

ing to texture coordinates morphing, we can make the texture slide over the

face model, without deforming the shape of the 3D wireframe. This technique

is used to animate the eyebrows (Figure 12(c));

texture sliding: instead of adding new primitives for each eye{ball, we created

holes in the texture image (via the transparency channel), and two separate
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textures behind the main one can be displaced to alter the model's gaze di-

rection (Figure 12(d));

texture blending: beside moving some texture portions, it is possible to blend

several textures together to produce a new one, for example to fade expression

wrinkles into the model texture at low{cost in terms of real{time animation,

instead of hard{coding them in heavy spline{based meshes (Figure 12(e)).

            

(a)

            

(b)

            

(c)

            

(d)

            

(e)

Figure 12: Examples of facial animations: (a) neutral (initial) face model; (b) mesh

deformations; (c) displacements of texture coordinates; (d) texture sliding; (e) tex-

ture blending.

We are currently porting our displacements of texture coordinates and texture

animations into an existing MPEG 4 viewer [37], to bene�t from the streaming and

networking capabilities of the standard (de�ned by the Digital Media Integration

Framework, DMIF) while respecting the FAP syntax [1]. All these techniques, of

course, can be combined together to produce more complex facial expressions (see

the video sequence [38]).

Analysis of Facial Expressions

We are also investigating an original view{based approach to relate the analysis

and the synthesis of facial expressions: using our realistic face model, we sample

the visual space of facial expressions across various poses, via a set of � vectors

containing facial animation parameters. Image patches for the facial features of

interest (like the eyes, eyebrows, and the mouth) are extracted, to produce distinct

datasets of training examples. Then, a principal component analysis is performed

over those training datasets, to extract a limited number of images optimally span-

ning the training space. These images (called eigenfeatures) allow us to characterize

the facial expression of the user's face via a simple correlation mechanism, yield-

ing a compact � vector. And �nally, a linear estimator will be designed to map

the analysis scores � to the face animation parameters �. Such a system will not

be limited by the amount of available key{frames (as noted in the introduction for

traditional view{based techniques), since all degrees of freedom permitted by the

synthetic face can be precisely, automatically and systematically exploited by the

training strategy.
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Figure 13 shows some preliminary results concerning the analysis of synthetic

facial images using a linear estimator trained over the responses of the eigenfeatures,

which are reported in [39]. We are currently extending this strategy to the analysis

of real facial images.

�

Eigenfeatures Linear Estimator

�
                        

                        

                        

Figure 13: Some analyses of facial expressions: each image of the left column was

quanti�ed by some eigenfeatures, giving a � vector. A linear estimator mapped �

to the animation parameters �, which were rendered into the images of the right

column.
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