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Abstract—We consider decentralized medium-access control
in which many pairwise interactions occur between randomly
selected users that belong to a large population. In each local
interaction, the users involved compete over an access oppor-
tunity. A given user has a fixed number of access attempts
and a fix budget for buying different priority levels. In each
time-slot, the access is attributed to the user with the largest
priority level. We analyze this problem under both cooperative
as well as competitive frameworks. We show that unlike many
standard team problems, optimal pure policies do not exist in
the team framework, but both an optimal solution as well as
equilibria exist within the class of mixed policies. We establish
structural properties as well as explicit characterization of these:
We show that the optimal policy requires only three priority
levels, whereas the noncooperative game possesses a unique
symmetric equilibrium point that uses at most two priority l evels.
Our analysis is applied to power control over wireless capture
channels, where the budget constraint corresponds to the battery
lifetime.

I. I NTRODUCTION

A. Background and Motivation

Many networking control problems can be formulated as
priority assignment for accessing some service. We consider
situations in which the choice of priority is done by each user,
without knowing in advance the priority choices of other users.
If users simultaneously attempt access, then access is granted
only to the one with the highest priority. Each user acquires
priorities, where the higher the priority, the more it costs. The
budget for acquiring priorities is limited, and the performance
criterion is the expected number of successful access attempts
that a user may obtain within a given budget.

We consider both the team framework, in which all users
share the common objective of maximizing the above criterion
averaged over the whole population, as well as the non-
cooperative framework, in which each user maximizes its own
performance measure and where the solution concept is the
Nash equilibrium. We restrict to a regime of weak interactions
in which upon an access attempt, a user is either faced with
no other simultaneous attempt or might face a single opponent
that attempts to access the network at the same time. This
framework is similar to the pairwise interaction paradigm in
evolutionary game theory (see, e.g., [7]), and may correspond,
for example, to sparse network topologies (such as ad-hoc
networks).

As a motivating example, we consider medium access
over a shared capture radio-channel. The priority level is

mapped to the transmission power, and the budget constraint
is mapped to the energy available in the battery of the mobile.
Another possible application of our model could be sequential
(multiple-goods) auctions, in which the user that makes the
highest bid obtains the good. It is assumed that each (limited-
budget) user pays for the right to make a bid (independently
of weather the bid is accepted or not), where the cost of a bid
is proportional to the priority level that is sought.

In this paper, we choose to formulate and investigate the
access problem under the power control framework described
above, as we believe that a concrete model makes the ex-
position more lucid1. Our analysis reveals that unlike many
standard team problems, optimal pure policies do not exist in
the team framework, but both an optimal solution, as well as
equilibria exist within the class of mixed policies. Focusing on
symmetric working points, we fully characterize both the team
solution and the equilibrium point, which turn out to be unique.
We show that the optimal policy requires only three priority
(or power) levels, where the Nash equilibrium uses only two
priority levels. This result is significant from an engineering
perspective, as network architectures usually limit the number
of priority classes to two or three out of practical concerns
(see, e.g., [13], [3], [4]).

B. Related Work

The control of Quality of Service (QoS) through priorities
has become a basic element in networking architectures such
as Diffserv [3], and has been studied in various contexts,
including both system optimal design and a distributed, non-
cooperative framework (see, e.g., [5], [1], [6]). The vast
majority of the theoretic work in the area differs from ours by
assuming full knowledge of the system state and/or involving
queueing networks [2], [6], [10], [11], [16], [14]. Priority
queues are usually different from our framework, as low-
priority jobs may not be lost, but just deferred in their
processing time, whereas in our model a “transmission” with
an inferior priority results in an attempt loss.

The specific motivating example of power control under
energy constraints has been an active research area (see [15]
and [9] for recent surveys on the game-theoretic perspective
of the problem). Most of the existing work focuses on time-
average power constraint or on a maximal power constraint.

1Nonetheless, we address in Section V some features that are specific for
other networking applications.



We consider a different constraint in the form of a limited
energy budget to be spent during the battery lifetime. The
latter setup may correspond, for example, to sensor networks
where the battery of the sensor is limited and can be charged
only occasionally (e.g., by solar energy).

In a previous paper [8], we have considered a related
problem of power control with energy budget constraint over
a CDMA-like interference channel, which enables multiple-
packet reception. Interestingly, not only the solution method-
ology for that case is completely different, but also the struc-
ture of the optimal and equilibria policies are fundamentally
unalike. Whereas the use of the same priority over time is
system-wide optimal and an equilibrium in CDMA systems,
carrying over the same policy to the current framework might
result in the worst possible performance.

C. Paper Structure

The structure of this paper is as follows. The network
model and problem formulation are presented in Section II.
The analysis of the cooperative-team framework is provided
in Section III. In Section IV we study the noncooperative
game that arises when users are free to adjust their assignment
policies. Section V briefly considers more general “reception”
rules, which may encompass a variety of network applications.

II. M ODEL AND PROBLEM STATEMENT

A. General Setting

We consider a large population of mobiles. Each has a
battery withK energy units. Time is discrete. At each time
unit a mobile has a transmission opportunity. If it hask ≤ K
energy units left then it can transmit with anyinteger energy
level1 ≤ l ≤ k. If k = 0 then it cannot transmit. EveryN time
units the battery is replaced with a new one with energy level
K. Assume that there are pairwise interactions: when a mobile
attempts transmission, the receiver is with probability(1− δ)
in the range of yet another mobile which is randomly selected
from the whole population. At each transmission opportunity
the interaction occurs with another randomly selected mobile.
The time slots are common to all mobiles but when a mobile is
at theith stage in his battery lifetime, it interacts with a mobile
that is at a random stagej, uniformly distributed between 1
to N .

User Policy.Due to the above assumptions, a general trans-
mission policyu may be characterized by the number of times
each power level is used, since the specific times in which
each level is applied are insignificant. Hence, a (pure) policy
u will be described by anK +1 vectoru = (n0, n1, . . . , nK),
whereni represents the number of times during the lifetime
of the battery in which a power ofi is used for transmission
(n0 stands for the number of slots in which there is no
transmission). The following constraints must obviously be
met for every feasible user policy:

K∑

i=0

ni = N (1)

K∑

i=1

ini ≤ K. (2)

Our model may allow for mixed policies as well. A mixed
policy σ is a collection of pure policies(u(1), . . . , u(m))
chosen with probabilities(q1, . . . , qm),

∑
m qm = 1.

Reception Rule.At any given time, a transmission attempt
with power level i > 0 is successful, if and only if (i)
there is no simultaneous transmission, or (ii) the interfering
transmission uses a power level strictly lower thani.

B. Team Problem Formulation

We denote bygN,K(σ) the expected number of successful
transmissions per battery lifetime of a mobile when all mobiles
use the same mixed policyσ for given parametersN and
K. Accordingly, gN,K(σ) would be regarded as the utility
of the mobile. The objective in the team problem is to set a
unified policy which maximizes the utilitygN,K(σ) over σ.
The chosenσ can be regarded as a fix access protocol that all
mobiles must obey.

In order to be able to compare strategies for different
parametersN, K we introduce the Throughput Per Slot (TPS)
criterion which divides the former criterion by number of slots
N , i.e.,TPS(σ) =

gN,K(σ)
N . Obviously, maximizingTPS(σ)

is an equivalent problem to maximizinggN,K(σ).
When restricting ourselves to pure policiesu, the team-

objective becomes to maximizegN,K(u) over u, where

gN,K(u) = δ(N − n0) + (1 − δ)
1

N

K∑

i=1

i−1∑

j=0

ninj . (3)

Indeed, when there is no interference, all non-zero power lev-
els lead to a successful transmission, whereas in the presence
of interference, the probability that a transmission with power
level i is successful is given by

∑i−1
j=1 nj/N .

C. Noncooperative Game Formulation

In a noncooperative framework, users are self-optimizing
and are free to determine their own policy in order to max-
imize their expected number of successful transmissions (or
alternatively their expected TPS). A Nash equilibrium point
(NEP) is a collection of user strategies for which no user can
obtain a higher number of expected successful transmissions
by unilaterally modifying its transmission strategy. In the
current paper, we shall focus onsymmetricNash equilibria.
A symmetric Nash equilibria is a working point where all
mobiles use the same strategyσ, and furthermore, for all other
strategies̃σ,

gN,K(σ) ≥ gN,K(σ̃, σ), (4)

wheregN,K(σ̃, σ) is the utility of a user who deviates to the
policy σ̃, while the rest of the population usesσ.

For simplicity, we shall restrict our attention in the bulk of
this work to the case whereN = K. A feasible policy under
this setting is to use a power level of one at all time slots.
Obviously, such policy would result in zero TPS whenδ = 0,



hence it is not an optimum nor an equilibrium for this value
of δ. However, for the other extreme ofδ = 1, the same policy
becomes an optimal solution as well as an equilibrium point.

D. Numeric Examples

We provide below some numeric examples and derive some
interesting properties. For simplicity, we consider caseswhere
N = K and δ = 0, which corresponds to the case where a
user interacts with probability one with another user in each
of its stages. In addition, we focus below on pure strategies.

a) The case ofN = 3: The feasible policies that use
all energy are 111, 210, 300. The expected number of packets
transmitted successfully in a cycle of duration 3, if all usethe
same policy isg3,3(111) = 0, g3,3(210) = 1, g3,3(300) = 2/3.
The policy 210 is seen to be the best pure strategy2. It is an
equilibrium (in pure strategies) as well; a deviation to 111
or to 300 decreases the utility from 1 to 1/3. 111 is not an
equilibrium as a deviation of a player from 111 to 210 or to
300 increases its utility to 1/3. 300 is not an equilibrium since
a player deviating to 111 increases its utility from 2/3 to 2.

b) The case ofN = 4: The feasible policies that use all
energy are 1111, 2110, 2200, 3100, 4000; the corresponding
utilities are:g4,4(1111) = 0, g4,4(2110) = 5/4, g4,4(2200) =
1, g4,4(3100) = 5/4, g4(4000) = 3/4. The policies 2110 and
3100 are the best pure policies for the team problem. None
of the above policies is an equilibrium: any deviation from
1111 strictly increases the utility of the deviator. By deviating
from 2110 to 2200 the utility of the deviator increases to 6/4.
A deviation from 2200 or from 3100 to 1111 increases the
utility to 2. Finally, deviating from 4000 to 1111 increasesthe
utility to 3.

In the list below we provide the optimal pure policies for
the team problem and the associated TPS up toN = 10.

• N = 2: TPS = 0.25
• N = 3: TPS = 0.333
• N = 4: TPS = 0.313
• N = 5: Opt. policy: (22100), (31100), TPS = 0.32
• N = 6: Opt. policy: (221100), (321000), TPS = 0.333
• N = 7: Opt. policy: (3211000), TPS = 0.347
• N = 8: Opt. policy: (32111000), TPS = 0.344
• N = 9: Opt. policy:(222111000), (322110000), TPS =

0.346
• N = 10: Opt. policy: (322111000), TPS = 0.35

We observe the following properties from our numerical study.

1) There need not be an equilibrium point in pure strategies.
2) A power greater than three is not used for the team

problem.
3) The optimal TPS under pure strategies is not monotone

in N .

The potential of using mixed policies is highlighted in the next
example. LetN = 5, and consider the mixed policy of using

2It can be easily shown that there exists an optimal policy that uses all the
available energy. Indeed, Given a policy that does not use all energy, we may
always construct a policy that does use all energy and obtains the same TPS
(by assigning the access energy to the highest used power level).

with probability of 1/2 each of the two optimal pure policies
(22100), (31100). Note that the TPS in this case is equivalent
to the one obtained forN = 10 and (322111000), which is
also the optimal (pure) policy forN = 10. The latter policy
thus obtainsTPS = 0.35, which is a strictly higher value
than the one obtained while restricting the mobiles to pure
strategies.

In the next section we show that a TPS of0.35 is a tight
upper bound onany policy (pure or mixed). We further show
that it can be obtained for anyN = K by the use of mixed
policies. The in-existence of an equilibrium in pure policies
motivates the study of mixed policies for the noncooperative
framework as well.

III. T HE TEAM PROBLEM

In this section we consider the team problem, in which a
central authority assigns a unified policy to all users, who must
obey it. The policy can be thus be viewed as aprotocol. The
natural objective is to find a protocol that maximizes the av-
erage number of successful transmissions (or the TPS) across
users. In Section III-A we consider this optimization problem
under pure policies, and obtain some structural propertiesof
the best policy. In Section III-B we derive an upper bound on
the TPS for anyN . In Section III-C we show that the upper
bound is always achievable when mixed policies are allowed.
Implications of these results are discussed in Section III-D.

A. Pure Strategies

In this subsection we restrict attention to the set of pure
policies, and analyze the optimal policy among this set. From a
practical-engineering viewpoint, the underlying complexity in
implementing pure strategies can be lower compared to mixed
policies, which require randomization between several pure
policies.

We start our analysis with a lemma that provides an al-
ternative expression forgN,K , which will be central in our
subsequent analysis of the problem.

Lemma 1:Let u = (n0, n1, . . . , nK) be a unified transmis-
sion policy. Then

gN,K(u) = δ(N − n0) + (1 − δ)
1

2N

(
N2 −

K∑

i=0

n2
i

)
. (5)

Proof: Note first thatN2 = (n0 + n1 + . . . nK)2 =
2
∑K

i=1

∑i−1
j=0 ninj +

∑K
i=0 n2

i . Hence,

K∑

i=1

i−1∑

j=0

ninj =
N2 −

∑K
i=0 n2

i

2
. (6)

Observe next that

gN,K(u) = nK(N − nK) + nK−1(N − nK − nK−1) + ...+

... + n2(n1 + n0) + n1n0

= N2 −

K∑

i=0

n2
i −

K∑

i=1

i−1∑

j=0

ninj . (7)

Substituting (6) into the last equation gives (5). �



The following result is a direct consequence of Lemma 1.
Proposition 1: There always exists an optimal unified pol-

icy which satisfies the following relation

nK ≤ nK−1 ≤ ... ≤ n1. (8)

Proof: Let u = (n0, . . . , nK) be an optimal unified
policy. Assume thatni > nj for some indexesi andj such that
i > j. Consider now the modified policỹu = (n0, . . . , ñN ),
whereñk = nk, for everyk 6= i, j, ñi = nj , ñj = ni. Thenũ
obviously obeys the constraints (1)–(2). Moreover, noting(5),
ũ achieves the same throughput asu, hence it is an optimal
policy as well. �

The above monotonicity results suggests that there is no
benefit in using higher power levels more frequently than lower
power levels are used. Note that for the case ofδ = 0 it can
be further shown thatnK ≤ nK−1 ≤ ... ≤ n1 ≤ n0, i.e.,
the number of no-transmissions is higher than the number of
transmission at any power level. However, this inequality need
not hold for generalδ.

In the remaining of this subsection, we consider the case
of N ≥ K, which may be relevant, for example, in ad-hoc or
sensor wireless networks, in which energy is limited. Our main
result for that case suggests that a power level greater than3
would not be used inany optimal unified policy (regardless
of how largeN andK are). Formally,

Theorem 2:Assume thatN ≥ K. Let u be an optimal
unified policy. Thenni = 0 for i > 3.
For the proof of the theorem we require four lemmas.

Lemma 2:For everypolicy u

n0 ≥ n2 + 2n3 + 3n4. (9)

Proof: Combining (1) and (2) and recalling thatN ≥ K
we get thatn0 +n1 + · · ·+nK ≥ n1 +2n2 +3n3 + . . . . Thus

n0 ≥ n2 + 2n3 + 3n4 + · · · + (k − 1)nk + . . .

≥ n2 + 2n3 + 3n4.

�

Lemma 3:Assume thatN ≥ K. Further assume thatu is
an optimal unified policy withn4 > 0 thenn1 > 0.
Note first thatn4 > 0 implies thatn0 ≥ 3 by (9). Assume
by contradiction thatn1 = 0 and consider the modified policy
ñ4 = n4−1, ñ1 = 2, ñ0 = n0−1, andñk = nk for k 6= 1, 2, 4.
Note that this policy obeys the constraints (1)–(2). We next
show that2 (gN,K(ũ) − gN,K(u)) > 0 which contradicts the
optimality of u. Using (5),2 (gN,K(ũ) − gN,K(u)) =

2δ+(1−δ)(n2
4+n2

1+n2
0−(n4−1)2−(n1+2)2−(n0−1)2) =

= 2δ + (1 − δ)(2n4 + 2n0 − 6), which is obviously strictly
positive sincen4 ≥ 1 andn0 ≥ 3. �

Lemma 4:Assume thatN ≥ K. Let u be an optimal
unified policy withn4 > 0 then

n0 − n1 ≤ n3 − n4 + 2, (10)

n1 − n2 ≤ n3 − n4 + 2. (11)

To prove (10), consider the modified policỹu with ñ4 = n4−
1, ñ3 = n3 + 1, ñ1 = n1 + 1, ñ0 = n0 − 1 (note thatn0 > 0
from (9) and the lemma’s conditions, henceñ0 ≥ 0), and
ñk = nk for k 6= 4, 3, 1, 0. Note thatũ is a valid policy, since
it obeys (1) and (2) becauseu does (the energy investment of
both policies is equal). Sinceu is an optimal policy we must
have2 (gN,K(ũ) − gN,K(u)) ≤ 0. Using (5) this means that

2δ + (1 − δ)
[
n2

4 + n2
3 + n2

1 + n2
0 − (n4 − 1)2

−(n3 + 1)2 − (n1 + 1)2 − (n0 − 1)2
]
≤ 0.

Noting that2δ is non-negative and rearranging terms in the
inequality above, this inequality holds if2n4 − 2n3 − 2n1 +
2n0−4 ≤ 0 which is easily seen to be equivalent to (10). The
inequality (11) is proven similarly, yet instead of shifting an
energy unit fromn0 to n1, we shift an energy unit fromn1

to n2 (note that such shift is possible by Lemma 3). �

Lemma 5:Let u be an optimal unified policy for someN
andK so thatN ≥ K. Thenn4 = 0

Proof: Assume by contradiction thatn4 > 0. Then

3n4 + 2n3 + n2 − n1 ≤ n0 − n1 ≤ n3 − n4 + 2, (12)

where the first inequality follows from (9) and the second one
from (10). Hence,

4n4 + n3 − 2 ≤ n1 − n2 ≤ n3 − n4 + 2, (13)

where the first inequality follows from (12) and the second one
from (11). The last set of inequalities suggests that5n4 ≤ 4
which contradicts the assumption thatn4 > 0. �

We are now ready to prove the theorem. Note first that
n4 = 0 for every optimal unified policy by Lemma 5. Assume
by contradiction that there exists an optimal policy withni > 0
for somei > 4. Then as in the proof of Proposition 1, the
policy ũ, with ñk = nk, k 6= i, 4, ñ4 = ni > 0, ñi = n4 = 0
is optimal as well. But this contradicts Lemma 5. �

B. Asymptotic analysis

We henceforth restrict attention to the caseK = N . Con-
sider a sequence of discrete problems indexed with a parameter
N . Denotexi ≡ xi(N) := ni/N to be the fraction of time
that poweri is employed. The vectorx = {xi, i = 0, 1, ...} is
an alternative way to define a policy. With this definition, (5)
can be written as

TPS(x) = δ(1 − x0) +
1

2
(1 − δ)

(
1 −

K∑

i=0

x2
i

)
. (14)

The battery lifetime constraint (1) is
∞∑

i=0

xi = 1, (15)

while the energy constraint (2) is
∞∑

i=0

ixi = 1. (16)

In addition there is an ”integrity” constraint:xi are restricted
to multiples ofN−1.



We now consider the problem withN very large.xi is then
interpreted as the long-run fraction of time (orfrequency) that
a power ofi units is used. The integrity constraint disappears,
and we are left with an optimization problem, which is easily
seen to be a strictly convex one.

Lemma 6:The problem of maximizingTPS(x) in (14)
subject to (15)– (16) is a strictly convex optimization problem.

Proof: SinceTPS(x) is quadratic inxi with a negative
multiplicative term−(1 − δ), and the constraints are affine,
the optimization problem is (strictly) convex. Note that inthe
case ofδ = 1 the trivial unique solution of this problem is
x1 = 1. �

The optimal TPS in the asymptotic case is of course an
upper bound to the maximal TPS that can be obtained for
everyN (with the integrity constraint present). We emphasize
that the last statement is valid not only for pure strategies,
but also for mixed strategies, as the solution for the case of
N → ∞ may be viewed as the frequency in which each power
level should be used, regardless if the frequencies are obtained
under pure or mixed policies.

Theorem 3:The optimal frequenciesxi as a function ofδ
and the corresponding TPS are given by:

• 0 ≤ δ ≤ 1
3 : x0 = 4−7δ

10(1−δ) ; xi = (3−2i)δ+4−i
10(1−δ) , i = 1, 2, 3;

TPS = 7−2(δ+δ2)
20(1−δ) .

•
1
3 < δ ≤ 2

3 : x0 = 2−3δ
6(1−δ) ; xi = 2+3δ(1−i)

6(1−δ) , i = 1, 2,

TPS = 1
12

4−3δ2

1−δ .
• δ > 2

3 : x1 = 1; TPS = δ.

Proof: Noting that

TPS(x) =
1

2

(
1 −

K∑

i=0

x2
i

)
+ δ

(
1

2
− x0 +

1

2

K∑

i=0

x2
i

)
,

(17)
we introduce the Lagrangian

L(x) =
1

2
(δ + 1) +

1

2
(δ − 1)

K∑

i=0

x2
i − δx0

+ λ

(
K∑

i=0

xi − 1

)
+ µ

(
K∑

i=0

ixi − 1

)
, (18)

whereλ is the Lagrange multiplier associated with the number
of time slots, andµ with the power constraint. We ignore in
(18) the positivity constraints for eachxi, assuming thatxi

involved are all positive, yet directly consider this constraint
in our analysis below.

We recall from Proposition 1 that the optimal solution
satisfiesx1 ≥ x2 ≥ x3. Depending onδ, the largesti for
which xi > 0 is either 3, 2, or 1. This is a direct consequence
of Theorem 2, which holds for everyN (and also in the
limit N → ∞. We shall denote this largesti by i∗. Assume
that i∗ > 1 (the casei∗ = 1 is treated separately below).
In this case, the extremum of the Lagrangian corresponds to
an interior point. Indeed, since for1 ≤ i ≤ i∗, we focus
on optimal solutions that satisfyxi > 0 and we are thus
away from the boundaryni = 0 for these indices; additionally

x0 > 0, since a power level larger than one is being used. The
optimal solution is thus obtained by equating the gradient of
the Lagrangian to zero, which leads to the following equations
∂L

∂x0

= (δ − 1)x0 − δ + λ = 0, ∂L

∂xi
= (δ − 1)xi + λ + µi = 0

for i = 1, . . . , i∗, or equivalently

x0 =
δ − λ

δ − 1
, xi = −

λ + µi

δ − 1
. (19)

We now consider the different alternatives fori∗. Assume
i∗ = 3. Substituting (19) in the constraint equations (15)–
(16) (recall that the inequality (16) is active in the optimum,
see Footnote 2) and taking into account thatxi = 0 for i ≥ 4,
we obtain thatµ = − 2δ+1

10 andλ = 3δ+4
10 . Substituting these

quantities back in (19) yieldsx0 = 4−7δ
10(1−δ) and

xi =
(3 − 2i)δ + 4 − i

10(1 − δ)
, (20)

resulting inTPS = 7−2(δ+δ2)
20(1−δ) . It can be seen from (20) that

x3 decreases withδ. Since the non-negativity constraints for
thexi’s have not been explicitly considered in the formulation
of the problem, theδ threshold from which a power level 3
will no longer be used is obtained by equalizingx3 in (20) to
zero. It is obtained that forδ > 1

3 only two levels are used.
By proceeding analogously fori∗ = 2, we obtained that

µ = − δ
2 andλ = 1

3 + δ
2 , which lead tox0 = 2−3δ

6(1−δ) and

xi =
2 + 3δ(1 − i)

6(1 − δ)
, (21)

with a resulting TPS of112
4−3δ2

1−δ . Substitutingx2 = 0 in (21),
we obtain a threshold value ofδ = 2

3 , above which a power
level beyond1 is a suboptimal choice. Forδ > 2

3 , it follows
immediately from (14) that the optimal policy is to transmit
at every slot with a power level of 1. In this case the TPS is
nothing but the probabilityδ of having no interference. �

The evolution of the optimal power allocation as a function
of δ is summarized in Fig. 1, and the corresponding TPS is
given in Fig. 2.
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Fig. 1. Optimal distribution of power levels as a function ofthe probability
of having no interferer.

C. Optimal Policy in Mixed Policies

As shown in Section II-D, the use of mixed strategies may
increase the TPS. The upper bound on performance obtained
in Section III-B, leads to the objective of achieving this bound
via mixed strategies. We next establish that the upper-bound is
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Fig. 2. Asymptotic TPS as a function of the probability of having no
interferer.

indeed achievable for anyN , and explicitly derive the mixed
policy that leads to the corresponding optimal performance.

We use the notationu = (n3, n2, n1, n0) for a policy that
uses a power level of no more than3. Consider the following
three pure policies:

u(1) = (0, 0, N, 0) (22)

u(2) = (0, ⌊N/2⌋, mod(N/2), N − ⌊N/2⌋ − mod(N/2))

u(3) = (⌊N/3⌋, 0, mod(N/3), N − ⌊N/3⌋ − mod(N/3))

(where⌊y⌋ stands for the largest integer smaller thany, and
mod(y/z) is the reminder in dividing two integer numbersy
and z). We show below that any required frequency vector
(x3, x2, x1, x0) can be obtained by a mixed policy that uses
the above three pure policies.

Theorem 4:Any required frequency vector(x3, x2, x1, x0)
is attained by a mixed policy that uses the pure policies
u(1), u(2), u(3) in (22) with probabilitiesp3 = x3

N
⌊N/3⌋ ,

p2 = x2
N

⌊N/2⌋ , andp1 = 1 − p2 − p3.
Proof: Note first that the battery lifetime constraint (15)

is obeyed since
∑3

i=0 ni = N for each of the three pure
policies. Observe next that a power level of3 is used only in
u3. Hence, the probability of transmitting at this power level
is p3⌊N/3⌋

N = x3. Similarly, a power level of2 is used only in
u2. Hence, the probability of transmitting at this power level
is p2⌊N/2⌋

N = x2. In order to obey the total energy constraint
(16), it remains to be shown that

x1 = 1 − 3x3 − 2x2. (23)

To that end, we examine the probability for using a power level
of 1 in each pure policy, and multiply it be the probability of
using that policy. This gives

(1 − p2 − p3) +
mod(N/2)

N
p2 +

mod(N/3)

N
p3

= 1 − p2

(
1 −

mod(N/2)

N

)
− p3

(
1 −

mod(N/3)

N

)

= 1 − x2
N − mod(N/2)

⌊N/2⌋
− x3

N − mod(N/3)

⌊N/3⌋

= 1 − x2
N − mod(N/2)

1
2 (N − mod(N/2))

− x3
N − mod(N/3)

1
3 (N − mod(N/3))

,

which is equivalent to (23). �

The significance of Theorem 4 is that the upper bound TPS
can be obtained for everyN by implementing the optimal

frequencies obtained in Theorem 3 via the mixed policy
derived above.

D. Discussion

The combination of Theorems 3 and 4 leads to a globally
optimal (mixed) policy that achieves the upper bound on
performance and hence can be set as a unified protocol. It
is important to emphasize that the number of pure policies
that are used in the optimal mixed policy remains a constant
(three), and does not grow withN . In addition, the complexity
in computing the optimal mixed policy relates to calculating
expressions such asN/2 andN/3, which do not become much
more complex for a largeN . Hence, the optimal policy is
appealingly implementable.

At a higher perspective, we note that the approach used
in Theorems 3–4 can be applied in more general contexts,
besides throughput optimality. For example, assume that half
of the population should be given some priority in terms of
the obtained TPS, compared to the other half. The precise
definition of the Quality of Service (QoS) differentiation be-
tween the two sub-populations can be casted as a (continuous)
optimization problem. After solving the problem and obtaining
the frequencies for each subset of the population, Theorem
4 can be invoked in order to implement the corresponding
protocol.

IV. T HE NONCOOPERATIVEGAME

This section is dedicated to the study of the noncooperative
framework and the underlying Nash equilibria. Our main focus
is on Symmetric equilibria (28), which may be regarded as
protocols, from which no user has an incentive to unilaterally
deviate. In Section IV-A we prove the uniqueness of the
symmetric equilibrium point, and further provide a complete
characterization thereof. Using the characterization, Section
IV-B compares the performance of the optimal policy obtained
in Section to the unified equilibrium policy via the so-called
price-of-anarchy (PoA) performance measure. We conclude
this section by showing that asymmetric equilibria exists in
general, yet leave their full analysis for future work. Through-
out this section, we shall focus on the case ofN = K, which
enables us to provide a concrete comparison between optimal
and equilibrium performance.

A. Symmetric Equilibria

We start our analysis by showing that in any symmetric
equilibrium point (28), power levels equal or greater than three
would never be used.

Theorem 5:Let u be a unified equilibrium point. Thenni =
0 for every i ≥ 3.

Proof: The idea behind the proof is to establish first that
a power level of three would not be used in any best response.
The theorem’s claim would then follow by induction onni.
The proof proceeds in the following steps.

Step 1:When considering policies withni = 0, i > 3,
there is no best-response withn3 > 0: Consider a policyu′ =
(n′

0, n
′
1, n

′
2, n

′
3), n′

3 > 0 for all players (wheren′
i = 0 for



every i ≥ 3). Let u = (n0, n1, n2, n3) be a best response to
u′. Note that the energy constraint (2) is met with equality fora
best-response, hence

∑3
i=1 ini = N . Assume by contradiction

that n3 > 0. Introduce also the policŷu = (n̂0, n̂1, n̂2, 0)
wheren̂2 = n2 +n3, n̂0 = n0−n3, n̂1 = n1 +n3 (note that̂u
obeys the energy constraint (2)). We show below thatû obtains
a larger value compared tou contradicting the optimality of
the latter.

g(u, u′) = δ(N−n0)+
1 − δ

N

(
n1n

′
0+n2(n

′
0+n′

1)+n3

2∑

i=0

n′
i

)

= δ(N−n0)+
1 − δ

N
(Nn′

0+n2(n
′
1−n′

0)+n3(n
′
1+n′

2−2n′
0))

= δ(N−n0)+
1 − δ

N
(Nn′

0+(n2+n3)(n
′
1−n′

0)+n3(n
′
2−n′

0))

< δ(N − n̂0) + (1 − δ)
1

N
(Nn′

0 + n̂2(n
′
1 − n′

0)) = g(û, u′),

where the first equality follows from the energy constraint
(written asn1 = N −2n2−3n3). The inequality follows from
n̂0 < n0 and also fromn′

0 > n′
2 (which holds sincen′

3 > 0).
Step 2:n3 = 0 in any best-response. Consider now a general

policy u′ = (n′
0, n

′
1, n

′
2, n

′
3, . . . ) employed by all users, and

a best-response of a deviatoru = (n0, n1, n2, n3, . . . ). The
utility for the deviating user can be decomposed as:

g(u, u′) = g(u(0−3), u
′
(0−3)) + g(u(0−3), u

′
(≥4))

+ g(u(≥4), u
′
(0−3)) + g(u(≥4), u

′
(≥4)), (24)

where for everyI ⊂ N, the notationu(I) stands for the
sub-vector{ni}i∈I (thus, for example ,g(u(≥4), u

′
(0−3)) is

the number of successful transmissions obtained in inter-
actions where all users use power levels0 − 3 and the
deviator uses power levels greater or equal to4). Obviously,
g(u(0−3), u

′
(≥4)) = 0. As before, assume by contradiction that

n3 > 0 and consider an alternative policy for the deviating user
û = (n̂0, n̂1, n̂2, 0, . . . ) wheren̂2 = n2 + n3, n̂0 = n0 − n3,
n̂1 = n1 + n3, n̂i = ni for i ≥ 4. It follows from Step 1 that
g(û(0−3), u

′
(0−3)) > g(u(0−3), u

′
(0−3)). Since the other three

terms in (24) are not affected by the transition fromu to û,
we conclude thatg(û, u′) > g(u, u′). Hencen3 = 0 in any
best response.

Step 3: In any best-responseni = 0 for i > 2. Assume
by induction onk that nk = 0, n′

k = 0. It is readily seen
that the policy(n0, n1, . . . , nk = 0, nk+1, . . . ) with nk+1 > 0
is suboptimal, sincêu = (n0 − nk+1, n1 + nk+1, . . . , n̂k =
nk+1, n̂k+1 = 0, . . . ) obviously obtains strictly higher TPS.
Indeed, the deviating user benefits from the use of power
level k as it did from power levelk + 1 (due to the induction
assumption thatn′

k = 0), and in addition it obtains a strictly
positive benefit from additional power-1 transmissions. Hence,
nk+1 = 0. Sinceni = 0, i > 2 for any best response, there is
no equilibrium point in which mobiles use power levels above
two. �

Taking into account thatn3 = 0, it follows from the energy
constraints (2) (which is met with equality) thatn0 = n2 for

any user policy. We next express the utility of a “deviating”
user with such policyu = (n2, n1, n0 = n2), where all others
use a policyu′ = (n′

2, n
′
1, n

′
0).

g(u, u′) = δ(N − n0) +
1 − δ

N

(
n2(n

′
1 + n′

0) + n1n
′
0

)
(25)

= δ(N − n2) +
1 − δ

N

(
n2(n

′
1 + n′

0) + (N − 2n2)n
′
0

)

= δN + (1 − δ)n′
0 + n2

1 − δ

N

(
n′

1 −
(
n′

0 +
δN

1 − δ

))
.

Define

A(n′
1, n

′
0) =

(
n′

1 −
(
n′

0 +
δN

1 − δ

))
. (26)

Clearly, the sign ofA(n′
1, n

′
0) would determine the best-

response (BR) of the deviating user, as we summarize below.






A(n′
1, n

′
0) > 0 : n0 = n2 = N

2 , n1 = 0

A(n′
1, n

′
0) < 0 : n0 = n2 = 0, n1 = N

A(n′
1, n

′
0) = 0 : Any strategy (n2, n1, n0) is BR.

(27)
Using (27), we may explicitly characterize the symmetric

equilibrium point, as we summarize in the next theorem.
When the policies below result in non-integer numbers, mixed
policies are used in the spirit of Theorem 4.

Theorem 6:(i) The symmetric equilibrium point exists and
is unique. It is given by

{
δ ≤ 1

2 : n0 = n2 = 1−2δ
3(1−δ)N, n1 = 1+δ

3(1−δ)N

δ > 1
2 : n0 = n2 = 0, n1 = N.

(28)

(ii) The corresponding TPS are given by
{

δ ≤ 1
2 : TPS = 1

3 (1 + δ),

δ > 1
2 : TPS = δ.

(29)

Proof: (i) Consider first the case whereδ > 1
2 .

For that case, A(n′
1, n

′
0) =

(
n′

1 −
(
n′

0 + δN
1−δ

))
<

(
n′

1 −
(
n′

0 + N
))

≤ 0, which immediately leads to the best
response policy ofn0 = n2 = 0, n1 = N .

Consider next the case ofδ ≤ 1
2 and the possible values for

A(n′
1, n

′
0). Assume thatA(n′

1, n
′
0) > 0; then obviouslyn′

1 ≥
n′

0; however, the best-response (27) in this case is such that
0 = n1 < n0 = N/2. HenceA(n′

1, n
′
0) > 0 does not lead to

a symmetric equilibrium. Similarly, assume thatA(n′
1, n

′
0) <

0. This implies thatn′
1 < n′

0 + δN
1−δ ≤ n′

0 + N ; however
the best-response in this case is such thatN = n1 ≥ n0 +
N = N . HenceA(n′

1, n
′
0) < 0 does not lead to a symmetric

equilibrium as well. The remaining case isA(n′
1, n

′
0) = 0.

Since the deviating user is indifferent about its policy (aslong
as it uses power levels not greater than two), a symmetric
equilibrium is obtained forn1 = n0 + δN

1−δ . Using the energy
constraint, the last equation immediately implies thatn0 =
n2 = 1−2δ

3(1−δ)N , n1 = 1+δ
3(1−δ)N .

(ii) For δ > 1
2 , it is immediate that the TPS isδ, since users

always transmit with a power level of one; the TPS in this case



is thus equivalent to the probability of not facing an interferer.
For the case ofδ ≤ 1

2 , we substituteA(n′
1, n

′
0) = 0 and the

allocation rule (28) in (25) and obtain thatTPS = δ + 1−2δ
3

which establishes the result. �

The evolution of the power allocation at the symmetric
equilibrium as a function ofδ is summarized in Fig. 3, and
the corresponding TPS is given in Fig. 4.
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Fig. 3. The distribution of power levels at the symmetric equilibrium as a
function of the probability of having no interferer.
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Fig. 4. The TPS at the symmetric equilibrium as a function of the probability
of having no interferer.

B. Efficiency Loss

Equipped with a complete characterization of both the
symmetric optimal solution and the symmetric equilibrium
point, we may compare the performance at both frameworks. A
popular measure for comparison is the price of anarchy (PoA)
[12], which corresponds in our case to the ratio between the
TPS obtained in the team problem and the TPS at the sym-
metric equilibrium3. We emphasize that we do not consider
here asymmetric working points.
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Fig. 5. Efficiency loss as a function ofδ. The y-axis is the ratio between
the symmetric-optimal TPS and the symmetric equilibrium.

3In general, the PoA corresponds to the ratio between the optimal solution
and theworst Nash equilibrium. However, in our case, both the symmetric
optimal solution and the symmetric equilibrium are unique.

The PoA as a function ofδ is depicted in Figure 5. It is seen
that the efficiency loss is always smaller than9 percent. An
interesting direction for future work is to study the efficiency
loss in cases where the energy available is larger (i.e.,K > N )
and examine whether users misuse the access energy.

C. Existence of Asymmetric Equilibria

We focused in preceding subsections on symmetric Nash
equilibria. In the subsection we show that asymmetric equi-
libria exist in general. In view of (26), any set of policies
(that use power levels less than3), for which the average
distribution of power levels among the user-population satisfies
n1 = n0 + δN

1−δ , leads to an equilibrium. Indeed, no user
will benefit from deviating, as all(n2, n1, n0) policies are in
fact best responses. A particular case of the above are the
symmetric equilibria obtained in Theorem 6. Based on this
observation, it is possible to construct asymmetric equilibria
as, for instance,

• A fraction 1+δ
3(1−δ) of the population usen1 = N , n0 =

n2 = 0.
• The remaining fraction2−4δ

3(1−δ) usen0 = n2 = N
2 , n1 =

0.

In the present paper, we do not focus asymmetric equi-
libria, yet point to their existence. The numeric example
above strongly relies on our characterization of the symmetric
equilibrium. It remains to be verified whether additional asym-
metric equilibria (which may lead to different TPS) do exist.
The comprehensive analysis of asymmetric equilibria remains
a challenging direction for future work.

V. EXTENSIONS AND CONCLUSION

We briefly mention how to adapt the analysis to variations
on the initial model, and present some conclusions and future
research directions.

A. “Soft-Capture” Wireless Network

Assume that if two stations transmit at the same power level
then a given packet is successfully received with probability
a ≤ 1/2. Let a = 1−a. If powers are different then, as before,
the packet transmitted with larger power is successful and the
other is not. The objective to maximize is given by

gcap = δ(N−n0)+(1−δ)
a

N

KX
i=1

i−1X
j=0

ninj+(1−δ)
a

N

KX
i=1

iX
j=0

ninj

= δ(N − n0) + (1− δ)
1

N

� KX
i=1

i−1X
j=0

ninj + a

KX
i=1

n2

i

�
= δ(N − n0)− (1− δ)n2

0a/N (30)

+(1− δ)
h1− 2a

N

KX
i=1

i−1X
j=0

ninj +
2a

N

� KX
i=1

i−1X
j=0

ninj +
1

2

KX
i=0

n2

i

�i
= δ(N −n0)− (1− δ)

an2

0

N
+(1− δ)

h1− 2a

N

KX
i=1

i−1X
j=0

ninj + aN
i
,

(31)



where we used (6). Considera = 1/2. In this case,gcap equals
−δn0 − (1 − δ)n2

0/(2N) plus some constant that does not
depend onu. For anyδ, this utility is maximized atn0 = 0
which meansn1 = N and ni = 0 for all i 6= 1. The case
a < 1/2 remains to be investigated in future work.

B. General Access Problems (Zero May Win Too)

Through the model we used for the power control problem,
we intended to introduce a methodology that can be useful
for general control of access priority. We briefly comment
on some specific variations that may be needed in other
network applications. In a general priority assignment context,
one may again enumerate priority levels using the integers
{0, 1, 2, . . .}; an access request with priorityi ≥ 1 would
prevail if it is the only request, or if all other requests are
with lower priority. It may even be granted access (with some
positive probabilitya) in the case that another request is
made with the same priority level (as in the “soft-capture”
model above). Yet, there may be a difference in the way that
priority level 0 is treated, compared to the way that power
level 0 is modeled in the power control problem. In the power
control framework, when the transmission power is zero then
transmission fails, in particular, for the following two cases:
(i) there is no interference, or (ii) there is interference with
another mobile that transmits with power zero. This need not
be the situation in other priority assignment models.

To concretize our discussion, assume that a request with
zero priority will be successful w.p.1 in case (i) above, and
with positive probabilitya in case (ii) (i.e., the “soft-capture”
rule includes priority zero as well). The expected utility is
given byδN plus the third term of (31), which yields

ggeneral = δN + (1 − δ)
[1 − 2a

N

K∑

i=1

i−1∑

j=0

ninj + aN
]
.

Interestingly, the optimal and equilibria policies for anyδ
coincide with those obtained for the power control problem
with δ = 0. Note that for δ = 1 or for a = 0.5, the
performance does not depend on the policy anymore (all
policies are thus optimal).

C. Concluding Remarks

We have considered in this paper the priority assignment
problem that corresponds to “sparse” multiple access net-
works, in which pairwise interactions occur. We have provided
an explicit solution for the team problem, and a complete
characterization of the symmetric equilibrium in a noncooper-
ative framework. Interestingly, The number of power levels
that is used in the competitive setup is smaller than the
corresponding number for the team problem (this holds for
everyδ). This phenomenon is counter-intuitive perhaps, as in
many noncooperative networking scenarios, the users consume
the network resources in a more aggressive way, compared to
the socially-optimal point (e.g., in queuing networks, see[6]).

The framework and results of this paper may be extended
in several ways. One direction is to consider general battery

life-time N and general budgetK and obtain complete char-
acterization of both the team and game problems. Another
challenging extension is to relax the assumption on sparsity
an to consider interactions of more than two users and their
consequences.
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