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Abstract—We consider decentralized medium-access control mapped to the transmission power, and the budget constraint
in which many pairwise interactions occur between randomly s mapped to the energy available in the battery of the mobile
selected users that belong to a large population. In each 16t - aAnqther possible application of our model could be seqaénti
interaction, the users involved compete over an access oppo tinle-a00d " i which th that makes th
tunity. A given user has a fixed number of access attempts (mu Iple _900 S)_ auctions, In W_'C € user that ma _es_ ¢
and a fix budget for buying different priority levels. In each highest bid obtains the good. It is assumed that each (lifnite
time-slot, the access is attributed to the user with the largst budget) user pays for the right to make a bid (independently
priority level. We analyze this problem under both cooperatve  of weather the bid is accepted or not), where the cost of a bid
as well as competitive frameworks. We show that unlike many is proportional to the priority level that is sought.

standard team problems, optimal pure policies do not existn . . .

the team framework, but both an optimal solution as well as In this paper, we choose to formulate and investigate _the
equilibria exist within the class of mixed policies. We estalish ~access problem under the power control framework described
structural properties as well as explicit characterization of these: above, as we believe that a concrete model makes the ex-
We show that the optimal policy requires only three priority  position more luciédl. Our analysis reveals that unlike many
levels, whereas the noncooperative game possesses a uniqu&andard team problems, optimal pure policies do not emist i

symmetric equilibrium point that uses at most two priority | evels. . .
Our analysis is applied to power control over wireless captte the team framework, but both an optimal solution, as well as

channels, where the budget constraint corresponds to the beery ~ €quilibria exist within the class of mixed policies. Fosugbn
lifetime. symmetric working points, we fully characterize both thente

solution and the equilibrium point, which turn out to be ureq

We show that the optimal policy requires only three priority

A. Background and Motivation (or power) levels, where the Nash equilibrium uses only two
Many networking control problems can be formulated gsriority levels. This result is significant from an enginieer

priority assignment for accessing some service. We consigerspective, as network architectures usually limit thenber

situations in which the choice of priority is done by eachruseof priority classes to two or three out of practical concerns

without knowing in advance the priority choices of otherrsse (see, e.g., [13], [3], [4]).

If users simultanepusly att_empt access, then access isegr_aré_ Related Work

only to the one with the highest priority. Each user acquires

priorities, where the higher the priority, the more it coStke

budget for acquiring priorities is limited, and the perfamee

|I. INTRODUCTION

The control of Quality of Service (QoS) through priorities
has become a basic element in networking architectures such
criterion is the expected number of successful access pigenfS Diffserv [3], and has been studied in various contexts,
that a user may obtain within a given budget. |nclud|ng_ both system optimal design and a distributed,-non

We consider both the team framework, in which all usefooperative framework (see, e.g., [5], [1], [6]). The vast
share the common objective of maximizing the above criterin@ority of the theoretic work in the area differs from ouss b
averaged over the whole population, as well as the ng®sSUming full knowledge of the system state and/or m_vg_lvm
cooperative framework, in which each user maximizes its ovffi€u€ing networks [2], [6], [10], [11], [16], [14]. Prioyit
performance measure and where the solution concept is fi¥¢ues are usually different from our framework, as low-
Nash equilibrium. We restrict to a regime of weak interatsio Priority jobs may not be lost, but just “defe”ed In Ehe!r
in which upon an access attempt, a user is either faced wRIPCESSIng time, whereas in our model a “transmission” with

no other simultaneous attempt or might face a single opgon&f inferior priority results in an attempt loss.

that attempts to access the network at the same time. Thid "€ SPecific motivating example of power control under
framework is similar to the pairwise interaction paradigm i€N€rgy constraints has been an active research area (§ee [15

evolutionary game theory (see, e.g., [7]), and may cormtpoand [9] for recent surveys on the game-theoretic perspectiv

for example, to sparse network topologies (such as ad-Hcthe problem). Most of the existing work focuses on time-

networks). average power constraint or on a maximal power constraint.

As a motivating examplg, we consider me.d”_"m aCCeSSiNgnetheless, we address in Section V some features thapecifis for
over a shared capture radio-channel. The priority level dgher networking applications.



We consider a different constraint in the form of a limited

energy budget to be spent during the battery lifetime. The K K 5
latter setup may correspond, for example, to sensor neswvork Zmz = 2
where the battery of the sensor is limited and can be charged =t . _
only occasionally (e.g., by solar energy). Our model may allow for mixed policies as well. A mixed
In a previous paper [8], we have considered a relat®@licy o is a collection of pure policiegu(1),...,u(m))

problem of power control with energy budget constraint ovéfosen with probabilitiesg:, . .., ¢m), >, ¢m = 1.

a CDMA-like interference channel, which enables multiple- Reception Rule.At any given time, a transmission attempt
packet reception. Interestingly, not only the solution moet With power leveli > 0 is successful, if and only if (i)
ology for that case is completely different, but also thestr there is no simultaneous transmission, or (i) the intemter
ture of the optimal and equilibria policies are fundameytaltransmission uses a power level strictly lower than

unalike. Wherea_s the use of thg same priority over time B’s Team Problem Formulation

system-wide optimal and an equilibrium in CDMA systems,

carrying over the same policy to the current framework might e denote byyy x (o) the expected number of successful
result in the worst possible performance. transmissions per battery lifetime of a mobile when all nesbi

use the same mixed policy for given parametersV and
C. Paper Structure K. Accordingly, gy k(o) would be regarded as the utility

The structure of this paper is as follows. The networ‘%f _the mob_|le. Th_e obJect_|v¢ in the team problem is to set a
nified policy which maximizes the utilityy x (o) overo.

model and problem formulation are presented in Section H h b ded f' | that all
The analysis of the cooperative-team framework is providJ@eb_(lz osem cag e regarded as a fix access protocol that a
in Section Ill. In Section IV we study the noncooperativéno lles must obey.

game that arises when users are free to adjust their assitj;nmeIn orde;\;oKbe a}ble (;0 co:]npgrrhe strzteguleas f?srl dlffTePrgnt
policies. Section V briefly considers more general “recapti parametersV, K’ we introduce the Throughput Per Slot ( )

rules, which may encompass a variety of network applicatior?rit?rion which divides t(t;)e form_er criterion _by_n_umber ogis
N,i.e.,TPS(c) =242 Obviously, maximizingl'PS (o)

Il. M ODEL AND PROBLEM STATEMENT is an equivalent problem to maximizingy, x (o).
When restricting ourselves to pure policias the team-

objective becomes to maximizgy x(u) overw, where
We consider a large population of mobiles. Each has a

A. General Setting

. . . . . . K i—1
battery with X' energy units. Time is discrete. At each time B 1 .
unit a mobile has a transmission opportunity. If it Has. K gn.k () = 0(N =no) + (1 - 0) z; _z(:)"znﬂ' (3)
1= J:

energy units left then it can transmit with amteger energy
levell <1 < k. If k = 0 then it cannot transmit. Every time Indeed, when there is no interference, all non-zero power le
units the battery is replaced with a new one with energy levels lead to a successful transmission, whereas in the mesen
K. Assume that there are pairwise interactions: when a mobfieinterference, the probability that a transmission witwer
attempts transmission, the receiver is with probability- 5) leveli is successful is given by~'~} n;/N.
in the range of yet another mobile which is randomly selecte(\g
from the whole population. At each transmission opporgunit™
the interaction occurs with another randomly selected teobi N & noncooperative framework, users are self-optimizing
The time slots are common to all mobiles but when a mobile®d are free to determine their own policy in order to max-
at theith stage in his battery lifetime, it interacts with a mobildmize their expected number of successful transmissions (o
that is at a random stagg uniformly distributed between 1 alternatively their expected TPS). A Nash equilibrium poin
to N. (NEP) is a collection of user strategies for which no user can
User Policy. Due to the above assumptions, a general trarPtain a higher number of expected successful transmission
mission policyu may be characterized by the number of time8Y unilaterally modifying its transmission strategy. Ineth
each power level is used, since the specific times in whi€irrent paper, we shall focus aymmetricNash equilibria.
each level is applied are insignificant. Hence, a (pure)cgoliA Symmetric Nash equilibria is a working point where all

Noncooperative Game Formulation

u will be described by ads + 1 vectoru = (ng, n1, ..., nk), mobiles use the same strategyand furthermore, for all other
wheren; represents the number of times during the lifetimgtrategiesr, )
of the battery in which a power afis used for transmission 9N,k (0) = gn,k(5,0), (4)

(no stands for the number of slots in which there is NQhere

o . . : gn . k(0,0) is the utility of a user who deviates to the
transmission). Thg following constraints must obviously bpolicy &, while the rest of the population uses
met for every feasible user policy:

For simplicity, we shall restrict our attention in the bulk o

K this work to the case wher® = K. A feasible policy under

Z”i - N (1) this setting is to use a power level of one at all time slots.
Obviously, such policy would result in zero TPS whea- 0,



hence it is not an optimum nor an equilibrium for this valugvith probability of 1/2 each of the two optimal pure policies
of 5. However, for the other extreme 6f= 1, the same policy (22100), (31100). Note that the TPS in this case is equivalent
becomes an optimal solution as well as an equilibrium poirit the one obtained foV = 10 and (322111000), which is
] also the optimal (pure) policy foN = 10. The latter policy
D. Numeric Examples thus obtainsT’PS = 0.35, which is a strictly higher value
We provide below some numeric examples and derive sottiigin the one obtained while restricting the mobiles to pure
interesting properties. For simplicity, we consider cashsre strategies.
N = K andd = 0, which corresponds to the case where a In the next section we show that a TPS®85 is a tight
user interacts with probability one with another user inheacipper bound orany policy (pure or mixed). We further show
of its stages. In addition, we focus below on pure strategiethat it can be obtained for any = K by the use of mixed
a) The case ofV = 3: The feasible policies that usepolicies. The in-existence of an equilibrium in pure paii
all energy are 111, 210, 300. The expected number of packewstivates the study of mixed policies for the noncoopeeativ
transmitted successfully in a cycle of duration 3, if all tise framework as well.
same policy igj3 3(111) = 0, g3,3(210) = 1, g3,3(300) = 2/3.
The policy 210 is seen to be the best pure stratetiyis an . ] . ) ]
equilibrium (in pure strategies) as well; a deviation to 111 !N this section we consider the team problem, in which a
or to 300 decreases the utility from 1 to 1/3. 111 is not afntral authority assigns a unified policy to all users, whsm
equilibrium as a deviation of a player from 111 to 210 or t§PeY it. The policy can be thus be viewed apratocol The
300 increases its utility to 1/3. 300 is not an equilibriumcei  Natural objective is to find a protocol that maximizes the av-
a player deviating to 111 increases its utility from 2/3 to 2. €r@ge number of successful transmissions (or the TPS)sacros
b) The case ofV = 4: The feasible policies that use allYSers: In Sect|c_>n_ l-A we conglder this optimization pierol
energy are 1111, 2110, 2200, 3100, 4000; the correspondwer pure _poI|C|es, ar_1d obtain some_structural propedies
utilities are:gs 4(1111) = 0, ga.4(2110) = 5/4, g4.4(2200) = thé best policy. In Section _III-B we derive an upper bound on
1, 94.4(3100) = 5/4, g4(4000) = 3/4. The policies 2110 and the TP_S for anyN. Ir! Section IlI-C we show_ that the upper
3100 are the best pure policies for the team problem. NoR8UNd is always achievable when mixed policies are allowed.
of the above policies is an equilibrium: any deviation frorfmplications of these results are discussed in SectioDlll-
1111 strictly increases the utility of the deviator. By d#ing A pure Strategies
from 2110 to 2200 the utility of the deviator increases to. 6/4

T . In this subsection we restrict attention to the set of pure
A deviation from 2200 or from 3100 to 1111 increases the . . . . .
utility to 2. Finally, deviating from 4000 to 1111 increagbe SO“CIeS’ and analyze the optimal policy among this setrrfao

utility to 3 practical-engineering viewpoint, the underlying comjithein
| yth I'. t bel ide th timal licies f implementing pure strategies can be lower compared to mixed
n the fist below we provide Iné optimal pure policies Obolicies, which require randomization between severakpur
the team problem and the associated TPS ujyte 10.

Ill. THE TEAM PROBLEM

policies.
e N=2TP5=025 We start our analysis with a lemma that provides an al-
« N=3:TPS5=0.333 ternative expression fogx x, which will be central in our
e N=4TPS5=0313 subsequent analysis of the problem.
« N =5: Opt. policy: (22100), (31100), TPS = 0.32 Lemma 1:Let u = (ng,n1, ..., nx) be a unified transmis-

o N =T: Opt. policy: (3211000), TPS = 0.347

K
« N =8: Opt. policy: (32111000), TPS = 0.344 B 3 oL 9
« N —9: Opt. policy: (222111000), (322110000), TP —  INK (W) =N =mo) + (1 =0)5 | N ;" - 0
0.346 =
« N =10: Opt. policy: (322111000), TPS = 0.35 [Proot: Note first t?ﬁ“f = (no +m +...ng)* =
We observe the following properties from our numerical \,xtud2 2oim1 2= Miny + Xz i Hence,
1) There need not be an equilibril_Jm pointin pure strategies. K i-1 N2 _ Zfio n?
2) A power greater than three is not used for the team Zznmj =T 9 (6)
problem. =1 j=0
3) The optimal TPS under pure strategies is not monoto@dserve next that
in N.
. . . L . = N — —1(N — —NK_
The potential of using mixed policies is highlighted in thexh g, (u) = e nic) + - n ) et
example. LetN = 5, and consider the mixed policy of using e n2(n1 + no) + nang
K K i—1
2|t can be easily shown that there exists an optimal policy tisas all the =N?%_— Z nf — Z Z nin;. @)
available energy. Indeed, Given a policy that does not usenakgy, we may i—0 i=1 j=0

always construct a policy that does use all energy and abtaim same TPS o . ) .
(by assigning the access energy to the highest used powed). lev Substituting (6) into the last equation gives (5). O



The following result is a direct consequence of Lemma ITo prove (10), consider the modified poligywith 714 = n4 —
Proposition 1: There always exists an optimal unified pold, 3 = ng + 1, iy = ny + 1, g = ng — 1 (note thatng > 0
icy which satisfies the following relation from (9) and the lemma’s conditions, hen@ig > 0), and
n = ng for k # 4,3,1,0. Note thatz is a valid policy, since
(8) it obeys (1) and (2) becausedoes (the energy investment of
Proof: Let u = (ng,...,nx) be an optimal unified both policies is equal). Since is an optimal policy we must
policy. Assume that, > n; for some indexesand; such that Nave2 (gn.x () — gn .k (u)) < 0. Using (5) this means that
i > j. Consider now the modified policy = (no, ..., 7n), 26+ (1 —6)[n3 4+ n3 +ni+ng — (ng — 1)
wheren;, = ny, for everyk # i,j, n; = nj, n; = n,;. Thena ) ) )
obviously obeys the constraints (1)—(2). Moreover, no(Big —(ng +1)* = (m +1)* — (no — 1)%] <0.
u achieves the same throughput@shence it is an optimal Ngting that26 is non-negative and rearranging terms in the

policy as well. . . inequality above, this inequality holds 24 — 2n5 — 2n; +
The above monotonicity results suggests that there is BR, — 4 < 0 which is easily seen to be equivalent to (10). The

benefit in using higher power levels more frequently thare'DWinequaIit_y (11) is proven similarly, yet instead of shifjimn

power levels are used. Note that for the caseé ef 0 it can energy unit fromng to 11, we shift an energy unit from;

be further shown thabx < nk-1 < .. < n1 < no, 1€, gy, (note that such shift is possible by Lemma 3). [
the number of no-transmissions is higher than the number ofl syma 5:Let « be an optimal unified policy for som&

transmission at any power level. However, this inequalégd 54 7c so thatNV > K. Thenn, = 0
not hold for generab. _ . Proof: Assume by contradiction that, > 0. Then

In the remaining of this subsection, we consider the case
of N > K, which may be relevant, for example, in ad-hoc or (12)
sensor wireless networks, in which energy is limited. Ourma,, here the first inequality follows from (9) and the second one
result for that case suggests that a power level greaterhag, (10). Hence
would not be used irany optimal unified policy (regardless '
of how largeN and K are). Formally,

ng <ng-1< ... < ny.

3ng +2n3 +n2 —n1 <ng—n1 <ng—ng + 2,

dng +n3 —2<mny —ng <ng —ng + 2, (13)

Theorem 2:Assume thatN > K. Let v be an optimal
unified policy. Thenn; = 0 for i > 3.
For the proof of the theorem we require four lemmas.
Lemma 2:For everypolicy u

ng > ng + 2ns + 3ng.

©)
Proof: Combining (1) and (2) and recalling that > K
we get thatng+ny+---+ng > ny+2ns+3ng+.... Thus
ng>na+2n3+3ng+---+(k—1Dng + ...
> ng + 2n3 + 3ng.

O
Lemma 3:Assume thatV > K. Further assume that is
an optimal unified policy withny > 0 thenn,; > 0.
Note first thatn, > 0 implies thatng > 3 by (9). Assume

where the first inequality follows from (12) and the second on
from (11). The last set of inequalities suggests that < 4
which contradicts the assumption that > 0. O
We are now ready to prove the theorem. Note first that
nyg = 0 for every optimal unified policy by Lemma 5. Assume
by contradiction that there exists an optimal policy with> 0
for somei > 4. Then as in the proof of Proposition 1, the
policy o, With 7, = nk,k 75 4, ng=mn; >0,n; =ng =0
is optimal as well. But this contradicts Lemma 5. O

B. Asymptotic analysis

We henceforth restrict attention to the case= N. Con-
sider a sequence of discrete problems indexed with a pagamet
N. Denotez; = z;(N) := n;/N to be the fraction of time
that power: is employed. The vectat = {z;,: = 0,1, ...} is
an alternative way to define a policy. With this definition) (5

by contradiction that; = 0 and consider the modified policy can be written as

ng =ng—1,11 = 2,19 = ng—1, andﬁk = Nng for k # 1,2,4.

Note that this policy obeys the constraints (1)—(2). We next TPS(z) = §(1 — o)
show that2 (g, x (%) — gn,x(v)) > 0 which contradicts the

optimality of u. Using (5),2 (9n x (4) — gn,kx(u)) =
20+ (1=8)(n3+ni4+ni—(na—1)>—(n1+2)*—(ng—1)%) =

= 20 + (1 — 0)(2n4 + 2n — 6), which is obviously strictly
positive sinceny > 1 andng > 3. [l

Lemma 4:Assume thatN > K. Let v be an optimal
unified policy withn, > 0 then

(10)
(11)

ng —ni <ng —ng + 2,

nl—nggng—n4+2.

1 K
2
+50-9) <1 - ;:Oj x) .4

The battery lifetime constraint (1) is

=0

while the energy constraint (2) is
> i = 1. (16)
1=0

In addition there is an "integrity” constraint; are restricted
to multiples of N~ 1.



We now consider the problem witN very large.z; is then z, > 0, since a power level larger than one is being used. The
interpreted as the long-run fraction of time fegquencythat optimal solution is thus obtained by equating the gradidnt o
a power ofi units is used. The integrity constraint disappearthe Lagrangian to zero, which leads to the following equetio
and we are left with an optimization problem, which is easily™= = (§ — 1)zg =6 + A =0, §= = (6 — D)z + A+ pi = 0

seen to be a strictly convex one. fori=1,...,i*, or equivalently
Lemma 6:The problem of maximizingl' PS(z) in (14) 5— A A+ i
subject to (15)— (16) is a strictly convex optimization peb. To= sy W= o (19)

Proof: SinceT PS(x) is quadratic inz; with a negative
multiplicative term—(1 — §), and the constraints are affine¥We now consider the different alternatives for. Assume
the optimization problem is (strictly) convex. Note thattire ¢* = 3. Substituting (19) in the constraint equations (15)—
case ofd = 1 the trivial unique solution of this problem is(16) (recall that the inequality (16) is active in the optimu
= 1. ] see Footnote 2) and taking into account that 0 for ¢ > 4,

The optimal TPS in the asymptotic case is of course &¥¢ obtain tha, = —22+L and ) = 351—524- Substituting these
upper bound to the maximal TPS that can be obtained fawantities back in (19) yields, = 7% and
every N (with the integrity constraint present). We emphasize _ .
that the last statement is valid not only for pure strategies ;= w, (20)
but also for mixed strategies, as the solution for the case of 10(1 —9)
N — oo may be viewed as the frequency in which each power .. . 7_2(5462
level should be used, regardless if the frequencies arénelota resulting inT'PS = ( ). It can be seen from (20) that

o 2001-9) o :
) - x3 decreases withh. Since the non-negativity constraints for
under pure or mixed policies.
Theorem 3:The optimal frequencies; as a function o#

the z;’s have not been explicitly considered in the formulation
and the corresponding TPS are diven by: of the problem, the) threshold from which a power level 3
P 9 9 5 2_y5' i will no longer be used is obtained by equalizingin (20) to
« 0<§ < Lipy = AT pp = B22004A—i g 9 3

S T0(1-8) 10(1=0) zero. It is obtained that fof > % only two levels are used.
TPS = %, By proceeding analogously far = 2, we obtained that
—i) . = _9 — 1.9 i _ 2-35_
. % <6< %: x;) _ 132(5——32)? .= %(_15))71 — 1,2, M s and\ = 3 + 5, which lead tozx 50— and
—368 .
TPS = 43 L2381 —i) 21)
¢« 0>212 =1, TPS=4. TT6(1-0)

Proof: Noting that _ . 52 - .
with a resulting TPS of; 2=3% . Substitutingr, = 0 in (21),
K 2

K . .
1 9 1 1 9 we obtain a threshold value ¢f= 3, above which a power
TPS(x) = ) <1 - le> +9 <§ —Totg le> ’ level beyondl is a suboptimal choice. Fa¥ > 2, it follows
i=0 =0

(17) immediately from (14) that the optimal policy is to transmit
we introduce the Lagrangian at every slot with a power level of 1. In this case the TPS is
nothing but the probability of having no interference. [

K . . . .
1 1 9 The evolution of the optimal power allocation as a function
L) =50+ +50-1) 2% — 0z of § is summarized in Fig. 1, and the corresponding TPS is
X X given in Fig. 2.
+A<in—1>+u<2ixi—l>, (18)
i=0 =0 .f’f
where) is the Lagrange multiplier associated with the numbt ol _#..w""
of time slots, ang: with the power constraint. We ignore in .| M"’M
(18) the positivity constraints for each;, assuming that:; o
involved are all positive, yet directly consider this coasit :
. . orw
in our analysis below. s

z 53 o o5 o6 o7 o5
Probability of having no interferer, &

We recall from Proposition 1 that the optimal solution
satisfiesz; > z, > 3. Depending ord, the largest; for Fig. 1. Optimal distribution of power levels as a functionté probability
which z; > 0 is either 3, 2, or 1. This is a direct consequencd having no interferer.
of Theorem 2, which holds for everyw (and also in the
limit N — oo. We shall denote this largestby i*. Assume . L L
thati* > 1 (the casei* — 1 is treated separately below).C: OPtimal Policy in Mixed Policies
In this case, the extremum of the Lagrangian corresponds toAs shown in Section II-D, the use of mixed strategies may
an interior point. Indeed, since far < ¢ < ¢*, we focus increase the TPS. The upper bound on performance obtained
on optimal solutions that satisfy; > 0 and we are thus in Section IlI-B, leads to the objective of achieving thisupd
away from the boundary; = 0 for these indices; additionally via mixed strategies. We next establish that the upper-thaain



frequencies obtained in Theorem 3 via the mixed policy
derived above.

D. Discussion

Asymptotic TPS

The combination of Theorems 3 and 4 leads to a globally
optimal (mixed) policy that achieves the upper bound on
performance and hence can be set as a unified protocol. It
is important to emphasize that the number of pure policies
Fig. 2. Asymptotic TPS as a function of the probability of inay no that are used in the opt|mal_m|xed poI_|c_:y remains a cor_wstant
interferer. (three), and does not grow withi. In addition, the complexity
in computing the optimal mixed policy relates to calculgtin

. . o . ) expressions such @6/2 andN/3, which do not become much
policy that leads to the corresponding optimal performancegppealingly implementable.

We use the notation = (ng3,n2,n1,no) for a policy that At 5 higher perspective, we note that the approach used
three pure policies: besides throughput optimality. For example, assume thiét ha
u(1) = (0,0, N, 0) (22) :)r:‘ thebtpqpu(;at_irogsshould be cgjgi\t/enthsomteh pri(r)]ri%/ i_r;hterms qf
e obtaine , compared to the other half. The precise
u(2) = (0, [N/2], mod(N/2), N — | N/2| — mod(N/2)) definition of the Quality of Service (QoS) differentiatioe-b
u(3) = ([N/3],0,mod(N/3), N — [N/3] —mod(N/3))  tween the two sub-populations can be casted as a (contipuous

(

(
(where|y| stands for the largest integer smaller thanand optimization problem. After solving the problem and obiagn
mod(y/2) is the reminder in dividing two integer numbeys the freque_nC|es for_ each subsgt of the population, Theorem
and z). We show below that any required frequency vectdt can be invoked in order to implement the corresponding
(23,20, 21,20) can be obtained by a mixed policy that useBrotocol-
the above three pure policies.

Theorem 4:Any required frequency vectdtes, x2, 1, o) ) o ) )
is attained by a mixed policy that uses the pure poIiciesTh'S section is dedlcatec_i to the study_c_>f t_he noncoqperatlve
u(1),u(2),u(3) in (22) with probabilitiesp; = x5 N, framework and the underlying Nash equilibria. Our main focu

’ ; IN/3I™is on Symmetric equilibria (28), which may be regarded as
)orotocols, from which no user has an incentive to unilatgral
deviate. In Section IV-A we prove the uniqueness of the
symmetric equilibrium point, and further provide a comelet

o= FEN— o o5 o7 o8
Probability of having no interferer &

IV. THE NONCOOPERATIVEGAME

p2 = szNLQ. andp; =1 —p2 — ps3.

Proof: Note first that the battery lifetime constraint (15
is obeyed sincer’:0 n; = N for each of the three pure
policies. Observe next that a power level3ofs used only in

. e ; haracterization thereof. Using the characterizatiorctiGe
us. Hsnce, the probability of transmitting at this power Ievei B compares the performance of the optimal policy obtdine
is % = x3. Similarly, a power level of is used only in .

n Section to the unified equilibrium policy via the so-cdlle

W;;L']ev?g(je’ the probability of transmitting at this power Ieye rice-of-anarchy (PoA) performance measure. We conclude
is == = x2. In order to obey the total energy constramﬁ1

(16), it remains to be shown that is section by showing that asymmetric equilibria exists i

general, yet leave their full analysis for future work. Tixgh-
21 =1—3x3 — 229. (23) out this section, we shall focus on the caseNof= K, which

h q ine th bability f ) I enables us to provide a concrete comparison between optimal
To that end, we examine the probability for using a powerllevg, 4 equilibrium performance.

of 1 in each pure policy, and multiply it be the probability of

using that policy. This gives A. Symmetric Equilibria

1 mod(N/2) mod(N/3) We start our analysis by showing that in any symmetric
(L=p2—ps)t —— P2t ———ps equilibrium point (28), power levels equal or greater tHaree

_1 ] mod(N/2) 1 mod(N/3) would never be used.

A N IRCA G N Theorem 5:Let« be a unified equilibrium point. Them; =

N —mod(N/2) N —mod(N/3) 0 for everyi > 3. _ _ o
=1-m [N/2] -3 [N/3] Proof: The idea behind the proof is to establish first that
- _ a power level of three would not be used in any best response.

=1-—=z N — mod(N/2) — N — mod(N/3) The theorem’s claim would then follow by induction aon.

2 3 )
3 (N — mod(N/2)) 3(V = mod(N/3)) The proof proceeds in the following steps.
which is equivalent to (23). O Step 1:When considering policies with; = 0, i > 3,
The significance of Theorem 4 is that the upper bound TRiSere is no best-response witli > 0: Consider a policy,’ =
can be obtained for everv by implementing the optimal (ng,n},nb,n5), n5 > 0 for all players (wheren, = 0 for



everyi > 3). Let u = (ng,n1,n2,n3) be a best response toany user policy. We next express the utility of a “deviating”
u’. Note that the energy constraint (2) is met with equalityeforuser with such policy: = (n2, n1, ng = n2), where all others
best-response, hen§(§f’:1 in; = N. Assume by contradiction use a policyu’ = (nb,n}, ny).

that ns > 0. Introduce also the policyi = (79, 11,7122, 0)
Whereﬁg = No+ns, ﬁo = ng—nas, ﬁl =n1+n3 (nOte thatu
obeys the energy constraint (2)). We show below thabtains
a larger value compared t@ contradicting the optimality of

1-94
g(u,u’) = 6(N —ng) + T(ng(n'l +ng) + nlng) (25)

1-94
= §(N — na) + —— (n2(n} +ng) + (N — 2n2)ng)

the latter. N
2 1-9 ON
1 _ . ’ L1—0 (o OV
g(u7u/) — 5(N—no)+Tg(n1n6+n2(n6+n’1)+n3Zn ON + (1 5)”0 + ng N (nl (no + 1— 5)) .
=0 Define
= §(N—nop)+ 1- §(Nn +na(ny —ng)+ng(n}+n5—2ng)) ") / r . ON
= 0)+— 0tne o) t13(ny +ny—2ng A(ny,ngy) = () — (ng + m) : (26)

:5(N—n0)+1;5(]\7n6+(n2+n3)(n’1—n6)+n3(n’2—ng)) Clearly, the sign ofA(n},n{) would determine the best-
N response (BR) of the deviating user, as we summarize below.

< B(N = io) + (1 — 6) = (N + Aia(, — n))) = (@ ),

N A(nl,ng) >0 ng=ns =% ,n =0
where the first equality follows from the energy constraint A(n),nl) <0 no=ny=0,n, =N
(written asn; = N —2ns —3ng3). The inequality follows from Aln! m! .
b\ ; _ nh)=0:  Any strat N1, BR.
Mo < no and also fromn), > n), (which holds since:; > 0). (n1,75) ny strategy (n2,n1,mo) s 27)

Step %”3 :/0 in/ané/ bt?st-responséionsider nowageneral sing (27), we may explicitly characterize the symmetric
policy u" = (ng,n1,na,m3,...) employed by all users, andgqyilibrium point, as we summarize in the next theorem.
a best-response of a deviator= (no,n1,n2,n3,--.). The  \when the policies below result in non-integer numbers, thixe
utility for the deviating user can be decomposed as: policies are used in the spirit of Theorem 4.

glu, ) = g(u(073),u/(0,3)) + g(u(o,g),u’(24)) . Thgorem 5:(|) _The symmetric equilibrium point exists and
is unique. It is given by

+ 9(”(24)7 u/(073)) + g(u(24)7 ul(24))a (24)

1. _ _ _ 146
where for everyl C N, the notationu , stands for the {? = 2 1o B 2 0(1 6)NNN1 s (28)
sub-vector{n;},cs (thus, for example g(uc4),ufo_s) is >3+ Mo=n2=0Um :
the number of successful transmissions obtained in int€ii) The corresponding TPS are given by
actions where all users use power levéls- 3 and the 1 1
deviator uses power levels greater or equalxoObviously, {5 <5t TPS=g3(1+9), (29)
9(u(o-3), (= 4) = 0. As before, assume by contradiction that §>3: TPS=4

ng > 0 and consider an alternative policy for the deV|at|ng user
U= no,nl,ng,O,. whereny = ng +ns3, Ng = ng — n
i1 —(nl +ngz, N = nz for ¢ > 4. It follows from Step 1 that FOr that case, A(ni,nf) = (”/1 —(no+ fTNa)) <
9(t0-3),u(g_3)) > 9(u(0-3), ufy_))- Since the other three (n} — (ng +N)) < 0, which immediately leads to the best
terms in (24) are not affected by the transition framo %, response policy ohy =ny =0,n, = N.
we conclude thay(u,v') > g(u,u’). Henceng = 0 in any Consider next the case 6f< % and the possible values for
best response. A(nfy,np). Assume thatd(ny, ng) > 0; then obviouslyn) >

Step 3:In any best-response; = 0 for i > 2. Assume ng; however, the best-response (27) in this case is such that
by induction onk thatn, = 0, nj, = 0. It is readily seen 0=n1 < ng = N/2. HenceA(n},n;) > 0 does not lead to

Proof: (i) Consider first the case wheré > %

that the policy(ng, n1,...,nx = 0,nk11,...) With M1 > 0 a symmetric equilibrium. Slmllarly, assume thatn;,ngy) <
is suboptlmal sincé; = (nO — Npg1,M1 + Nig1,...,0 = 0. This implies thatn} < ng + f—N5 < ng + N; however

Nk+1,Nk+1 = 0,...) obviously obtains strictly higher TPS.the best-response in this case is such tNat n, > no +
Indeed, the deviating user benefits from the use of powdr = N. HenceA(n},n;) < 0 does not lead to a symmetric
level k as it did from power levek + 1 (due to the induction equilibrium as well. The remaining case ifn',ny) = 0.
assumption thatj = 0), and in addition it obtains a strictly Since the deviating user is indifferent about its policy I(aey
positive benefit from additional powértransmissions. Hence, as it uses power levels not greater than two), a symmetric

nry1 = 0. Sincen; = 0, i > 2 for any best response, there igquilibrium is obtained fon, = ng + 5+ Using the energy
no equilibrium point in which mobiles use power levels abov@OnStraInt the last equation |mmed|ately implies that=
two. 0 ne= (1 a)N n = 3(11 65)N

Taking into account thats = 0, it follows from the energy (i) For ¢ > , it is immediate that the TPS i since users
constraints (2) (which is met with equality) thay = n, for always transm|t with a power level of one; the TPS in this case



is thus equivalent to the probability of not facing an inéeefr. The PoA as a function af is depicted in Figure 5. It is seen
For the case ob < 1 , we substituted(nf,ny) = 0 and the that the efficiency loss is always smaller th@upercent. An
allocation rule (28) |n (25) and obtain th&PS = ¢ + =2 25 interesting direction for future work is to study the effivy
which establishes the result. D loss in cases where the energy available is larger e N)
The evolution of the power allocation at the symmetriand examine whether users misuse the access energy.
equilibrium as a function ob is summarized in Fig. 3, and . . A
thqe corresponding TPS is given in Fig. 4. g C. Existence of Asymmetric Equilibria
We focused in preceding subsections on symmetric Nash
equilibria. In the subsection we show that asymmetric equi-
i libria exist in general. In view of (26), any set of policies
(that use power levels less tha), for which the average
distribution of power levels among the user-populatiorsfas
ny = ng + % leads to an equilibrium. Indeed, no user
.............. will benefit from deviating, as alinz, n1,n¢) policies are in
o 01 oz ng;bimyoigf h;&ﬁg T R fact best_ responses. A p_articu_lar case of the above are f[he
symmetric equilibria obtained in Theorem 6. Based on this
Fig. 3. The distribution of power levels at the symmetric itigium as a  observation, it is possible to construct asymmetric eloidi

—=—Power level 1|
° Power level 2

000,
........
........

function of the probability of having no interferer. as, for instance,
« A fraction (11+55) of the population use:; = N, ng =
Nng = 0.
« The remaining fractlonf(l—‘*fS useng =ny = &, ny =
o 0.

In the present paper, we do not focus asymmetric equi-
libria, yet point to their existence. The numeric example
above strongly relies on our characterization of the symimet
equilibrium. It remains to be verified whether additionajas
T roBabilin o1 having no imertdrer 507 07 metric equilibria (which may lead to different TPS) do exist
The comprehensive analysis of asymmetric equilibria remai

Fig. 4. The TPS at the symmetric equilibrium as a functiorhefprobability a challenging direction for future work.
of having no interferer.

Asymptotic TPS

V. EXTENSIONS AND CONCLUSION

We briefly mention how to adapt the analysis to variations
on the initial model, and present some conclusions anddutur
Equipped with a complete characterization of both thesearch directions.
symmetric optimal solution and the symmetric equilibrium ,
point, we may compare the performance at both frameworks/A ‘Soft-Capture” Wireless Network
popular measure for comparison is the price of anarchy (PoA)Assume that if two stations transmit at the same power level
[12], which corresponds in our case to the ratio between thH#en a given packet is successfully received with probigbili
TPS obtained in the team problem and the TPS at the sym< 1/2. Leta = 1—a. If powers are different then, as before,
metric equilibriunf. We emphasize that we do not considethe packet transmitted with larger power is successful had t

B. Efficiency Loss

here asymmetric working points. other is not. The objective to maximize is given by
11 a K i-1 a K i
I C SRR B) SUTIRRIEL LD 9p iy
i i=1 j=0 i=1 j=0
] K i K
il =§(N —ng)+ (1 - N(ZZ nj—l—aZn?)
i i=1 j=0 i=1
1 = 6(N —no) — (1 — 8)nga/N (30)
° ot o2 Prgéabllil)‘]laof ha\ulifﬂg noolzlerfe?'éré o8 i K i1 K i1 K
— 2a 1
. - . . . + [ nin; + —( nin; + = )]
Fig. 5. Efficiency loss as a function @f The y-axis is the ratio between (1= 2 Zo / 2 ZO it 2 Zo
the symmetric-optimal TPS and the symmetric equilibrium. / ’ N
an? — 2a Ko
3In general, the PoA corresponds to the ratio between thenapsolution = d(N —ng) — (1 — cs)TO +(1- [ Z anj + aN]
and theworst Nash equilibrium. However, in our case, both the symmetric i=1 j=0

optimal solution and the symmetric equilibrium are unique. (31)



where we used (6). Consider= 1/2. In this caseg®®? equals life-time N and general budgek and obtain complete char-

—dng — (1 — §)n3/(2N) plus some constant that does noacterization of both the team and game problems. Another
depend onu. For anyé, this utility is maximized ato = 0 challenging extension is to relax the assumption on sparsit
which meansn; = N andn; = 0 for all i« # 1. The case an to consider interactions of more than two users and their

a < 1/2 remains to be investigated in future work.

B. General Access Problems (Zero May Win Too)

Through the model we used for the power control problen?!
we intended to introduce a methodology that can be useful
for general control of access priority. We briefly comment2]
on some specific variations that may be needed in other
network applications. In a general priority assignmentterty (3
one may again enumerate priority levels using the integers
{0,1,2,...}; an access request with priority > 1 would [4]
prevail if it is the only request, or if all other requests are;
with lower priority. It may even be granted access (with some
positive probabilitya) in the case that another request isl®!
made with the same priority level (as in the “soft-capture’
model above). Yet, there may be a difference in the way that
priority level O is treated, compared to the way that powe
level 0 is modeled in the power control problem. In the powef
control framework, when the transmission power is zero thef]
transmission fails, in particular, for the following two ses:

(i) there is no interference, or (ii) there is interferencehw 10
another mobile that transmits with power zero. This need not
be the situation in other priority assignment models. [11]

To concretize our discussion, assume that a request with
zero priority will be successful w.p.1 in case (i) above, and2]
with positive probabilitya in case (ii) (i.e., the “soft-capture”

. o o [13]
rule includes priority zero as well). The expected utility i
given bydN plus the third term of (31), which yields
14
1 2, K i—1 (4l
eneral __ — . .
g7 —6N+(1—§)[ ~ Z,anj—i_aN]
=1 j=0 [15]

Interestingly, the optimal and equilibria policies for agy
coincide with those obtained for the power control problem
with § = 0. Note that foré = 1 or for a = 0.5, the [16]
performance does not depend on the policy anymore (all
policies are thus optimal).

C. Concluding Remarks

We have considered in this paper the priority assignment
problem that corresponds to “sparse” multiple access net-
works, in which pairwise interactions occur. We have predid
an explicit solution for the team problem, and a complete
characterization of the symmetric equilibrium in a noncamp
ative framework. Interestingly, The number of power levels
that is used in the competitive setup is smaller than the
corresponding number for the team problem (this holds for
everyd). This phenomenon is counter-intuitive perhaps, as in
many noncooperative networking scenarios, the users omsu
the network resources in a more aggressive way, compared to
the socially-optimal point (e.g., in queuing networks, §&g.

The framework and results of this paper may be extended
in several ways. One direction is to consider general hatter

consequences.
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