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Abstract: Spectrum sensing has been identified as a key enabling cognitive radio
(CR) to not interfere with primary users, by reliability detecting primary users’ sig-
nals. Based on the OpenAirInterface platform, we performed at EURECOM a sensing
demonstration in order to illustrate the spectrum sensing concept in one hand and to
assess some of the existing algorithms performances in other hand. The platform is
designed for a full software-radio implementation, in the sens that all protocol layers
run on the host PCs under the control of a Linux real time operating system. The
demonstration is composed of two nodes: a primary user with a varying transmission
gain and four possible carrier frequencies, and a secondary user (or CR) user imple-
menting three sensing algorithms (Energy detection, cyclostationarity detection, and
model selection based detection). At the second node, the sensing results as well as
their corresponding measured signal to noise ratio (SNR) over the four sub-bands are
displayed in real time.

Keywords: Cognitive radio, OpenAirInterface platform, Spectrum Sensing, Model
Selection Detection, Energy Detection, Cyclostationarity Detection.

1. Introduction
Historically, spectrum licensing and access have been static, leading to a low spectral effi-
ciency as shown in a number of studies. For example, in [1] the spectrum occupancy mea-
surements show that in some locations or at some times of day, 70 percent of the allocated
spectrum may be sitting idle. This means that there are many holes in the radio spectrum
that could be exploited. While this observation stands in some contrast to the general picture
of spectrum allocation that one can infer from a frequency allocation chart, the presence of
spectrum holes is understandable given how inefficiently radio resources, and spectrum in
particular, are in fact utilized in current systems.

Recently, the FCC [2] has recommended that significantly greater spectral efficiency
could be realized by deploying wireless devices that can coexist with the primary users, gen-
erating minimal interferences while taking advantage of the available resources. This class
of devices that can reliably sense the spectral environment over a wide bandwidth, detect the
presence/absence of legacy users (primary users) and use the spectrum only if the communi-
cation does not interfere with primary users is defined by the term cognitive radio [3].

1The work reported herein was partially supported by the European projects E2R2 and SENDORA and
National projects GRACE and IDROMEL.
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Cognitive radio is an emerging wireless communications concept in which a network or
a wireless node is able to sense its environment, and especially spectrum holes, and change
its transmission and reception chains to communicate efficiently without interfering with li-
censed users. Spectrum sensing has been identified as a key enabling cognitive radio to not
interfere with primary users, by reliability detecting primary users’ signals and it is often
considered as a detection problem. Focusing on each narrow band, existing spectrum sensing
techniques are widely categorized into energy detection [4] and feature detection [5]. While it
is simpler and less computing, the energy detector suffers from the fact that its performances
are susceptible to unknown or changing noise levels and interferences. In addition, the energy
detector does not differentiate between modulated signals, noise, and interference but can
only determine the presence of the signal. It does not work if the signal is direct-sequence
or frequency hopping signal, or any time varying signal. On the other hand, cyclostationary
models have been shown in recent years to offer many advantages over stationary models.
Thus, cyclostationary feature detection performs better than the energy detector. However, it
is computationally complex and requires significantly long observation time. Recently, a new
sensing method [6] based on model selection tools like Akaike information criterion (AIC)
[7] and Akaike weights [8] has been proposed. Using the Akaike weights information, this
method can decide whether the received signal distribution fits the signal once or not. As
we don’t need any prior information about either the received signal or the noise, then the
detection of vacant frequency band is done blindly. Indeed, the computation burden of this
method still lower as well as the energy detector.

In this paper, we present the software and hardware architecture of the sensing demon-
stration that we performed in our laboratory. It is based on the OpenAirInterface platform
available at EURECOM [9]. As we are involved in the Eureopean SENDORA project [10],
the aim of this demonstration is first to illustrate the spectrum sensing concept and second to
assess the the detection performances of some of the existing algorithms.

The paper is organized as follows. The next section describes the OpenAirInterfce plat-
form. In Section 3., the sensing demonstration is presented and the implemented detection
algorithms are described. Measurements and results are provided in Section 4., and Section 5.
concludes the paper.

2. OpenAirInterfce Platform
The spectrum sensing demonstration that we performed is based on the OpenAir hardware/software
development platform at Eurecom. The platform consists of dual-RF CardBus/PCMCIA data
acquisition cards called CardBus MIMO I (see Fig. 1). The RF section is time-division du-
plex and operates at 1.900-1.920 GHz with 5 MHz channels and 21 dBm transmit power per
antenna for an OFDM waveform. EURECOM has a frequency allocation for experimenta-
tion around its premises in Sophia Antipolis. The cards house a medium-scale FPGA (Xilinx
X2CV3000) allowing for an embedded HW/SW system implementing the physical layer. Be-
sides implementation in the FPGA, for advanced PHY algorithms and real-time testing prior
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Figure 1: User equipment with PCMCIA Card.

to HW implementation, the PHY layer is usually run in real-time on the host PC under the
real-time operating system (RTOS) RTAI. The physical (PHY) layer of the platform targets
WiMax and UMTS LTE like networks and thus uses multiple-input multiple-output orthogo-
nal frequency division multiples access (MIMO-OFDMA) as modulation and multiple access
technique. The MIMO-OFDMA system provides the means for transmitting several multiple-
bitrate streams (multiplexed over subcarriers and antennas) in parallel.

Sampling rate 7.68 Msamp/s

Frame length 64 symbols (2.67 ms)

Symbol (DFT/IDFT) size 256 samples

Prefix length 64 samples

Useful carriers 160

Table 1: The transmitted OFDM signal parameters

The physical resources are organized in frames of OFDM symbols. A nominal OFDMA
configuration is shown in Table 1. One frame consists of 64 symbols and is divided in an
UPLINK transmission time interval (TTI) and a DOWNLINK TTI. More information can be
found on the openairinterface.org website.
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Figure 2: The sensing demonstration.

3. Sensing Demonstration
As we can see from Fig. 2, the demonstration consists of two laptops one for transmission and
one for reception; each of them is equipped with the CardBus MIMO1 data acquisition card
and two antennas. To simulate the SNR variation, the transmission gain (TX G) is adjusted
within the interval [0-256]. However the reception gain (RX G) can be set manually or (by
default) automatically. Three sensing algorithms were selected for this demonstration: model
selection based detection, energy detection and cyclostationarity detection. They are running
continuously and their results are graphically displayed in real time. At reception side, we
developed a Graphical User Interface (GUI) allowing the user to select one of the four sub-
bands (with 1.25 MHz of width) of the EURECOM frequency allocation around 1917 MHz,
the transmission gain and running/stopping the transmission (see Fig.3). At reception side,
another GUI is developed and displays, in real time, the measured SNR and the detection
results of the sensing algorithms in each sub-band (see Fig. 4).

In the rest of this section, we present the main ideas of the implemented algorithms.

3.1 — Energy detection
The block-diagram of an energy detector is given in Fig. 5. The input band-pass filter selects
the center frequency and bandwidth W of interest. Following that, a squaring device mea-
sures the received signal energy and an integrator determines the observation time T . Finally,
the output of the integrator, V , is compared with threshold K to decide whether the signal is
present or no.
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Figure 3: Graphical user interface for transmission side.

Figure 4: Graphical user interface for sensing side.
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Figure 5: Typical block diagram of an energy detector.

3.2 — Cyclostationarity Detection
To detect the cyclostationarity over the received signal, we make the choice of the well known
statistical test proposed by Dandawat and Giannakis [11]. This test uses the asymptotic prop-
erties of the cyclic autocorrelation function estimates R̂N

xx. For a candidate cycle-frequency
α, it makes the following hypotheses testing:

H0 : R̂N
xx = εNxx for all arguments

H1 : R̂N
xx = Rxx + εNxx for some arguments

(1)

whereRxx is the (nonzero) cyclic autocorrelation function at cycle-frequency α of the process
x, and εNxx is a zero mean random variable. The asymptotic statistics of εNxx are a classic result,
from which an hypothesis test is built, allowing one to take statistical decision.

3.3 — Model Selection Based Detection
It is well known that the ambient noise can be modeled using Gaussian distribution. Thus, this
approach proposes to analyze Akaike weights information in order to determine the position
of vacant bands in the spectrum of the received signal [6]. We consider that the ambient noise
can be modeled using Gaussian distribution and its norm can be modeled using Rayleigh
distribution. The Akaike weights can be interpreted as an estimate of the probability that the
received signal distribution fits the Gaussian one, and given by:

Wj =
e

1
2

Φj∑N
i=1 e

1
2

Φi
(2)

where Φj denotes the AIC differences defined by:

Φj = AICj −mini AICi (3)

where mini AICi denotes the minimum AIC value over all analysis windows [6].
In particular, we scan the spectrum band of the received signal with the mean of frequency

sliding window. For each sub-band of interest, we first compute AIC values and then the
Akaike weights. Once we get the corresponding values, we shift the window by one sample
till the end of the band. Following taht, we give the position of vacant sub-bands over the
spectrum. In fact, the maximum value of Akaike weights determines the position of one
vacant sub-band (called reference sub-band). Finally, we fix a threshold in order to decide on
the nature of the received signal. Here, we can decide whether primary user signal exists or
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not. If the computed Akaike weights of Gaussian distribution is lower than the threshold, we
can conclude that any primary user signal exists (vacant sub-band). Then, a secondary user
can utilize the sub-band. Otherwise, if the computed Akaike weights of Gaussian distribution
are larger than the threshold, the decision information of the algorithm is the presence of the
primary user (occupied sub-band).

4. Measurements and Results
In addition to the illustration aspect of the demonstration, we are also interested on the em-
pirical performances study of the above detection algorithms. Fig. 6 shows the experimental
probability of detection versus SNR ranging between −18 dB and 0 dB at a constant false
alarm rate (PF = 0.05) for the three sensing detectors. From this figure, we can observe that
the energy detector is the worst due to the fact that it doesn’t have any prior information about
the noise level (or variance) that should be estimated every time the detector is run. However
the best performances are obtained with the cyclostationary detector since it is independent
from the noise and the received signal parameters (cycle-frequency) are known at sensing
side. When prior knowledge about either the noise or the received signal are unavailable to
the sensing node, the model selection based detection will take the advantage over the two
other methods as it can detect in a blind way.
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Figure 6: Probability of detection vs. SNR for the model selection detector, energy detector
and cyclostationary detector with PF = 0.05.
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5. Conclusion
We have presented the sensing demonstrator that we performed at EURECOM. It is based
on the OpenAirInterface platform and illustrates the concept of spectrum sensing, the actual
major difficulty faced by the cognitive radio. Experimental results show the powerful of the
cyclostationarity detector and the model selection based detector over the energy detector.
However a great benefit in term of detection performances can be reached when cooperation
among second user is considered. In a next step, the demonstration will be evolved to consider
more than one second user in order to measure the benefit from cooperation.
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