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Abstract

In distributed storage systems, erasure codes represent an

attractive solution to add redundancy to stored data while

limiting the storage overhead. They are able to provide the

same reliability as replication requiring much less storage

space. Erasure coding breaks the data into pieces that are

encoded and then stored on different nodes. However, when

storage nodes permanently abandon the system, new redun-

dant pieces must be created. For erasure codes, generating

a new piece requires the transmission of k pieces over the
network, resulting in a k times higher reconstruction traffic
as compared to replication.

Dimakis proposed a new class of codes, called Regen-

erating Codes, which are able to provide both the storage

efficiency of erasure codes and the communication efficiency

of replication. However, Dimakis gave only a theoretical

description of the codes without discussing implementation

issues or computational costs. We have done a real im-

plementation of Random Linear Regenerating Codes that

allows us to measure their computational cost, which can

be significant if the parameters are not chosen properly.

However, we also find that there exist parameter values

that result in a significant reduction of the communication

overhead at the expense of a small increase in storage cost

and computation, which makes these codes very attractive

for distributed storage systems.

1. Introduction

P2P(Peer-to-Peer) systems have received a lot of attention

in recent years. In particular, the research community has

shown an increasing interest in the use of P2P systems for

file storage [1], [2], [3], [4]. This application can be very

attractive for two main reasons: (i) centralized solutions are

expensive (ii) common PCs are equipped with high-capacity

local disks, which are often underutilized.

The main challenge in designing storage systems is to

guarantee the persistence of the stored data. This is non-

trivial because storage peers are not totally reliable: they

may face failures, data corruption or accidental data losses.

Adding redundancy to the stored data is the basic tool

to achieve data durability in spite of failures of the storing

peers. The simplest redundancy scheme is replication, which

consists in creating multiple copies of data and spreading

them in different locations. A more complex method is

represented by erasure codes: the data are processed in

order to produce k + h pieces such that any k of them are
sufficient to reconstruct the original file, then these pieces

are spread across different peers. Previous works have shown

[5], [6] how erasure codes are able to provide the same

level of reliability as replication with much lower storage

requirements.

Redundancy alone is not enough to provide data durabil-

ity. Since peers might leave permanently the system, some

of the initial redundancy might be lost. This means that

the number of pieces or replicas present in the system

diminishes with time. Periodically this number must be

refurbished by the maintenance, which is performed by the

means of repairs. A repair consists in rebuilding a lost

replica or piece using the available ones. A number of

works [5], [7], [8] showed how every piece repaired in

erasure codes require that k other available pieces must be
read (which corresponds to the size of the original data),

while in replication the repair of one replica needs that

only one other replica is read. In distributed systems data

accesses translate into network transfers, for this reason,

under bandwidth constraints, like in P2P systems, erasure

codes become impractical and replication is the only feasible

solution.

Different solutions have been proposed to couple the

storage efficiency of erasure codes with the communication

efficiency of replication. Rodrigues and Liskov [5] proposed

an hybrid replication/erasure code solution, in which a full

replica of the file is held by a special peer, while other peers

store erasure coded pieces. Repairs are always performed

using the full replica, with a communication cost equal

to the replication case. This method, however, introduces

an asymmetry in the data maintenance, causing both a

higher complexity of the system and a loss in terms of

storage efficiency. Duminuco and Biersack [8] proposed

a class of codes called Hierarchical Codes, in which the

repair communication cost is on average much smaller than

for erasure codes. However, Hierarchical Codes have the

disadvantage that not all the subsets of k pieces are sufficient
to reconstruct the original file. Finally Dimakis et al. [7]



proposed a generalization of traditional erasure codes called

Regenerating Codes, for which the communication costs

during repair is significantly reduced as compared to Reed

Solomon Erasure codes. Dimakis et al. in [7] presented a

theoretical framework that allows to prove the existence of

these codes while Wu et al. showed in [9] how to build

deterministic Regenerating Codes based on linear codes.

However, none of the two papers did investigate the com-

putational cost or propose how to implement such codes. We

believe that Regenerating Codes represent a very attractive

solution for redundancy schemes in P2P storage systems and

deserve a deeper analysis with respect to implementation and

deployment, which is the subject of this paper.

In section 2 we provide an introduction to data redundancy

schemes in P2P storage systems and recall the main theoretic

results on Regenerating Codes ([7]). In section 3 we describe

our implementation of Random Linear Regenerating Codes,

while we perform in section 4 an analytical evaluation of

their cost in terms of storage and computation. In section

5 we test our implementation and evaluate the different

cost performance trade-offs. Finally, section 6 concludes the

paper.

2. Background

2.1. Data Redundancy Schemes

In this section we give a formal description of the oper-

ations performed in a common redundancy scheme. These

operations can be grouped in three distinct phases, which

follow the life cycle of a generic file that is stored in the

system.

1) Insertion: The insertion consists in processing the file,

creating (k+h) redundant pieces and distributing them
over distinct peers. The processing can be as trivial as

building replicas of the file1, or can be a complex cod-

ing operation. No matter which redundancy scheme is

used, the property of these pieces is that any k of them
are sufficient to reconstruct the original file2.

2) Maintenance: Maintenance consists in rebuilding the

redundancy lost due to peer failures. Maintenance is

performed by the means of repairs. A repair requires

the cooperation of d peers that send data to a new
peer3, called newcomer, which in turn processes the

received data to obtain a new piece. We refer to d as
the repair degree. If the repair is correctly executed,

the new piece has the same properties as all the others,

i.e. with any (k−1) other pieces it forms a set of pieces
sufficient to reconstruct the original file.

1. This is the replication case where k = 1.
2. There exist redundancy schemes, in which this property is not satisfied
like in [8], but these schemes are not of interest in this work.

3. A new peer is a peer that at the moment not storing any piece of the
file.

3) Reconstruction: If the owner of the file wants to

retrieve it from the system, a reconstruction needs to

be performed. The reconstruction consists in down-

loading data from k peers and processing them to
obtain the original file.

In the rest of the paper we refer to the size of the file

as |file| and to the size of a piece as |piece| (in general we
refer to the size of a generic object x as |x|).
From the description it is clear that a redundancy scheme

implies three kinds of costs:

1) Storage: Redundancy implies that the stored file con-

sumes more storage space than the original file. The

storage requirement is easily computed by:

|storage| = (k + h) · |piece| > |file|

2) Communication: All three phases in the life cycle

require data to be transferred among peers. At inser-

tion, all the pieces must be transferred, which amounts

to a volume of |storage|. At maintenance, for every
repair d peers upload each an amount of data equal to
|repairup| to the newcomer for a total of |repairdown|,
with the obvious relation: |repairdown| = d · |repairup|.
At reconstruction, the file owner needs to download

at least an amount of data equal to |file| (See section
3.2 for details).

3) Computation: When coding is used, all the three

phases described require processing of data4. At in-

sertion, all the pieces need to be coded with a cost

of CPU(encoding). At repair, part of the process-

ing is done on the d participating peers, denoted as
CPU(repair)up and part is done on the newcomer,

denoted as CPU(repair)down. At reconstruction, the

original file must be reconstructed from k pieces with
a cost CPU(reconstruction).

The particular redundancy scheme defines how the redun-

dant data are generated and handled and what is the cost

in terms of computation, communication, and storage. As

an example let us consider traditional erasure codes (like

Reed-Solomon codes [10]). For these codes, the following

two constraints hold w.r.t. the repair degree d and the piece
size:

d = k
|piece| = |file|/k

(E1)

which means that every repair is performed collecting data

from d = k existing peers and that every peer stores an
amount of data equal to 1/k of the file size. It can be shown
that given these constraints, the amount of data that needs to

be transferred from every participating peer to the newcomer

is equal to the size of a piece, which means that in total

an amount equivalent to the size of the whole file will be

transmitted. In terms of maintenance, the communication

costs are: |repairup| = |piece| and |repairdown| = |file|.

4. In case of replication there is no processing.



Note that this means that for every new bit that we create

during a repair, k existing bits needs to be transferred.
The computation costs are implementation dependent (see

section 4 for details).

2.2. Description of Regenerating Codes

In this section we give a quick overview of the main

properties of Regenerating Codes from [7]. In essence

Regenerating Codes try to address the following question:

what is the impact on the communication cost if we relax

the constraints defined for traditional erasure codes given in

eq. E1?

Given k and h, Regenerating Codes can take k · h
different values for the pair of parameters (d, |piece|). In fact
Regenerating Codes can be considered a generalization of

traditional erasure codes, which trade-off increased storage

cost for reduced communication cost.

More formally, a generic Regenerating Code denoted by

RC(k, h, d, i), sets the following constraints on the repair
degree d and the piece size:

d ∈ [k, k + h − 1]
|piece| = p(d, i) · |file| i ∈ [0, k − 1]

(E2)

Given a repair degree d, the parameter i, which we define
as the piece expansion index, determines the piece size

through the function p(d, i), which is defined5 as:

p(d, i) = 2
d − k + i + 1

2k(d − k + 1) + i(2k − i − 1)

It can be proved that RC(k, h, d, i) requires that each of the
d peers participating to a repair transfer to the newcomer an
amount of data at least equal to

|repairup| = r(d, i) · |file|

where r(d, i) is defined as:

r(d, i) =
2

2k(d − k + 1) + i(2k − i − 1)

consequently |repairdown| = d · r(d, i) · |file|.
In this paper we fix the values for k = 32 and h =

32, which allows the system to sustain up to 32 losses. We
consider this reasonable under the massive churn we may

observe in an Internet scenario [3]. However, results with

other parameters show the same trends.

Fig. 1 depicts how the piece size |piece| and the volume
of repair traffic |repairdown| evolve as a function of d and
i for a code with k = 32 and h = 32. In particular all
the values are relative to the piece size and the volume of

repair traffic required by a traditional erasure code, which in

the framework of Regenerating Codes would correspond to

RC(32, 32, 32, 0), i.e. with d = 32 and i = 0. As described

5. We reformulate the expressions given in [7] in a different way to
facilitate the successive computations.
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Figure 1. Size of the pieces and repair communication

cost (in log-scale) normalized by the reference values of

a traditional erasure code, for RC(32, 32, d, i).

in the previous section these reference values are:

|piece| = |file|/32 and |repairdown| = |file|.
We see that moving to larger repair degree d and to
larger piece size (increasing the piece expansion factor i)
it is possible to obtain an impressive reduction of the repair

traffic. Authors in [7] identify two notable cases for the

values i = 0 and i = k−1. For i = 0, the size of the pieces
stays constant at the minimum possible size and the codes

are called Minimum Storage Regenerating codes (MSR).

For i = k − 1, repair traffic is minimized and the codes are
called Minimum Bandwidth Regenerating codes (MBR).

3. Random Linear Implementation

Existing works on Regenerating Codes [7], [9] present

the theoretic framework that supports the construction of

Regenerating Codes and give an intuition for a possible

implementation based on random linear codes, without pro-

viding details. We propose a precise description of such an

implementation and discuss its practical implications.

3.1. Traditional Random Linear Codes

Let us first explain how Random Linear Codes work for

the case of traditional erasure codes. The essence of random

linear codes is that all the operations are linear operations



over a Galois Field on fixed sized data fragments. Again we

describe these operations following the life cycle of a file.

1) Insertion: In this phase we have to create k+h pieces
of size |file|/k. To do that, it is enough to break the
file in nfile = k equal sized (original) fragments, and
compute any of the k + h pieces as a random linear
combination of them. The random coefficients used for

such combinations are stored along with the pieces.

2) Maintenance: As already explained, a repair in tradi-

tional erasure codes requires the transfer of the whole

piece from d participating peers to the newcomer. The
newcomer then builds the new piece performing a

random linear combination of the d received pieces.
Again the resulting coefficients are stored along with

the new piece.

3) Reconstruction: The owner of the file downloads

k pieces from k other peers and uses these pieces
to reconstruct the file. The procedure consists of

inverting, if possible, the matrix composed by the

coefficients of all the received pieces, and multiplying

the inverted matrix by the pieces. The results of such

a multiplication are the original fragments, i.e. the

original file.

Theory on Random Linear Network Codes [11], [12], [13]

says that the probability to successfully invert the matrix

upon reconstruction depends only on the size of the Galois

Field and that this probability can be made arbitrarily close

to 1 by increasing the size of the Galois Field. For all

practical purposes a field size equal to 216 is considered

sufficient.

3.2. Random Linear Regenerating Codes

In traditional erasure codes, random linear implementation

is straightforward, because all the operations are performed

on a set of pieces, which means that the size of the piece

can be used as the basic unit of information in all the linear

combinations and in the decoding.

In Regenerating Codes things are different because they

allow that the amount of data stored |piece|, is not neces-
sarily equal to the amount of data transmitted by a partic-

ipant upon a repair |repairup| and that the amount of data
downloaded by a newcomer |repairdown| is not a multiple of
|piece|.
In other words the basic unit of information, which is the

size of the fragments we break the original file into, cannot

be the size of the piece anymore. If we denote this size as

|fragment|, we can write the constraints it has to fulfill:

|file| = nfile · |fragment|
|piece| = npiece · |fragment|

|repairup| = nrepair · |fragment|
(E3)

where nfile, npiece and nrepair are integers. Using equations in

section 2.2, we can compute:

|piece|

|repairup|
=

p(d, i)

r(d, i)
= d − k + i + 1

and:

|file|

|repairup|
=

1

r(d, i)
=

2k(d − k + 1) + i(2k − i − 1)

2

Both ratios are integers. This means that we can set nrepair =
1, which corresponds to setting |fragment| = |repairup|, and
consequently:

nfile = 2k(d−k+1)+i(2k−i−1)
2

npiece = d − k + i + 1
(E4)

Given these parameters we can describe the operations

needed in Random Linear Regenerating Codes:

1) Insertion:We break the file in nfile equal sized original
fragments, and compute any of the k + h pieces
as npiece random linear combinations of them. The
random coefficients used for such combinations are

stored along with the piece. They form a (npiece, nfile)
matrix6.

2) Maintenance: A repair involves d existing peers,
which send data to the newcomer. The data sent by

any of the d peers correspond to the results of one
random linear combination of the npiece fragments
contained in the stored piece, as depicted in figure

Fig. 2(a). The newcomer receives thus d fragments
and the corresponding coefficients and obtains its new

piece as npiece random linear combinations of them, as
depicted in Fig. 2(b). Note that in the particular case

of d = npiece the newcomer does not need to perform
linear combinations of the received fragments, since

they constitute already the new piece.

3) Reconstruction: The owner of the file downloads k
pieces from k peers, which correspond to npiece · k
fragments, along with the coefficients which form a

(npiece ·k, nfile) matrix. It tries to find nfile independent
rows in the coefficient matrix, then it inverts the result-

ing square submatrix and finally multiplies this matrix

by the concerned fragments. An important remark is

that if the file owner downloads k pieces, it potentially
downloads an amount of data quite bigger than the

file size. In [7] it is claimed that this can represent

a significant drawback for Regenerating Codes. In

our implementation, we eliminated this shortcoming:

we download only the coefficients, we extract a full-

rank square submatrix, we invert it, and finally we

download only the nfile fragments corresponding to the
invertible submatrix that was extracted. In this way we

download always an amount of data equal to the file

size, without paying any extra-cost.

6. In our notation a (n, m) matrix is a matrix with n rows and m

columns.



(a) Participant side

(b) Newcomer side

Figure 2. Repair scheme on the participant side and on

the newcomer side. Every arrow indicates a participa-

tion to a random linear combination.

4. Analytical Evaluation

In this section we perform an analytical evaluation of the

Random Linear Regenerating Codes. To do this, we give a

formal description of the linear operations performed. All

the data we handle can be interpreted as a sequence of

values, called elements, in a given Galois Field. Usually

the size of such field is chosen to be equal to 2q, since

this speeds up the computation. In this case every value is

a sequence of q bits, a common choice is q = 16, which
corresponds to an element size of 2 bytes. Every fragment

is thus represented by a vector of lfrag = (|fragment|/q)
elements. The whole file is thus represented by a (nfile, lfrag)
matrix, denoted as Fnfile,lfrag . A set of n encoded fragments
is represented as a (n, lfrag) matrix En,lfrag

7, this matrix can

be always represented as a set of linear combinations of the

original fragments:

fn,lfrag = Cn,nfileFnfile×lfrag

where Cn,nfile are elements in the field and represent the

coefficients associated with the set of fragments.
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Figure 3. Coefficient overhead (in log-scale) of
RC(32, 32, d, i) for a 1 MByte file.

7. In our notation Fn,m corresponds to a set of original fragments, while
En,m to a set of encoded fragments.

4.1. Impact of coefficients

The first question we address is the impact of the coeffi-

cients in the storage and in the communication costs. Since

with every fragment, we associate a set of nfile coefficients,
the relative impact of the coefficients is given by the ratio:

rcoeff =
nfileq

|fragment|
=

n2
file

|file|
· q

this ratio can be interpreted as the overhead due to

coefficients: for every bit of data we need rcoeff bits of
coefficients. Note that this ratio is inversely proportional

with the size of the file we store, this means, as one could

expect, that the bigger the file the smaller is the coefficient

overhead. More importantly, the overhead increases with the

square of nfile, which increases significantly as we increase
the parameters d and i in Regenerating Codes (see eq. E4).
To understand the impact of this additional cost, let us

consider the class of regenerating codes RC(32, 32, d, i) and
let us assume that the field size is q = 16, which corresponds
to an element size of 2 bytes. In Fig. 3 we plot the values of

the coefficient overhead when the original file size is |file|=1
MByte for all the possible values of d and i.
For such a small file size, the coefficient overhead is not

negligible: in the ‘most expensive’ configuration for 1 bit

of data, more than 4 bits of coefficients are needed, which

is clearly unacceptable. By increasing the file size, this

overhead decreases8. The implication of figure 3 is that when

using Regenerating Codes, system designers need to choose

a minimum size for storage objects that is significantly

bigger than for traditional erasure codes.

4.2. Computational Complexity

One of the main concerns in the employment of coding in

real systems is the computational effort that they require. In

this section we propose a formal analysis of Random Linear

Regenerating Codes.

All the operations are performed in Galois Fields. There-

fore, we need to make sure to control the cost of the

operations by choosing the right field size. If we set the

field size equal to 2q, with q = 16 all the operations are
performed on unsigned short integers (2 bytes). In this case

• Additions and subtractions correspond to an XOR op-

eration between two elements.

• Multiplication and division are performed in the log-

space. For example: a · b becomes exp(log a + log b).
log and exp for all the possible values in the field are
computed offline and stored, which requires 256 KB

of memory for q = 16. The operations log and exp
can then be implemented as value lookups in a vector,

8. The actual overhead is given by the values shown in figure 3 divided
by the file size in MBytes



which allows to implement divisions and multiplication

in 3 lookups and 1 addition.

All the operations we perform in Regenerating Codes

can be reduced to: (1) Linear Combinations and (2) Matrix

inversions. Let us analyze them in details:

1) A linear combination of n vectors of length l consists
in n · l additions and n · l multiplications for a total of
5nl operations.

2) The inversion of a square (n, n) matrix consists in
n3 additions and n3 multiplications that can be im-

plemented 5n3 operations. Actually for Regenerating

Codes the situation is slightly different: we have a

(m, n) matrix, m ≥ n from which we need to
extract n rows that are linearly independent, which
will result in a (n, n) submatrix that can then be
inverted. Extraction and inversion are done in parallel

and the cost will vary accordingly to the particular

matrix between the bounds 5n3 and 5mn2.

Now we have all the basic tools to compute the complexity

of Regenerating Codes along the lifetime of a file:

1) Insertion: In this phase we perform (k+h) ·npiece lin-
ear combinations of nfile fragments for a total number
of operations equal to:

CPU(encoding) = 5(k + h) · nfile · npiece · lfrag

Using the definitions of the different parts we obtain:

CPU(encoding) =
5

2
(k + h) · npiece · |file| (E5)

2) Maintenance: As already explained, in a repair, part

of the work is done on the participating peers and

another part is done on the newcomer. On every

participating peer we perform one linear combination

of npiece fragments, which corresponds to:

CPU(repair)up = 5 · npiece · lfrag

doing some manipulations we obtain that the number

of operations is proportional to the size of the piece

expressed in bytes:

CPU(repair)up =
5

2
· |piece| (E6)

On the newcomer we perform npiece linear combina-
tions of d fragments, which corresponds to:

CPU(repair)down = 5·d·npiece·lfrag = d·CPU(repair)up
(E7)

Note that every fragment is also associated with a

set of coefficients. This means that every time that

a new fragment is generated as a linear combination

of other existing fragments, this operation must be

performed also on the correspondent coefficients, in

order to obtain the coefficients associated with the new

fragment. In terms of computation cost, this can be

taken into account assuming that the fragment size is

virtually increased by the size of coefficients, which

is given by the overhead in section 4.1.

3) Reconstruction: We can split the reconstruction in

two phases: (1) we need to extract nfile linear indepen-
dent rows from a k ·npiece×nfile matrix, and then invert
the obtained submatrix (2) We multiply this submatrix

by the correspondent encoded fragments. According

to these two phases, the cost of reconstruction can be

split in two components as well:

CPU(reconstruction) = CPU(inversion)+CPU(decoding)

As explained before the cost of the inversion is

bounded by two limits:

5 · n3
file < CPU(inversion) < 5 · k · npiece · n

2
file (E8)

The decoding, then, corresponds to nfile linear combi-
nations of nfile fragments, which leads to:

CPU(decoding)= 5 · n2
file · lfrag =

5

2
· nfile · |file|

Note that all the costs, except from the inversion cost, are

linearly dependent to the file size |file| (This holds also for
repair, since |piece| is in turn proportional to |file|).

5. Experimental Evaluation

In this section we evaluate the resource requirements of

Regenerating Codes. For this purpose, we wrote an opti-

mized C implementation of Random Linear Regenerating

Codes that we execute on an Intel Core 2 Duo CPU at

2.66GHz.

We execute all the operations performed in the life cycle

of a stored file, as described in section 4, and measure the

time needed to perform these operations. All the experiments

have been done for a file of 1 MByte in size and the

Regenerating Code parameters are fixed to k = 32, h = 32,
and can take all possible values for i and d.

5.1. Computational Cost

To have a basis for comparing different configurations of

Regenerating Codes, we first show the results obtained for

a traditional erasure code, (i.e. a Regenerating Code with

RC(32, 32, 32, 0)) when a file of 1 MByte is stored. Let
td,i denote the time needed by a particular operation for

a Regenerating Code RC(32, 32, d, i). The following table
shows the time t32,0 needed for each operation:

t32,0[sec]
Encoding 0.52

Participant Repair 0

Newcomer Repair 0.01

Matrix Inversion 0.002

Decoding 0.25
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(a) Encoding
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(b) Repair: Participant side.
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(c) Repair: Newcomer side.
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(d) Reconstruction: Matrix Inversion.
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(e) Reconstruction: Decoding.

Figure 4. Computation overhead for RC(32, 32, d, i).

Note that the participant repair has a computation time

of zero because in traditional erasure codes repairs do not

require any computation at the participant side, which simply

sends to the newcomer the entire piece.

Let us now introduce the results obtained for the general

case of Regenerating Codes RC(32, 32, d, i). To understand
the computational overhead of these codes, we consider the

ratio between the time td,i and the time t32,0 measured for

traditional erasure codes. We call this ratio computation

overhead rcpu:

rcpu =
td,i

t32,0

The computation overhead tells us how much a given

Regenerating Code is slower than a traditional erasure code.

Following the life cycle of a file we have:

1) Insertion: We show in Fig. 4(a) the computation

overhead of the initial encoding of the file. We see

that the overhead grows linearly with i and d. This
is consistent with eq. E5, which says that the cost is

proportional to npiece, which is in turn linear with d
and i as we can see from eq. E4.

2) Maintenance: Fig. 4(b) shows the computation over-

head on the participant side9, in this case the computa-

tion overhead grows slightly more than linearly with d
and i, since as we know from eq. E6 it is proportional
to the piece size, which in turn has the behavior shown

in Fig. 1(a). Fig. 4(c) shows the computation overhead

on the newcomer side. From eq. E7, this cost is

proportional to d times the cost on the participant side,
which is confirmed by the roughly quadratic relation

with d shown by the plot. Note that for i = k − 1
the overhead falls to zero, since for this configuration

the newcomer does not need to combine the received

blocks, but simply stores them (c.f. section 3.2).

3) Reconstruction: The reconstruction requires the in-

version of the matrix coefficients and then the decod-

ing of the fragments. Fig. 4(d) shows the computation

overhead for the inversion, which as we know from

eq. E8 grows roughly as n3
file. Inversion can be compu-

tationally very expensive, in particular for large values

of d and i. Fig. 4(e) shows the computation overhead
of the decoding, whose shape closely resembles the

one for encoding (see Fig. 4(a)), which is expected

since both perform analogous operations.

5.2. Bottleneck Network Bandwidth

As outlined in section 2.1, a redundancy scheme intro-

duces three different costs, namely computation, storage

9. Note that this cost is equal to zero in traditional erasure codes, for
this reason the normalization is done by the smallest value larger than zero
which occurs for d = 33 and i = 0 and is equal in terms of computation
time to 0.0003 sec.



Bottleneck Network Bandwidth Communication Storage

d i Encoding
Repair Reconstruction

|repairdown| |storage|
Participant Newcomer Matrix Inversion Decoding

32 0 31.2 Mbps ∞ 777.3 Mbps 7.8 Mbps 24.6 Mbps 1MB 2 MB

63 30 655 Kbps 11.0 Mbps 10.2 Mbps 383 Kbps 482 Kbps 42.47 KB 2.61 MB

32 30 1.9 Mbps 21.6 Mbps 21.6 Mbps 1.6 Mbps 1.3 Mbps 62.18 KB 3.76 MB

40 1 3.1 Mbps 70.5 Mbps 76.8 Mbps 1.5 Mbps 2.5 Mbps 128.40 KB 2.006 MB

Table 1. Resource requirements of RC(32, 32, d, i) for a 1 MByte file.

and communication. So far we have only considered com-

putation. However, what we are really interested in is to

evaluate which resource (computation or communication) is

the overall performance bottleneck of the system.

In a distributed storage system the data handled must

be transferred over the network. Let us assume that the

transfer operation is pipelined with the coding, which means

in the case of insertion that each fragment is transmitted as

soon as it is produced by the initial encoding step. If the

transfer takes longer than the computation, then the bottle-

neck is communication, and the use of a computationally

more efficient code will not make the insertion operation

faster. This means that whether or not computation has an

impact on the overall performance of the system depends

on the available network bandwidth of the participating

peers. For this purpose we want to know the minimum

network bandwidth of a peer, for which the computation

represents the bottleneck for the overall performance. We

call this bandwidth bottleneck network bandwidth, which

is denoted as bnb.

The bottleneck network bandwidth can be computed as

the bandwidth for which the transfer time is equal to the

computation time. If td,i denotes the time needed to perform

an operation for RC(32, 32, d, i) and |data|d,i denotes the

amount of data handled by that operation that need to be

transmitted over the network. We have:

bnbd,i =
|data|d,i

td,i

From the above definition it is clear that the bottleneck

network bandwidth also gives the amount of data that can

be processed by the coding/decoding operation.

The values of |data|d,i for the different operations are

computed as follows:

• Encoding: This operation produces the (k + h) initial
pieces. The amount of data produced that is sent over

the network is given by the size of these pieces:

|data| = (k + h) · |piece|.
• Participant Repair: This operation produces a sin-

gle fragment plus the corresponding coefficients. The

amount of data that is sent over the network is: |data| =
(1 + rcoeff) · |fragment|.

• Newcomer Repair: This operation produces a new

piece and his coefficients from d received fragments
and their coefficients. The amount of data that is

received from the network is given by the size of d

fragments plus the corresponding coefficients: |data| =
(1 + rcoeff) · d · |fragment|.

• Inversion: This operation extracts nfile independent
rows form the received (k · npiece, nfile) matrix (which
describes the k pieces used for reconstruction), and
inverts the submatrix obtained. This means that the

amount of data that is received for this operation is

given by the size of the coefficients of the k pieces:
|data| = k · rcoeff · |piece|.

• Decoding: This operation produces the original file by

multiplying the matrix obtained from the inversion by

the correspondent encoded fragments. The amount of

data that is received for this operations is given by the

size of nfile fragments, i.e. the file size: |data| = |file|.

Table 1 shows the bottleneck network bandwidth for all

the operations in the life cycle of a file for different values

of d, i. The last two columns show the volume of repair
traffic |repairdown| and the total amount of data stored in the
system |storage|.
The first row with d = 32, i = 0 presents the results
for a traditional erasure code, which minimizes the storage

requirement at the expense of a very large volume of repair

traffic (|repairdown| = |file|). In row two we consider a code
with d = 63 and i = 30, which minimizes the repair
traffic. However, as we know from figure 4 this particular

code has the highest computational costs, which result in

bottleneck network bandwidth values that can be as low as

a few hundred Kbps.

However, if we remember the results presented in

Fig. 1(b), which shows the savings in repair traffic for

Regenerating Codes, we know that most of the savings are

already achieved by quite small values of d, i.e. where d = k
or where d is slightly larger than k. For this reason, the next
two rows of table 1 consider Regenerating Codes with values

of d = 32 and d = 40 that illustrate how we can trade off
storage requirement and repair traffic:

• If we have plenty of storage space, we can use a big

value for the piece expansion index i: For d = 32, i =
30 the storage space required as compared to the one
required by traditional erasure codes almost doubles.

However, the reduction in repair traffic as compared to

traditional erasure codes is still almost as good as for

the Regenerating Code with d = 63, i = 30, which
minimizes the repair traffic.

• On the other hand if storage space matters, we can

choose a code with a small i, and a d slightly larger



than k, which still preserves most of reduction in repair
traffic. Results for d = 40, i = 1 are shown in the fourth
row of table 1. If we compare the results to the best one

achievable for each resource (see first two rows), we see

that we achieve a close to minimal storage requirement

(2.006 MB vs. 2.0 MB), and a repair traffic (128.40

KB) that is almost one order of magnitude less than

for traditional erasure codes.

From the results presented so far, we can conclude that

Regenerating Codes, as compared to traditional erasure

codes, can provide substantial reductions in repair traffic,

at almost no extra cost in terms of storage space required.

However, this gain comes at the price of a much higher

computational cost as can be seen when looking at the en-

coding and reconstruction performance, which is nearly one

order of magnitude lower than for traditional erasure codes.

With the current implementation, we can encode/decode in

the order of 1 GByte of data per hour.

This performance may be too low for a large data center.

However, we feel that Regenerating Codes are best suitable

for those systems that do not insert or retrieve very large

amounts of data and that need to do a significant amount

of repairs: An example is given by peer-to-peer data backup

systems where the data maintenance due to the high node

churn, is far more frequent than data insertion or retrieval.

Figure 5. Illustration of the trade-offs provided by Re-

generating Codes.

6. Conclusion

Regenerating Codes can be seen as a generalization of

previously known redundancy schemes based on replication

and erasure codes. They allow to trade off not only commu-

nication and storage requirements, but also computational

costs. We schematically depict this trade-off in figure 5.

We proposed a practical implementation of Regenerating

Codes, based on Random Linear Codes. We presented and

evaluated its performance trade-offs. We saw that the impor-

tant savings provided in terms of repair traffic do not come

for free, as Regenerating Codes have much lower coding

and decoding rates.

However, we feel that Regenerating Codes have a lot of

potential in environments where repairs are frequent and the

available bandwidth to carry repair traffic is limited, as is

for instance the case in Internet-wide peer-to-peer backup

systems.

As future work, we plan to deploy Random Linear Re-

generating Codes in a real P2P storage system. We want to

compare the performance of Regenerating Codes to other

existing solutions, in particular traditional erasure codes

and Hierarchical Codes[8], under different conditions with

respect to data volume and available bandwidth.
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