
UNIVERSITE DE NICE-SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA

COMMUNICATION

PhD THESIS

to obtain the title of

Doctor in Sciences
of the University of Nice-Sophia Antipolis

Specialty: Computer Science

presented and defended by

Corrado LEITA

SGNET
Automated protocol learning

for the observation of malicious threats

Thesis advisor: Marc DACIER

defended on the 4th of December 2008

Reviewers : Herve D - Orange Labs
Vern P - UC Berkeley

Advisor : Marc D - EURECOM
Members: Christopher K - TU Vienna

Engin K - TU Vienna
Mohamed K - LAAS-CNRS
Sotiris I - FORTH





“...the speed was power,
and the speed was joy,
and the speed was pure beauty.”
(Richard Backman, Jonathan Livingston Seagull)

A Pino e Luciana



Acknowledgments

This work is the final result of a three years period spent at EURECOM, on the
French riviera. There are a lot of people that deserve all my gratitude for their
continuous support, and for having made these three years a wonderful period
that made me grow a lot not only as a researcher, but also as a person.

The first words cannot go to anybody else than my thesis advisor Marc Dacier.
This work would not exist without his valuable guidance and without the long and
inspiring brainstorming sessions that led to the definition of the concepts described
in the following pages. He has always been available to listen and discuss about
research challenges and help me to shape blurry ideas into something concrete
and valuable. He has opened my mind by showing me different perspectives to
address problems, and has helped me to develop a critical sense. He has driven
me through the world of research, and has left me fascinated about it.

I would like to thank Vern Paxson, Professor at UC Berkeley, and Hervé Debar,
researcher at Orange Labs, for having accepted to review this work, and for the
insightful comments that greatly contributed to increase its research quality. I
would also express my sincere gratitude to all the other members of the jury for
having accepted to participate to the defense, even when such participation was
at the cost of a really long trip. Thanks to Christopher Kruegel, Engin Kirda,
Mohammed Kaaniche and Sotiris Ioannidis for honoring me with your presence
in this day.

I would like to thank all the great researchers with who I have had the opportu-
nity, and the honor, to work with. This includes the rest of the “Leurré.com team”,
Van-Hau Pham and Olivier Thonnard, our friends Andrew Clark and George
Mohay, that made me to discover the marvels of Australia, as well as all the “In-
ternational Secure System Lab”, a great group of really brilliant minds.

Thanks to all my friends in EURECOM: to Patrick Petitmengin for being always
ready to give me a hand with the various hardware failures and installations; to
Gwenaelle Le Stir for the heroic patience with which she faced the great number of
adventures involved in the administration of my thesis; to Christine Mangiapan,
Christine Russel, Marie Laure Victorin, for having always been so efficient and
available in helping organizing my trips. Last but not least, a special place in my
memories goes to all the professors, students and post-docs that shared with me
these years: Emilie Dumont, Guillaume Urvoy Keller, Pietro Michiardi, Daniele
Croce, Damiano Carra, Melek Onen, and many others.

I give my most profound gratitude to my parents for their incredible support
in all the vicissitudes of my life. The entirety of what I am is the result of their
continuous help, support, and love, that never left me in any moment of my life,
and that went unchanged through all my bad moods and behaviors. Thanks to my
grandparents for all the help and love that they have always given to me, and a
special thanks to Margherita.

I cannot conclude in any other way than with a very special thanks to the crazy
inhabitants of “La Schtroumpfette”. You have really been a second “french family”



5

and I probably shared with you some of the best moments of my last 25 years.
Thanks to my dearest friends Alessandro and Marco, that made these three years
much more fun that what they could have ever possibly been, and that have always
been there to help and fight with each other for my own entertainment.

And finally, Xiaolan. She does not want to appear here, but she appears in
every single word, figure and footnote of this work. She has literally shared with
me every single second of these three years. She has been on my side in the days
and nights spent in producing this work, with a constance and a loyalty that are,
believe me, heroic. I’m not able to express in any way the amount of gratitude that
I have for all that you did for me.

Un grosso grazie, di cuore, a tutti quanti.



Abstract

One of the main prerequisites for the development of reliable defenses to protect a
network resource consists in the collection of quantitative data on the Internet threats.
This attempt to “know your enemy” leads to an increasing interest in the collection and
exploitation of datasets providing intelligence on network attacks. The creation of these
datasets is a very challenging task. The challenge derives from the need to cope with
the spatial and quantitative diversity of malicious activities. The observations need to be
performed on a broad perspective, since the activities are not uniformly distributed over
the IP space. At the same time, the data collectors need to be sophisticated enough to extract
a sufficient amount of information on each activity and perform meaningful inferences.
How to combine the simultaneous need to deploy a vast number of data collectors with
the need of sophistication required to make meaningful observations? Such a challenge
constitutes the foundations of this work.

We propose in this work the usage of protocol learning techniques for the automated
generation of protocol interaction models. Such techniques aim at achieving automatically
what is normally considered a tedious and time intensive manual task, especially when
dealing with complex protocols or close-specification ones. Starting from the hypothesis
that most of the network interaction handled by a honeypot is generated by deterministic
attack tools, we propose a technique called ScriptGen. ScriptGen is able to infer information
on protocol semantics from a set of samples and to build a representation of the interaction
in the form of a Finite State Machine. The approach is protocol agnostic: no assumption
is made on the structure of the protocol. The protocol structure is partially reconstructed
through the application of bioinformatics techniques and through a set of inferences on the
statistical variability of the input samples.

ScriptGen allows the automated construction of protocol emulators also for binary
protocols whose manual analysis would be tedious. ScriptGen-based honeypots provide
a high level of interaction with the attackers at very low cost for all the activities falling
within the current protocol knowledge. We show how we are able to detect deviations
from this knowledge, and take advantage of a proxying algorithm to dynamically react to
them by producing refinements of the Finite State Machine.

We exploit the characteristics of the ScriptGen approach to design and implement a
distributed honeypot deployment, SGNET. Coupling the ScriptGen learning with memory
tainting techniques and with a simple shellcode emulator, we show how we are able to
enable SGNET to emulate code injection attacks, downloading malware samples. We
integrate the data collected by honeypot sensors deployed in 23 different testing sites to
build a centralized dataset. The dataset is enriched with the output of different analysis
tools providing different perspectives on the collected data.

The value of the resulting dataset is twofold. Firstly, it provides us information on
the behavior of the ScriptGen learning technique when dealing with Internet attacks. We
are able to validate the approach, showing its capability to correctly carry on the network
interaction and, at the same time, achieve a very high scalability. Secondly, it is a rich
and valuable source of intelligence on the structure of code injection attacks and on the
malware propagation techniques. We propose a simple clustering algorithm to explore the
complexity of the interrelationships among the different stages of a code injection attack
and we evaluate its potential in studying the propagation strategy of modern malware.



Abstract

Un des préalables au développement de défenses fiables pour la protection d’un réseau
informatique est la collection de données quantitatives sur les menaces qui le visent depuis
l’Internet. Ce besoin de « connaître notre ennemi » induit un intérêt croissant pour la collecte
et l’exploitation des informations sur les activités malveillantes observables. La création
de bases de données recensant ces événements n’est pas une tâche facile. En effet, il faut
pouvoir tenir compte de la diversité quantitative et spatiale des attaques. La collecte des
données doit être pratiquée sur une grande échelle car les sources et destinations d’attaques
ne sont pas uniformément réparties sur l’espace des adresses IP. En même temps, les
techniques de collecte de données doivent être suffisamment sophistiquées pour extraire
une quantité suffisante d’informations sur chaque activité et permettre des déductions sur
les phénomènes observés. Il faut donc pouvoir déployer un grand nombre de capteurs et
chacun de ces capteurs doit être à même de fournir des informations riches. Ce travail
propose une solution qui concilie facilité de déploiement et richesse de collecte.

Partant du postulat que la plupart des activités observables par un pot de miel sont
générées par des outils d’exploitation de vulnérabilités déterministes, nous proposons
une technique automatique d’apprentissage des protocoles d’attaque, appelée ScriptGen.
ScriptGen est en mesure de déduire la sémantique des protocoles à partir d’un ensemble
d’échantillons de ce protocole et de construire une représentation de l’interaction sous la
forme d’une machine a états finis. L’approche est agnostique par rapport à la sémantique
des protocoles : aucune supposition n’est faite quant à sa structure ou sémantique. La
structure du protocole est partiellement reconstruite en utilisant les techniques de bio-
informatique et par le biais d’une série de déductions statistiques sur la variabilité des
échantillons.

ScriptGen permet également la construction automatique d’émulateurs pour des pro-
tocoles difficiles a analyser manuellement, par exemple parce que leurs messages ne sont
pas sous forme de caractères ASCII. Les pots de miel construits grâce à ScriptGen assurent
un niveau élevé d’interaction avec les clients malveillants à un coût très bas pour toutes
les activités déjà représentées dans la machine à états finis. Nous montrons comment nous
sommes en mesure de répondre à des écarts par rapport aux connaissances actuellement
représentées et, en utilisant un algorithme de proxy, de réagir dynamiquement et affiner
progressivement la machine à états finis.

Nous utilisons les fonctionnalités de ScriptGen pour définir et mettre en place un
système distribué de pots de miel, SGNET. En combinant les capacités d’apprentissage
de ScriptGen avec des techniques de “memory tainting” et un simple émulateur de code
shell, nous montrons comment SGNET est capable d’imiter les attaques d’injection de code
jusqu’au téléchargement du malware. Nous intégrons les informations recueillies à partir
de 23 pots de miel dans une base de données. Cette base est enrichie grâce à différentes
techniques d’analyse qui offrent différentes perspectives sur les données recueillies.

La valeur de la base de données résultante est double. D’une part, la base fournit des
informations sur le comportement des techniques d’apprentissage de ScriptGen vis à vis de
la multiplicité des activités malveillantes sur Internet. Cette information nous aide à valider
ScriptGen, montrant sa capacité à poursuivre avec succès l’interaction avec les clients et,
dans le même temps, à avoir une bonne extensibilité. Par ailleurs cette base de données
est une source précieuse d’informations sur les familles d’attaques par injection de code
et sur les techniques de propagation du malware. Nous proposons un simple algorithme
de clustering pour mettre en relief la complexité des relations entre les différentes étapes
d’une attaque par injection de code.
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Introduction

Security is a very wide concept comprising many different perspectives. One of the
most predominant threats in the recent years is the outbreak of self-propagating
malware. Self-propagating malware is a concept that is now 20 years old and that
started with the outbreak of the Morris worm in 1988 [Spafford 1989]. The spread
of worms such as Blaster [URL 8] and Slammer [URL 38] now coexists with the
growth of bot-infected hosts whose behavior is coordinated by a Command and
Control channel [Baecher 2005].

The security community has developed a wide number of initiatives aiming at
monitoring and observing these threats in order to build adequate defenses. Spec-
ulations have been recently carried out on the increased efficiency of the attackers
in compromising vulnerable hosts and increasing the size of their botnets [URL 5].
Figure 1.1 plots the evolution of the number of bots monitored by the ShadowServer
foundation [URL 30] in the period between September 2007 and September 2008.
The ShadowServer foundation discovers and monitors IRC-based Command and
Control channels by directly joining the IRC channel and collecting data. Such
numbers show a constant rise in the population of the monitored botnets that
started in January 2008 and seems to indicate an increase in aggressiveness of the
propagation methods used by attackers. This goes in parallel with an increase of
the sophistication of the techniques used by malware to conceal itself from anal-
ysis and detection [Nazario 2007] and the exponential increase of the number of
different malware variants [Turner 2008].

Unfortunately information on these threats is too often either based on pro-

Figure 1.1: Botnet size evolution (September 2007 - September 2008)
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prietary data or even anecdotal. This situation leads to an increasing interest in
the collection of information to understand and quantify the propagation strate-
gies used by modern malware. How does malware propagate? Is the increase
in efficiency and sophistication leading also to the usage of more sophisticated
exploitation techniques? What kind of vulnerabilities are effectively exploited to
compromise victim hosts?

1.1 Problem statement

Answering these questions is an extremely complex task that implies addressing
three main problems: application diversity, spatial diversity and depth of the
observations.

1.1.1 Application diversity

The Internet is today an extremely complex setting as a consequence to the sophis-
tication of the applications and the protocols taking advantage of it. The increasing
popularity of rich web applications based on complex frameworks and the in-
creasing number of clients for network applications such as, for instance, VoIP,
opens an extremely diverse number of vulnerabilities to attackers and of ways to
exploit them. According to [Turner 2008], 2134 vulnerabilities were discovered
in the second half of 2007, 73% of which are considered easily exploitable. The
applications affected by these vulnerabilities range from web applications, to web
browsers, other clients, servers, and local applications. Each application class has
different characteristics that can be exploited in different ways from attackers. The
required process to monitor malicious activities targeting these vulnerabilities is
thus specific to each application class.

This work addresses this challenge by selecting a specific class of activities,
server-based exploitation attempts, and by developing a protocol learning tech-
nique allowing to cope with the diversity of the protocols involved in these ac-
tivities. Differently from existing work, we avoid any a priori assumption on the
nature of the expected observations and we aim at being protocol-agnostic.

1.1.2 Spatial diversity

Different research work aiming at the collection of data on unsolicited network traf-
fic [Dacier 2004a, Cooke 2004] showed that different Internet blocks are affected by
highly dissimilar profiles. The generation of a dataset starting from the observa-
tions of a single sensor in a single network location leads to the generation of data
representative for that specific network block, but not representative of the global
scenario of Internet attacks.

In order to cope with the spatial diversity of the activities, we need to distribute
our observation points as much as possible over the IP space. For this to be possible,
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the deployment and maintenance cost of each data collection sensor must be kept
to a minimum.

1.1.3 Observation depth

The collected information needs to be sufficiently rich to perform reliable infer-
ences on the nature and the root causes of the observations. For instance, simple
aggregate information on high-level network events is not sufficient to correctly
diversify the different activity types. As identified in [Yegneswaran 2004], only by
engaging attackers into sufficiently long conversations it is possible to discriminate
among different types of activity.

1.2 Research objectives

This work aims at addressing the previously introduced challenges for a specific
class of activities, server-based exploitation attempts through blind scanning of the
Internet.

A technique that proves to be very effective in monitoring and collecting data
on this class of attacks consists in the usage of honeypots. Honeypots, formally
introduced in Section 2.1.1, are network resources whose only purpose is being
contacted by attackers, unaware of the network topology and thus unaware of
their nature. Honeypots thus have an intrinsic capacity to collect suspicious traffic
only. Despite the widespread usage of such techniques for the collection of data on
suspicious activities, a main tradeoff exists between the representativeness of the
collected data and its richness.

Claim: Current approaches fail in correctly addressing the tradeoff
between the requirements of representativeness and richness for
the collected data.

This claim, addressed in depth in Chapter 2, can be articulated in these two
points.

• In order to generate a representative dataset, the observation point chosen
by the honeypot must be as global as possible. This led to the generation
of distributed honeypot deployments such as Leurré.com [Pouget 2006], in
which honeypot platforms are hosted by volunteering partners interested in
exploiting the collected data.

• The distributed nature of these honeypot deployments has a direct impact
on the richness of the collected data. Honeypot techniques allowing to be
sufficiently interactive with the attackers to produce rich data are either too
costly to cope with the distributed nature of the architecture or they are
based on a set of assumptions on the nature of the observed attacks that
compromises the representativeness of the dataset.
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This work aims at addressing this trade-off.

Assumption. Self-propagating malware, that is any malicious code
autonomously spreading to computer system through remote ex-
ploitation of vulnerabilities, is the main contributor to server-based
code injection attacks observable on the Internet. The correspond-
ing network interaction is generated by deterministic exploit scripts
whose interaction with the vulnerable service follows a determinis-
tic pattern.

This work builds upon this assumption to generate an automated protocol
analysis method, called ScriptGen, able to learn from a set of samples of network
interaction the underlying structure by partially inferring the protocol semantics.
The approach is protocol agnostic: no assumption is made on the protocol seman-
tics or on its structure, avoiding as much as possible to bias the corresponding
observations. The generated responders take advantage of a Finite State Machine
representation in order to interact with attacking clients at a very low cost, allowing
the distributed deployment of low-cost sensors able to extract information on the
nature of the conversations.

Thesis statement. In this thesis, we aim to demonstrate that:

• Automated learning of the protocol interaction is possible, and
allow the generation of responders able to correctly handle
future instances of a given type of observed activities.

• Automated learning can be used to incrementally increase the
knowledge on protocol interactions and react to previously
unknown activities.

• Automated learning allows honeypots to cheaply handle known
activities and rely on more costly techniques only to learn un-
known ones. The learning process allows the achievement of a
very high degree of scalability at a reasonable cost in terms of
complexity.

• The increased level of interaction of the generated honeypots
can be coupled with memory tainting techniques and shellcode
emulation to fully emulate code injection attacks and download
malware samples.

• Such techniques can be used to generate a valuable and rich
dataset providing valuable information on the propagation
strategies of self-propagating malware and on the lifetime of
the threats.

The effort in addressing the above points led to the generation of SGNET, a
distributed honeypot deployment based on protocol learning techniques. As of



1.2. Research objectives 5

today, the deployment consists of 23 sensors deployed in different networks in
America, Europe, Asia and Australia. The deployment is open to any institution
wishing to take advantage of the generated dataset.
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The collection of data on Internet threats has been widely addressed by the
research community. We can distinguish two classes of contributions addressing
the problem. On the one hand, we can identify in the literature different approaches
aiming at the collection of data on malicious threats taking advantage of the concept
of honeypot. On the other hand, different architectures are proposed to practically
collect such information from the Internet. In this Chapter we overview such
techniques assessing their strengths and weaknesses. In Section 2.1 we introduce
the concept of honeypot, and we overview its different implementations. In Section
2.2 we review the different infrastructures and deployments that are being used to
collect data on malicious threats on the Internet.

2.1 Retrieving information on malicious activities

In order to collect data on malicious activities, we need to take advantage of a data
collection tool able to observe and characterize such activities.

2.1.1 Honeypots

The concept of honeypot has been investigated in various forms since 1990 [Cheswick 1990].
In [Halme 1995], the authors introduce the idea of “intrusion deflection” to attract
attackers towards “a specially prepared, controlled environment for observation”.
This concept has been formalized by L. Spitzner in [Spitzner 2002] through the
following definition:
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“A honeypot is an information system resource whose value lies in
unauthorized or illicit use of that resource.”

This definition groups together any network resource whose value consists in
interacting with malicious users, eventually up to the point of being exploited and
compromised. The practical implementation of a honeypot depends on a set of
variables, the most important of which is the nature of the activity to be observed. A
honeypot can aim at observing the behavior of network servers when contacted by
malicious users (server-side honeypot). Instead, a honeypot can aim at observing
the behavior of client applications when interacting with malicious remote services
(client-side honeypot). This work focuses on the first of these two classes.

Most of the implementations of server-side honeypot solutions emulate the
presence of network hosts on a set of unused IP addresses (also known as dark
space). These addresses can belong to a company network as a mean to detect
internal intrusions and anomalies, or can be assigned to routable IP addresses
when the objective is to observe Internet worldwide malicious activities. The
usage of unassigned IP addresses filters out benign traffic and allows focusing on
the malicious one, since no benign user is supposed to be contacting these hosts. On
the other hand, this biases the type of malicious network activities observable by
these honeypots: only untargeted attacks blindly scanning an IP range comprising
the honeypot address will be detected by the honeypot. This has two important
consequences:

• An attack scanning a portion of IP space different from that to which a
honeypot belongs is undetectable to that honeypot.

• More sophisticated targeted attacks aiming at the exploitation of a specific
network resource considered valuable to the attacker are not visible to hon-
eypots.

These limitations must be taken into account when exploiting server-side hon-
eypots to collect data on Internet network attacks. On the one hand, the scope
achievable by these techniques is in fact implicitly biased towards a class of attacks
and attackers. On the other hand, a single honeypot deployed on a specific sub-
net of the Internet is likely to have an insufficient perspective on Internet attacks.
We will see in Section 2.2.2 how this need led to the generation of distributed
deployments to achieve a global view over Internet activities.

Despite the basic architectural similarities previously identified, a number of
different server-based honeypot implementations exist in the literature. These im-
plementations differ in the solutions adopted to emulate the presence of a network
host in a network. Spitzner [Spitzner 2002] breaks down the different solutions
according to the level of interaction with the attacker, talking about low-interaction
and high-interaction solutions. Sections 2.1.2 and 2.1.3 provide an overview on the
most significant solutions belonging to these two classes.
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2.1.2 Low interaction honeypots

Low interaction honeypots aim at emulating the presence of a host through scripts
that emulate the presence of different network services bound to the honeypot IPs.
The emulation of a low-interaction honeypot can be as simple as a script binding a
socket to different ports and closing connections as soon as they are established:

The degree with which a low interaction honeypot emulates a network host can
vary significantly among different honeypot implementations. The different depth
of these solutions offers different perspectives on the observed attacks, generating
a trade-off between the complexity of the solution and the richness of the collected
information.

We can find in the literature simple low-interaction implementations that do
not aim at emulating protocol interaction. For instance, the Deception Toolkit by
Cohen [Cohen 1998] aims at dissuading attackers from hitting a given machine by
emulating the behavior of a vulnerable system. The LaBrea honeypot [URL 18]
actively tries to damage the attacking clients by stalling their network connections.

The Tiny Honeypot [URL 4] developed by G.Bakos is a very simple example
of protocol emulation. In this approach, a single daemon is generated taking
advantage of xinetd and the various connection attempts are redirected towards
the honeypot daemon taking advantage of netfilter rules. Any connection attempt
on any port is presented with a login banner and a root shell, in the hope of
collecting information on the intent of the attacker.

The attempt to increase the flexibility and the quality of the emulation has led
to a set of more complex solutions described in the following Sections.

2.1.2.1 Honeyd

Honeyd [Provos 2004] by Niels Provos is an extremely flexible low-interaction
honeypot that aims at emulating entire networks of honeypots.

Honeyd is able to emulate virtual networks composed of thousands of nodes,
and to create complex topologies characterized by multiple routers and links with
different latencies. Honeyd provides advanced features, such as the ability to take
advantage of DHCP to allow the coexistence of honeypots with real hosts within
production networks, or to receive packets through GRE tunnels.

Honeyd focuses on the emulation of all the layers of the network stack of a
virtual host. Honeyd implements a personality engine, which modifies every packet
generated by the virtual host in order to make it comply with the behavior of
a particular TCP/IP stack implementation. A number of OS fingerprinting tools
[URL 48, URL 1] take advantage of the diversities in the implementation of the
TCP/IP stack and in the flags being used to detect the nature of a given operating
system. Honeyd modifies the generated packets in order to comply with these
heuristics and emulate the personality of the different virtual hosts.

While the personality engine is in charge of emulating the transport and link
layer of the network stack, the emulation of the application protocols is left to a set
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of external plugins in charge of the emulation of the protocol interaction. Honeyd
supports three different techniques to provide emulators for application protocols:

• Honeyd Service scripts. It is possible to associate an executable file (such as
a bash/perl/... script) to a given port on a given honeypot profile. Whenever
a connection is established, an instance of the script is invoked receiving the
attacker input on standard input. Any output generated by the process is
sent back to the attacker.

• Python services. Honeyd provides an interface to generate python modules
associated with the emulation of the protocol interaction on a given TCP
port following a non-blocking I/O model. These modules are loaded within
the honeyd core and do not require the instantiation of additional processes,
and are thus more efficient. Each service is associated with a specific port,
preventing the emulation of complex services spanning on different ports
(e.g. the FTP protocol).

• Subsystems. It is possible to execute external Unix applications within the
honeypots virtual address space. This is achieved using dynamic library
preloading, intercepting the normal network libc calls and replacing them
with their a custom honeyd implementation.

Despite the flexibility offered by honeyd in interfacing to emulators for application-
level protocols, the availability of good emulation scripts for the different protocols
is scarse. Looking at the honeyd website [URL 29], it is possible to find a few scripts
that provide basic emulation for ASCII protocols (such as telnet or IIS services).
More complex protocols, such as the NetBios protocols, cannot be easily emulated
with Honeyd and require the usage of full-fledged implementations running as
subsystems.

2.1.2.2 Nepenthes

Nepenthes [Baecher 2006] and its python-based counterpart Amun [URL 13] focus
on a specific class of network activities, code injection attacks. We have seen
that Honeyd limits its emulation capabilities to the network stack of a host and
focuses on the collection of network-level information. Nepenthes offers a more
sophisticated emulation of application-level protocols, even for binary ones. The
emulation task is although restricted to a set of specific network interactions that
lure self-propagating malware into propagating to the honeypot. This task-specific
emulation allows Nepenthes to collect malware samples.

Nepenthes’ implementation is based on a set of plugins organized on different
functional layers.

• Vulnerability modules. Nepenthes vulnerability modules can be incorpo-
rated into Honeyd’s service scripts. Each vulnerability module emulates the
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application-level interaction associated with a specific exploit. These mod-
ules can be created by reverse engineering an exploit source code. They
provide sufficient network interaction for luring the attacker into carrying on
his exploit and retrieve a sample of shellcode.

• Shellcode parsing modules. During an interaction with an attacker, in case
of successful exploit the vulnerability modules identify the shellcode within
the protocol stream. The shellcode parsing modules apply heuristics on the
binary shellcode sample in order to “understand” its behavior. The heuristics
are very simple, and consist in applying an XOR decoder to reverse a common
obfuscation technique used by malware authors, and in taking advantage of
a set of patterns to detect common shellcode strategies. When needed, this
stage can take advantage of a shell emulator to further interact with the attacker
and receive information from it. The final output of this stage consists in the
retrieval of a URL representing the location of the malware to be downloaded.

• Fetch modules. If the shellcode parsing stage has succeeded in understand-
ing the location of the malware, Nepenthes takes advantage of a set of plugins
to emulate the protocol interaction. This ranges from FTP/HTTP downloads
to malware-specific protocols, such as creceive. The final output of this stage
corresponds to a malware sample.

• Submission modules. These modules process the successfully downloaded
files, eventually storing them locally or submitting them to remote collection
services.

It is clear from this preliminary description that Nepenthes bases its observa-
tions on an a priori knowledge of the attack processes and techniques. The level
of interactivity of the vulnerability modules, for instance, is kept at the lowest
possible level known to ensure interactivity with the attacking clients. For in-
stance, follows a code snippet extracted by the proof-of-concept exploit developed
by a Russian hacker called HouseOfDabus [URL 22]. The exploit targets the vul-
nerability MS04-011 [URL 20], classified under CVE-2003-0533 [URL 24], a critical
vulnerability allowing arbitrary execution of code through communication with
the Microsoft LSASS service on port 445.

i f ( send ( sockfd , req1 , s i ze of ( req1 )−1 , 0 ) == −1) {
p r i n t f ( " [−]�Send� f a i l e d \n" ) ;
e x i t ( 1 ) ;

}
len = recv ( sockfd , recvbuf , 1600 , 0 ) ;

The script sends each exploit packet and then waits for an answer from the
attacked client. In order to maximize efficiency, the exploit code does not check the
received answer, and simply receives and discards an amount of data that is smaller
than 1600 bytes. As a consequence to this choice, the Nepenthes vulnerability
module associated with this vulnerability replies to any incoming packet with a
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binary blob of 64 random bytes. A simple modification of the previously mentioned
attack script would easily allow the detection of a Nepenthes honeypot and thus
prevent the disclosure to security researchers of the malware sample.

The limitations of the knowledge-based approach used by Nepenthes have ap-
peared in a recent paper [Zhuge 2007] by Zhuge et al. In this paper, the malware
collection capabilities of Nepenthes have been compared with those of high in-
teraction honeypots, running the full implementation of an OS and instrumented
to detect a successful infection and react to it. The difference in collection abil-
ity of the two approaches is striking: of 171 malware families observed by the
high interaction honeypots, only 61 were correctly observed and downloaded by
Nepenthes.

2.1.2.3 Honeytrap

Honeytrap [URL 47], developed by Tillman Werner, is a low-interaction honeypot
aiming at maximizing the probability of observing a malicious behavior. Differently
from other approaches, honeytrap is not bound a priori to a set of ports. It takes
advantage of sniffers or user-space hooks in the netfilter library [Welte 2000] to
detect incoming connections and bind consequently the required socket. Each
inbound connection can be handled according to 4 different operation modes:

• Service emulation. It is possible to take advantage of responder plugins
similarly to the previously analyzed solutions.

• Mirror mode. When enabling mirror mode for a given port, every packet
sent by an attacker to that port is simply mirrored back to the attacker. An
attacker attempting an exploit over the honeypot will see its exploitation
attempt to be mirrored back to him by the honeypot. This mode is based on
the assumption that, in case of a self-propagating worm, the attacker must be
exposed to the same vulnerability that he is trying to exploit. It is although
unclear whether such “active” honeypot behavior is legally allowed.

• Proxy mode. Honeytrap allows proxying of all the packets directed to a port
or set of ports to another host, such as a high interaction honeypot.

• Ignore mode. Used to disable TCP ports that should not be handled by
honeytrap.

Honeytrap takes advantage of a set of plugins to exploit the information col-
lected by the network interaction. The ability of these plugins to handle network
attacks can be assimilated to a best effort service. For instance, if an HTTP URL
appears in the network stream, honeytrap will try to download the file located at
that URL. If the HTTP URL is not directly present in the network stream, but is
embedded within an obfuscated shellcode, honeytrap will not be able to detect it
or download it. Honeytrap visibility on the network attacks is thus not uniform,
but heavily depends on their structure and their complexity.
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2.1.2.4 Billy Goat

Billy Goat [Riordan 2006] is a particular honeypot developed by IBM Zurich Re-
search Labs that focuses on the detection of worm outbreaks in enterprise environ-
ments. It is thus called by the authors Worm Detection System (WDS) in opposition
to classical Intrusion Detection Systems. Billy Goat automatically binds itself to
any unused IP address in a company network, and aims at quickly detecting and
identifying the infected machines and retrieve information on the type of activity
being performed.

In order to gather as much information as possible on the kind of activity
observed by the sensors, Billy Goat employes responders that emulate the appli-
cation level protocol conversation. While the general responder architecture is
very similar to that employed by Honeyd, Billy Goat takes advantage of a peculiar
solution for the emulation of SMB protocols, which consists in taking advantage
of a hardened version of the open-source implementation of the protocol1. Such
an implementation is derived from the work done by Overton [Overton 2003],
which takes advantage of a similar technique to collect worms trying to propagate
through open SMB shares. This choice puts Billy Goat in a hybrid position between
low and high interaction techniques, since it offers to attacking clients the real pro-
tocol implementation, even if hardened to reduce security risks. The increased
level of interaction of this technique has allowed interesting analyses such as the
work done by Zurutuza in [Zurutuza Ortega 2007]. In this work, the author takes
advantage of a data mining tool [Julisch 2003] to automatically generate signatures
for unknown events observed by the Billy Goat system.

2.1.2.5 Stateless approaches

All the previous methods keep track of the connection attempts performed by
different attackers with levels of state of various complexity. For instance, in
the case of honeyd every established connection leads to the instantiation of the
responder associated with the service in order to carry on the application-level
conversation. The scalability of these approaches is thus affected by the rate of the
established connections and, implicitly, by the size of the monitored subnet.

iSink [Yegneswaran 2004] and HoneyTank [Vanderavero 2004, Vanderavero 2008]
address the aforementioned issue by implementing a completely stateless ap-
proach. The response to each incoming packet is solely based on the information
contained in that packet and no additional state is required. This approximation
proved to be sufficient to carry on the conversation with the attackers long enough
to discriminate among different types of activities. Of course, such approximation
can be easily detected by human interaction or by ad-hoc scripts testing the correct
behavior of the protocol. For instance, a stateless SMTP responder will always
accept a DATA command even when not preceded by a MAIL FROM or RCPT TO
commands.

1www.samba.org

www.samba.org
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These stateless approaches achieve a significant level of interactivity with the
client in a very scalable way. For instance, iSink [Yegneswaran 2004] implements re-
sponders for most of the Windows protocols (CIFS/SMB/NetBIOS/...) and achieves
a scalability shown to be sufficient for the emulation of entire Class A networks.

2.1.3 High interaction honeypots

High interaction honeypots take advantage of the full implementation of an OS to
carry on the conversation with the attacker. Virtualization systems such as VMware
[URL 46] or Qemu [Bellard 2005] are often used as a convenient way to emulate
on a single physical host multiple instances of an OS binding them to multiple IP
addresses.

Taking advantage of real operating systems running in virtualization environ-
ments, high interaction honeypots allow the maximum possible level of interaction
with the attacker. Differently from low-interaction techniques, protocol emulation
is no longer an issue. A new issue arises: containment. High-interaction techniques
offer to the attacker a real environment, which is vulnerable and can thus be ex-
ploited. Containment techniques try to prevent the attacker from exploiting the
honeypot for illicit purposes without compromising the quality of the collected
information.

2.1.3.1 Network monitoring

A possible way of monitoring the status of a high interaction honeypot consists in
monitoring the network traffic that it generates.

Honeynet project’s Honeywall [The Honeynet Project 2005b, The Honeynet Project 2005a]
is normally set up as a transparent bridge between the farm of high interaction
honeypots and the Internet. The containment techniques employed by Honeywall
combine together two different techniques.

Firstly, Honeywall takes advantage of a set of iptables [URL 26] rules to limit the
ability of the attacker to take advantage of the bandwidth available to the honeypot.
The default rules are extremely strict, and allow the honeypot to generate only 20
TCP connections, 20 UDP packets, 50 ICMP packets per hour. This prevents the
attacker from being able to run Denial of Service (DoS) attacks against other victims.

While these rules are effective in preventing these kinds of attacks, a single TCP
connection can be enough for an attacker to compromise another victim using the
honeypot as a stepping stone. In order to address this class of attacks, Honeywall
takes advantage of Snort-inline. Snort-inline is a modification of the popular
Intrusion Detection System Snort [Roesch 1999] to allow the modification of packets
that match a given set of rules. Honeywall uses this tool to perform a sanitization
of the exploits: the network bytes known to be essential for the exploit to succeed
are replaced with innocuous ones. The purpose of the sanitization technique is to
prevent the attacker from succeeding in the exploit, and at the same time invite him
to try again, eventually with different exploits or different exploit configurations.
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While a solution such as Honeywall can be very effective in most cases, it is
important to understand that it is a knowledge-based solution. The Snort-inline
signatures used by Honeywall are able to sanitize only those exploits that follow
known attack patterns. The signatures need to be kept constantly up to date and
might not provide an exhaustive protection against all the known attacks either.
Moreover, it is possible for an attacker having a specific interest in taking advantage
of the honeypot to study these signatures and find a way to evade them.

An interesting network monitoring technique was developed by Georgia Tech,
the BotHunter [Gu 2007] tool. BotHunter is built upon Snort and specifically
aims at the detection and the collection of data on infections of self-propagating
malware. Its nature is thus comparable to a special-purpose Intrusion Detection
System (IDS), but the authors show in [Gu 2007] how BotHunter can be coupled
with a honeynet and be used as a data collection and containment mechanism.
BotHunter analysis is based on a high level model of a self-propagating malware,
with special interest to IRC-based bots. Such model depicts a malware infection as
composed of 5 different stages:

• E1: External to Internal Inbound Scan

• E2: External to Internal Inbound Exploit

• E3: Internal to External Binary Acquisition

• E4: Internal to External C&C Communication

• E5: Internal to External Outbound Infection Scanning

BotHunter tries to independently detect each of these 5 stages, and takes ad-
vantage of correlation techniques to infer the presence of a malware infection. In
case an infection is detected, BotHunter is able to generate detailed reports on the
infection process, along the 5 detection stages, such as information on the exploited
TCP port, the malware binary being pushed to the victim, and information on the
eventual Command & Control channel. BotHunter does not prevent malware from
trying to propagate to other hosts: differently from Honeywall, outbound infection
scanning is not blocked. The detection is focused on a behavioral model rather than
exploit-specific signatures. Through such behavioral detection, BotHunter can be
used to implement a more effective containment technique with respect to the pre-
viously analyzed solutions. In [Gu 2007] the authors react to a detected infection
by tainting the corresponding high interaction honeypot and then by sanitizing it.

2.1.3.2 Host monitoring

High interaction honeypots, with their higher level of interactivity, provide rich
information on the attacker activity. This level of interaction translates into ver-
bose network information, but also in detailed information on the modifications
performed by the attacker at host level. This information can be exploited to have
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exact information on the success of attacks and on the status of the honeypot to
implement a very reliable containment.

Sebek [URL 42] was developed by the Honeynet Project and is used in several
high-interaction honeypot deployments [The Honeynet Project 2005b, Vrable 2005].
Sebek is a client/server solution in which a set of clients monitor the honeypot hosts
and report the observations to a central server in charge of the logging task. Se-
bek clients intercepts the read() system call, and are thus able to observe all data
accessed by a hacker or malware in an unencrypted way. Since Sebek runs within
the honeypot operating system, it is detectable by a knowledgeable intruder and
can even be disabled, allowing the intruder to act undisturbed on the honeypot
[Tan 2004, URL 14, URL 27].

A more sophisticated system was proposed in [Zhuge 2007]. The Honeybow
high interaction honeypot system combines together three different monitoring
techniques to minimize the ability of an attacker to escape from detection. These
techniques focus on a specific aspect linked with network exploits: the generic
need for an attacker to push an executable file to the victim taking advantage of a
successful exploit.

• MwWatcher. Similarly to Sebek, MwWatcher runs within the virtualized
high-interaction honeypot and logs suspicious modifications to the filesys-
tem.

• MwFetcher. MwFetcher monitors the virtualized host from outside, access-
ing the virtual drive of the honeypot and detecting changes to the filesystem.

• MwHunter. MwHunter analyzes the network stream taking advantage of
Snort-inline, and detects the presence of (unencrypted) executable samples
in the network stream.

The authors claim that the combination of these three techniques maximizes the
probability of correctly detecting an infection. Whenever a detection is detected,
the honeypot is automatically sanitized and restored to a clean snapshot.

While Honeybow focuses on the detection of the download of a malware sam-
ple, and thus allows the honeypot host to be compromised, Argos [Portokalidis 2006]
follows a different approach. Argos is a high interaction honeypot based on the
popular Qemu [Bellard 2005] system emulator. Argos is a modification of Qemu to
implement a memory tainting technique. Memory tainting was proposed also by
previous solutions [Crandall 2005, Costa 2005], but Argos is the first to implement
memory tainting as a containment technique for high interaction honeypots. Argos
tracks the data flow in the physical memory of the virtualized system, marking all
the bytes derived from incoming network packets as tainted. Whenever a tainted
byte is used in an illegal way (e.g. its value is copied to the virtualized host’s In-
struction Pointer and thus hijacks the instruction flow), Argos stops the execution
of the virtualized host and inspects its memory to retrieve more information about
the exploit strategy. This allows the implementation of a very reliable containment
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technique by stopping the execution of the honeypot as soon as an attacker succeeds
in exploiting it. It is important to understand that the memory tainting detection
does not support paging and, more importantly, detects only exploitation through
code injection techniques. Argos honeypots are thus vulnerable to other kinds of
attack, for instance to password brute-force attacks (used for the propagation of
some recent worms [URL 12]).

2.1.3.3 Reflection

An interesting containment technique is applied in Potemkin [Vrable 2005]. Potemkin
is a honeyfarm of high interaction honeypots developed at UC San Diego. Potemkin
achieves an extremely high level of scalability by using resources only on the oc-
currence of an attack. When an IP is hit by an attack, Potemkin generates a new
instance of a high interaction honeypot and assigns it to that IP. The generation is
extremely fast and memory efficient thanks to the usage of Copy On Write (COW)
techniques. This potentially allows Potemkin to minimize the resource cost of a
high interaction honeypot.

The containment policy used in Potemkin is implemented in a central gateway
at the border of the honeypot farm. Outbound packets generated by a given hon-
eypot instance are allowed to exit to the Internet only when directed towards the
attacker that initiated the conversation. This allows malware propagation strate-
gies based on phone-home techniques to work correctly. Any connection attempt
towards other hosts is blocked by the Potemkin gateway and reflected towards in-
ternal entities. Common protocols (DNS) are handled through local proxies able
to handle the client requests, while all the other connection attempts are redirected
back towards the honeyfarm. A compromised honeypot scanning in the attempt
to propagate the infection will thus compromise other honeypots within the hon-
eyfarm. This technique is extremely valuable since it allows a secure containment
technique and allows the study of the effectiveness of the malware propagation
techniques.

Potemkin’s reflection is a very interesting technique for the observation of
classical self-propagating worms. With the growth in sophistication of the observed
malware, the complete isolation of the infected machine from the rest of the Internet
may prevent the observation of the malware behavior. For instance, bots receiving
commands from a centralized Command & Control channel would not be able to
receive commands from the bot herder. Also, malware that verifies its connectivity
to the Internet by checking the reachability of common websites would be reflected
to the farm and would easily detect the difference between the farm node and
the real Internet host. This may potentially affect the ability of such technique to
correctly observe the propagation of such malware samples.
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2.2 Data collection infrastructures

Section 2.1 provides an overview on different techniques to extract meaningful
information about attack threats. These techniques represent data collection tools
that can be used according to different strategies to collect information on attack
threats.

2.2.1 Global perspective

The spread of self-propagating worms had great resonance in the world of Internet
Security [Song 2001]. Self-propagating worms randomly scan the Internet trying
to aggressively compromise the highest number of peers in the least possible time.
Worms such as Slammer [URL 38] were so effective and fast in their propagation
that they significantly affected the availability of Internet infrastructure, congesting
the network links. The main purpose of these threats was fast, complete infection
of the Internet. In such a scenario, an increasing interest of the research community
led to the development of techniques to monitor these globally expanding threats,
to allow early detection and study their propagation.

2.2.1.1 Internet Telescopes

Internet Telescopes observe a single large portion of the unassigned IP space in
order to observe global events. Moore et al. showed in [Moore 2002] how Internet
Telescopes can be compared to an astronomical telescope. Increasing the number
of IP addresses being monitored (their “resolution”), Internet Telescopes increase
their visibility into fainter, smaller and further objects. Internet Telescopes have
been used to detect global threats such as the Witty worm [Shannon 2004] or the
evolution of DoS attacks [Moore 2006].

Due to the high amount of IPs involved in this kind of deployment, often
Internet Telescopes configure themselves as purely passive sinks for Internet traffic.
Examples of such deployments are the CAIDA Internet Telescope [URL 6] and
Team Cymru Darknet Project [URL 40].

In order to increase the level of interaction of Internet Telescopes and cope
with the scalability problems, different filtering solutions have been proposed in
the literature. Pang et al. propose in [Pang 2004] the combination of stateless
responders with filtering techniques to drop repeated activities. By allowing, for
instance, connections from one attacking IP to only N telescope IPs, these filters
significantly reduce the load on the telescope. The reduced load allows the authors
to increase the level of interaction and take advantage of iSink [Yegneswaran 2004]
and honeyd [Provos 2004] and correctly distinguish activities.

A more complex solution is GQ [Cui 2006a, Cui 2006b]. GQ takes advantage
of dynamic filters and protocol learning techniques [Cui 2006c] to filter out unin-
teresting activities and relay the selected activities to farms of fully fledged high
interaction honeypots. These techniques are closely related to this work, and share
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many similarities but also major differences. We thus postpone their detailed
description to Section 4.5.2, where the reader will be able to better understand
the challenges underneath this task and the differences between the various ap-
proaches.

Finally, Potemkin [Vrable 2005], introduced in Section 2.1.3.3, potentially con-
figures itself as a high-interaction Internet Telescope, being able to theoretically run
1500 high interaction honeypots on a single server. The experimental validation
run in [Vrable 2005] focuses on the performance evaluation of the deployment and
no experience reports on Potemkin are currently available. No information is thus
currently available on the effectiveness of such technique in observing Internet
threats or on the nature of the collected data.

An important limitation of the Internet Telescope schema consists in the possible
bias derived from the identification of the monitored IP range. Staniford et al.
showed in [Staniford 2004] how self-propagating malware could take advantage
of a priori knowledge of the active IPs to avoid these “black holes" in the IP space
and consequently avoid detection.

2.2.1.2 Log aggregation

We have introduced honeypots as the primary way to collect information on ma-
licious activities. Other sources of information exist, such as Intrusion Detection
System logs or firewall logs, and can be aggregated to build global pictures of the
Internet attacks.

SANS Internet Storm Center (ISC) is a well-known source of information for
Internet threats. The Internet Storm Center collects logs from any volunteering
contributor and aggregates them in DShield [URL 11], a “Distributed Intrusion
Detection System”. A free client application allows the upload of logs in a variety
of formats, which range from personal firewall solutions to intrusion detection
systems such as Snort and commercial firewall appliances. This information is
used to build publicly available statistics on the evolution of the events on the
various ports and can be browsed back in time.

A similar service is offered by Symantec Deepsight [URL 39]. Symantec pro-
vides as a free download a client, Deepsight Extractor, able to parse and submit to
a central database logs generated by a number of different network appliances and
personal firewalls. Contributors are allowed to access a web interface collecting
detailed statistics on the submitted logs.

One of the main drawbacks of this kind of log aggregation approaches is the
heterogeneity of the different sources of information. There is a considerable se-
mantic difference between the events recorded by different systems. As shown
in [Dacier 2004b], the aggregation of logs generated by diverse sources lacks the
semantics and the homogeneity necessary to perform correct analyses and infer-
ences.
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2.2.2 Observing local activities

After 2003, the proliferation of fast and highly visible self-propagating worms
started to decrease and almost came to a stop in 2005. The profile of the attackers
changed, and stealthier, profit-driven activities started to spread in the malicious
activity scenario. For instance, in [Baecher 2005] it was shown how bot herders
often instruct their botnets to scan within specific IP ranges, throttling down the
scan frequency. Different research works [Dacier 2004a, Cooke 2004] showed how,
consistently with this change in scenario, the Internet was affected by a proliferation
of smaller activities highly localized.

In order to tackle this new reality different projects have proposed different
data collection strategies allowing to spread the observation perspective over the
IP space and characterize the locality of these phenomena.

2.2.2.1 The Leurré.com project

The Leurré.com project is a distributed honeypot deployment result of the work of
Pouget et al. [Pouget 2006]. The main purpose of this deployment is the generation
of a standard distributed platform to collect unbiased information on a specific class
of network attacks, server-based scanning attacks. The project aims at deploying
equal and thus comparable honeypot sensors in different locations of the IP space,
and study the differences in the observations in order to ideally build a map of the
“Internet weather”.

The sensors are deployed on a partnership basis: any entity willing to access
all the collected data needs to become part of the project by installing a honeypot
sensor. At the moment of writing, the project has deployed over 50 sensors,
covering all the 5 continents. Each sensor, based on Honeyd, emulates the presence
of 3 IPs and monitors the network interaction of the attacking sources to these IPs
through the collection of the full packet traces in pcap format. The emulation is
purely passive, no application level script is associated with the open ports. The
honeypots thus limit their emulation to the establishment of TCP connections but
never reply to client requests.

The lack of interactivity with the attackers is a limiting factor for the Leurré.com
project. The project addresses this problem in two ways.

Firstly, the collected information is enriched through correlation with other
information sources:

• IP Geolocation. The project takes advantage of Maxmind [URL 19] to retrieve
information on the geographical location of the attackers and the organization
responsible for the network range in the registrar database.

• Passive OS fingerprinting. Taking advantage of passive OS fingerprinting
techniques [URL 48] it is possible to inspect the collected packet traces and
infer generic information of the operating system of the attacking client.
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• Reverse DNS resolution. Reverse DNS resolution information is stored for
every attacking source observed by the deployment.

Secondly, the collected information is analyzed through data-mining algorithms
[Pouget 2006] that, by looking at the network and temporal characteristics of the
observed activities, tries to cluster together activities likely to be connected to the
same exploit implementation.

All this information is stored and aggregated in a set of meta-tables organized
in such a way to allow its easy usage in data-mining tasks. A detailed overview of
the collected information can be found in [Leita 2008c].

2.2.2.2 The Internet Motion Sensor

The Internet Motion Sensor [Bailey 2005] is a distributed Internet Telescope. In
order to obtain visibility on localized phenomena, the Internet Motion Sensor
spreads its observation points on different network blocks. In [Bailey 2005] the
authors describe the Internet Motion Sensor as being composed of 28 network
blocks whose size can reach even the size of a /8 network. The Internet Motion
Sensor can thus be seen as a hybrid solution, which tries to combine together the
observation capabilities of Internet Telescopes with respect to global activities and
achieve visibility on localized phenomena through the dispersion of the telescope
address blocks along different IP blocks.

Due to the high number of IPs being monitored, the emulation solution used
by the Internet Motion Sensor is rather simple: to any incoming SYN packet on
any port, the sensors reply with a SYN/ACK packet. According to the authors, this
behavior is sufficient to obtain a sufficient characterization of the attack activity.
Due to the heavy load implicit in the storage of the network interaction associated
with the sensors, the authors employ a caching technique based on the MD5 hash
of the application payload. The same hash is used as a signature for a given type
of activity, under the implicit assumption that a given network activity exhibits
always the same application payload.

The lack of interaction with clients may not suffice though to identify subtle
differences among different network activities: for instance, the LSASS exploit
mentioned in Section 2.1.2.2 consists of several interactions between the client
and the server, the first of which is a benign query that does not reveal yet the
real intention of the attacker. The techniques introduced in [Bailey 2005] do not
appear to be suitable to correctly handle these more complex activities, in which
the attacker exposes its real intentions only after a set of preliminary interactions
with the victim.

2.2.2.3 The Honeynet Project

The Honeynet Project [URL 43] has recently started an attempt to standardize
their honeypot configurations under a common platform, the Global Distributed
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Honeynet (GDH). GDH consists in a CD-ROM that automates the installation and
configuration procedure of a honeypot sensor based on some of the technologies
presented in Section 2.1, namely Honeywall, Nepenthes, and Sebek-monitored
high interaction honeypots. The minimal GDH platform is normally associated
with 4 IPs: one IP for the access to the physical host, one for the Honeywall
virtual host, one for Nepenthes and one for a Fedora Core 3 Server high interaction
honeypot.

Partners hosting GDH honeypots agree to allow the remote collection of the
information collected by the honeypot, which is stored in a central server. This
information comprises pcap data and Snort logs collected on the Honeywall, and
the binary samples collected by Nepenthes. A special tool developed by the UK
Honeynet Project, honeysnap, parses this information and store it in a database for
further analysis.

As GDH is still under development, it is thus difficult to assess its capabilities:
at the moment of writing, no result has been presented yet. The effort of the
Honeynet Project in standardizing the Honeywall architecture and centralizing the
data collection exemplifies though the need to take advantage of standard platforms
to generate comparable results, need that was first reflected in the creation of the
Leurré.com project seen in Section 2.2.2.1. Differently from the Leurré.com project,
the GDH minimal configuration includes a high interaction honeypot contained
through Honeywall. This may limit the deployment base for this project: for
instance, it is unlikely that any industrial entity would accept to cope with the
liability problems inherent in the deployment of such solutions (e.g. usage of
the honeypot as a stepping stone to attack others), regardless of the warranties
provided by the Honeywall containment.

2.2.2.4 Tunnel-based honeyfarms

All the previous infrastructure aim at physically deploying honeypots in different
locations of the IP space. An alternative to this deployment strategy comes with
the concept of honeyfarm[URL 35]. The main idea shared by all the different imple-
mentations is the usage of different types of tunnels to redirect traffic from different
locations to a central farm of virtualized hosts acting as high interaction honeypots.

Several different implementations of this concept exist in the literature, such as
Collapsar [Jiang 2004], NoAH project’s Honey@Home [URL 15] or the Honeynet
Project Honeymole [URL 41].

For instance, Collapsar proposes an architecture composed of three parts:

• Multiple traffic redirectors, deployed in different networks, are in charge of
capturing all packets and filtering them according to rules set by the system
administrator. All the packets are then redirected taking advantage of either
the Generic Routing Encapsulation (GRE) tunneling mechanism of a router
or using an end-system-based approach.

• A front-end for the Collapsar center, in charge of receiving the encapsulated
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packets from the different traffic redirectors and dispatches the packets to
a farm of high interaction honeypots. The front-end is also in charge of
ensuring the containment of the outgoing activities using host and network
monitoring techniques.

• The Collapsar center, a farm of high interaction honeypots running within
virtual machines.

The simplification in terms of complexity of the distributed sensors participat-
ing to the honeyfarm leads to an easier deployability in terms of complexity of
the distributed sensors. This has led projects such as Honey@Home [URL 15] to
propose a similar architecture to host honeypot sensors, acting as simple traffic redi-
rectors, on end users machines. The honeyfarm architecture does not solve though
the containment issues associated to the usage of high interaction honeypots.

2.2.3 Malware-oriented data collections

We have seen in Section 2.1 how certain honeypot deployments take advantage
of different techniques to collect malware samples. The research community has
an increasing interest in accessing these malware samples, in order to study the
characteristics of these samples, the obfuscation techniques being used, and to
develop better ways to detect infections. A number of deployments choose to
focus on the sole collection of these samples and exploit them to know more about
the attackers.

The mwcollect Alliance [URL 25] takes advantage of Nepenthes honeypots
hosted by different contributing partners to collect malware samples. The Ne-
penthes sensors take advantage of an ad-hoc protocol called G.O.T.E.K. to auto-
matically submit any downloaded binary to the alliance database. The alliance
provides a very rich dataset of malware samples, which are freely downloadable
by any partner hosting a GOTEK-enabled Nepenthes sensor, but does not try to
collect any rigorous information on the sources or the victims of the attacks.

A richer and more complete dataset is offered by SRI International through the
Cyber-TA project [URL 36]. The dataset is built upon the logging capabilities of
BotHunter [Gu 2007] and takes advantage of a set of high interaction honeypots
dynamically mapped to the addresses of a /17 network taking advantage of NAT
techniques. BotHunter allows the detection of the malware infections and the suc-
cessive sanitization of the hosts, and provides information on the infection stages
in a simple behavioral signature of the malware sample. Once a high interaction
honeypot is detected as infected, a forensic analysis takes place before its saniti-
zation. This analysis consists in the extraction of all the filesystem modifications
performed by the malware for offline analysis. The containment policy in the
deployment is rather loose: the honeypots are free to initiate connections to the
outside world until the infection is detected and cleaned. The overall information
provided by the deployment is very interesting, but the lack of strict containment
limits the spread of the observation points to a single closely monitored network.
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2.3 Conclusion

This Chapter has provided an overview on the current state of the art in data
collection techniques, overviewing separately the tools that can be used to collect
information and the strategies that are currently used to exploit these tools. In both
cases, a tradeoff clearly emerges.

High interaction honeypots allow us to retrieve in-depth information on ma-
licious threats, providing the maximum possible level of interactivity. These so-
lutions pose containment problems, which can be addressed and partially solved
taking advantage of different containment techniques. These containment tech-
niques require the deployment of complex infrastructures, complexity to be added
to the resource cost of the usage of real OS implementations. Low interaction
honeypots require a significantly lower level of complexity, but fall into another
pitfall. For a low interaction honeypot to be a useful data collection tool, it needs
to emulate the behavior of a real host and its protocols. Only through application
protocol emulation it is possible to lure the attacker into revealing his intent and
thus his nature. Existing solutions lack of rigor in accomplishing this task: even
the most sophisticated solutions, such as Nepenthes, assume an a priori knowledge
of network attacks. This a priori knowledge implicitly biases any result, since it
implicitly makes assumptions on the results expected in the collected data.

Existing data collection infrastructures amplify this trade-off. The observation
of global threats allows the deployment of centralized solutions, handling wide IP
ranges, and employing sophisticated techniques to handle incoming attacks. But
when the interest moves to spreading the observation points along the Internet
IP space, the cost of this sophistication is not acceptable. We have seen how
deployments such as Leurré.com or GDH rely on the volunteer hosting of honeypot
platforms. In order to spread as much as possible these observation points, the
sensors must be simple, maintainable and must offer strong security guarantees to
the hosting partner. The containment techniques available as of today are either
too weak, or too complex to fit such requirements. The choice moves then to low
interaction techniques, with the previously identified problems in offering a rich
and unbiased perspective on the observed attacks.

This work proposes to increase the interaction capabilities of low interaction
honeypots taking advantage of protocol learning techniques. We have seen how
honeypots such as Honeyd offer a very limited number of responders, especially
for binary protocols. We identify the problem in the complexity of the manual
generation of scripts emulating the protocol behavior, especially for complex bi-
nary protocols such as NetBios, whose specification is not open and that is one of
the most heavily targeted protocols for Internet attacks. This work proposes an
algorithm to automatically generate such emulators in a protocol agnostic fashion.
We want to avoid any a priori assumption on the structure of network attacks, with
the purpose of obtaining an unbiased and behavior-based perspective on the ob-
served phenomena. The idea of taking advantage of protocol learning techniques
is inspired by the Protocol Informatics Project [Beddoe 2005], in which Beddoe pro-
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posed the usage of bioinformatics algorithms to help protocol reverse-engineering
tasks. The problem of automated protocol reverse engineering was addressed in
different ways by different research works. For the sake of clarity, we have decided
to postpone their comparison with our work to Section 4.5.
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We have seen in the previous Chapter that low interaction honeypots deal
with two main issues. On the one hand, building protocol emulators to emulate
the presence of a host is a tedious and costly procedure. On the other hand,
existing approaches attempting to achieve this goal are biased by a set of a priori
assumptions.

If we consider the finite state automata φ representing the language of proto-
cols such as NetBios, its complexity may make its modeling an extremely tedious
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task. We consider here the portion of finite state automata φact effectively tra-
versed during the interaction with network malicious activities. Our work poses
its foundations on the assumption |φact| � |φ|.

This assumption is based on the common knowledge of a strong collaboration in
terms of code sharing and exploitation techniques among malware writers. Repos-
itories such as milw0rm [URL 23] and the presence of a number of underground
channels among hacker communities (such as the famous 29A Labs [URL 2], which
recently ceased its activity) suggest the existence of a strong collaboration among
these communities. In spite of the proliferation of different malware variants, we
can intuitively expect a controlled number of exploitation vectors that are devel-
oped by a few experts and then shared by a bigger number of malware variants
developed by less skilled hackers.

Also, the interaction of a vulnerable service with an exploitation script is not
supposed to correspond to a complex traversal of the protocol finite state automata.
If the interaction is targeting a vulnerability exploitable through code injection
techniques, the objective of the attacker will be to reach a given interaction state
affected by the vulnerability (for instance, an unchecked buffer). The corresponding
exploit interaction is likely to correspond to the shortest path from the root of the
automata to the state affected by the vulnerability.

Knowledge-based approaches such as Nepenthes implicitly take advantage
of this scenario. Nepenthes, as shown in Section 2.1.2.2, takes advantage of 21
vulnerability modules to download malware. That is, taking advantage of the
implementation of only 21 different traversals of the protocol FSMs, Nepenthes is
able to collect a variety of different malware variants. The observation capabilities
of Nepenthes are constrained by the a-priory choice of these 21 traversals. This
work proposes a different approach to the problem aiming at avoiding this a priori
choice.

The ScriptGen algorithm aims at rebuilding portions of a protocol finite state
machine through the observation of samples of network interaction between a
client and a server implementing such protocol. In order to maximize the flexibility
in handling protocols whose specification is not open, the main constraint of the
algorithm relies in its protocol agnostic nature: no assumption is made on the
semantic structure of the protocol. The core of the ScriptGen algorithm aims
at addressing this constraint and at rebuilding from the interaction samples an
approximated knowledge of the protocol semantics.

The task of building a protocol finite state machine representing the protocol
interaction can be subdivided into two subtasks. Firstly, we need to extract from
the observed samples information on the structure of the protocol messages. Sec-
ondly, we need to structure the succession of messages along each TCP session
or UDP request-answer tuple. These two subtasks are described respectively in
Section 3.1 and Section 3.3. In order to evaluate the characteristics of the result-
ing algorithms, each subtask description is coupled with experiments assessing
the practical impact of the proposed approaches, corresponding to Sections 3.2
and 3.5. The reader should not consider these experiments as an experimental
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1 MAIL FROM: <alice@eurecom.fr>
2 MAIL FROM: <bob@orange.fr>
3 MAIL FROM: <carl@free.fr>

Table 3.1: Input example

validation of the approach. A thorough validation will be carried out in Chapter
4, where ScriptGen-based emulators are deployed in a distributed data collection
framework, SGNET.

3.1 Region Analysis

The core of the ScriptGen approach consists in the region analysis algorithm. Re-
gion analysis is responsible for the reconstruction of a partial semantic structure
starting from a set of samples. The input to the region analysis algorithm consists
in a set of messages considered semantically similar. An input example is provided
in Table 3.1 for the case of the MAIL FROM command in the SMTP protocol. It is
important to understand that this input is free from any semantic knowledge and
is seen by the algorithm as a set of unstructured byte streams. From now on, we
will use this input example to practically demonstrate the region analysis process.

In order to rebuild semantics from these unstructured sequences of bytes, region
analysis takes advantage of bioinformatics algorithms to produce alignments of the
samples. The idea builds upon the Protocol Informatics Project by Marshall Beddoe
[Beddoe 2005]. Beddoe proposed to exploit global alignment techniques to ease
protocol reverse engineering.

Alignment techniques are used in bioinformatics to find overlaps in two distinct
sequences of amino acids, in order to identify specific genes. Two different align-
ment techniques can be identified: local and global alignment [Gusfield 1997]. Local
alignment algorithms aim at identifying the most similar subsequence among two
sequences, and thus aim at identifying the similarity among two different evolu-
tionary paths. Global alignment algorithms are used instead to identify alignments
from the beginning to the end of a sequence, and are used when two sequences are
considered similar.

Beddoe showed in [Beddoe 2005] how the bioinformatics algorithms previously
introduced could be of great help to ease the reverse engineering tasks. We propose
here to take advantage of bioinformatics algorithms and extend them in order
to automatically infer from a set of samples a partial notion of its syntax. The
region analysis algorithm aims at producing from sample conversations groups of
semantic abstractions generalizing them. Each semantic abstraction is composed of
one or more regions, where each region represents a semantically uniform portion
of the protocol structure.

The region analysis algorithm is composed of four building blocks as shown
in Figure 3.1. The algorithm receives as input a set of client requests likely to be
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Figure 3.1: The region analysis algorithm

semantically very similar. The algorithm ensuring this “semantic clustering” will
be discussed in detail in Section 3.3.

• Sequence alignment. We use the Unweighted Pair Group Method with
Arithmetic mean (UPGMA) algorithm [Tateno 1982] to build a dendrogram
(phylogenetic tree) representing the degree of similarity among the different
message samples and to construct their corresponding alignment.

• Macro-clustering. We analyze the previously generated phylogenetic tree to
identify big variations in the structure of the input messages and cluster the
samples accordingly.

• Region synthesis. For each cluster, we identify in the aligned sequences
ranges of subsequent bytes sharing similar characteristics and we assign them
to different protocol regions. A regular expression is generated representing
the different semantic value associated with each region type.

• Micro-clustering. We analyze the content associated with mutating fields
and search for recurring values to refine the initial clustering decision. We
assume in fact that if a mutating field has low variability in its content, it is
likely to be associated with a semantic value worth being represented by a
separate cluster.

These four functional blocks are detailed in the following Sections.

3.1.1 Sequence alignment

As previously explained, the input samples are seen by ScriptGen as a sequence
of bytes. No information is available on the protocol structure or on the different
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tokens composing each message. We thus want to use alignment algorithms to
identify the fixed portions of the protocol, and build a skeleton of the message struc-
ture. Alignment algorithms allow us to be robust to misalignments in protocols
using variable length fields. For instance, the output of the alignment algorithms
introduced in this Section on the sample in Table 3.1 is the following (the character
‘_’ is used to represent a gap).

MAIL FROM: <alice@eur___ecom.fr>
MAIL FROM: <__bob@_orange___.fr>
MAIL FROM: <_carl@_fr__ee___.fr>

In order to infer the shared structure of two similar messages we take advantage
of global alignment algorithms. The most common algorithm implementing global
alignment is the Needleman-Wunsch [Needleman 1970] algorithm. It is a dynamic
programming algorithm aiming at achieving the best alignment of two sequences
S1 and S2 according to a given scoring function. For every couple of bytes belonging
to the two sequences, a different score is associated with identical values (Iscore),
differing values (Dscore), or insertion of a gap in one of the two (Gscore).

As recognized by other works taking advantage of the same algorithm for
protocol analysis [Cui 2006c], these scores have a considerable impact on the quality
of the alignment when considering a single couple of messages. When dealing with
the alignment of more than two messages, the practical experience of the author
in [Beddoe 2005] showed that the best results can be obtained by using Iscore =

1,Dscore = 0,Gscore = 0. This choice can be considered “greedy”: no penalization is
given to the insertion of gaps in the sequences or to the presence of mismatching
bytes, and the algorithm simply aims at obtaining the maximum possible overlap
among the two sequences. This is likely to produce accidental alignments among
two messages. Graphically representing gaps with the symbol ‘_’, follows an
example of such phenomenon:

MAIL FROM: <alice@eur___ecom.fr>
|||||||||||| | | | ||||

MAIL FROM: <__bob@_orange___.fr>

By choosing to use multiple messages, we enable the algorithm to filter out
accidental alignments among a limited number of messages and to isolate the real
structural similarities at the cost of an additional computational complexity. Re-
lated work carried on in [Cui 2006c] performs different design choices by pursuing
a different goal, that is the efficient detection and removal of previously seen activ-
ities. By using only two samples of interaction, the method requires a more careful
choice in the selection of the alignment parameters.

We present here the validity of the greedy approach in the case of the multiple
alignment as a simple intuition. Section 3.2.2 will experimentally investigate the
relationship between the number of aligned messages and the correctness of the
semantic inference.
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The process involved in the alignment of more than two messages is called
in bioinformatics multiple alignment. The exact solution of the multiple alignment
problem is an expensive operation (NP-Complete). For this reason, it is normally
performed taking advantage of heuristics able to provide good results at a lower
complexity. A common method used in bioinformatics consists in applying the
Needleman-Wunsch algorithm multiple times on two samples per time, following
a hierarchical structure called phylogenetic tree. The phylogenetic tree is a binary
tree that groups together samples or group of samples according to their mutual
similarity.

We build the phylogenetic tree taking advantage of the Unweighted Pair Group
Method with Arithmetic mean (UPGMA) algorithm [Tateno 1982]. The UPGMA
clustering is a bottom-up clustering method.

Given two clusters Ci and C j UPGMA uses a notion of distance di j defined as:

di j =
1

|Ci||C j|

∑
p∈Ci,q∈C j

Dpq (3.1)

where Dpq is the distance between two samples. Figure 3.2 shows a very simple
bidimensional case, in which Dpq is defined as the Euclidean distance between the
two points on the plane.

The algorithm is initialized with the creation of a set of n clusters C = {C1,C2, ...Cn}

containing each of the n elements taken into consideration. The phylogenetic tree
is initially composed by n nodes {N1,N2, ...Nn}, associated with each cluster, and
constituting the leaves of the tree. The algorithm iterates as follows:

1. Compute the distance di j among each couple of clusters (Ci,C j) with Ci,C j ∈ C.
Choose the two clusters (Cu,Cv) that minimize such distance.

2. Merge the two clusters (Cu,Cv) into a single cluster Cuv resulting from their
union.

3. Generate a node Nuv in the phylogenetic tree having as children Nu and Nv.
The node is characterized by a height defined as h(Nuv) = duv

4. If the number of remaining clusters |C′| after the merge is greater than one,
reiterate to step 1.

The resulting phylogenetic tree is a binary tree. The height value associated
with each node is monotonic with the tree level. That is, the height of the parent
node will always be greater than or equal to the height of its children. This property,
which will be used by the macro-clustering phase to refine the clustering decision,
which can be intuitively understood by looking at the phylogenetic tree resulting
from the example of Figure 3.2 and reasoning by contradiction, as follows.

We denote with A,B,C,D the four elements being clustered, with CAB a cluster
grouping the elements A and B and with NAB the corresponding node in the
phylogenetic tree. We want to show that h(Ni) ≤ h(N j) if Ni is a child of N j. Let’s
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Figure 3.3: Multiple alignment based on phylogenetic tree

assume that, for instance, h(NAB) > h(NABCD). According to the definition of height,
this would be equivalent to state that dA,B > dAB,CD. That is, the average distance
between the elements of CA and CB would need to be greater than the average
distance between the elements of CAB and CCD. For this to be true, there must
be at least a couple of elements belonging respectively to CAB and CCD having
smaller mutual distance than the two elements (A,B) belonging to CA and CB. At
every iteration, the UPGMA algorithm groups together the two clusters having the
smallest average distance among their elements. The existance of the cluster CAB

implies that the distance between A and B is smaller than the distance among A
and any node other than B. The same can be said for node B and any node other
than A. It is thus impossible to find a node in CCD having a smaller distance from
them.

To apply UPGMA to our conversation samples, we have considered different
definitions of distance Dpq, such as simple bitwise similarity, or Normalized Com-
pression Distance (NCD). A definition of distance that proved to be particularly
suitable to the problem in our early tests can be borrowed again from the bioinfor-
matics scenario, and consists in the usage of local alignment algorithms. We saw for
global alignment that the Needleman-Wunsch algorithm is a dynamic algorithm
aiming at maximizing a score. The insertion of gaps, the misalignment, and the
correct alignment of each byte lead to positive or negative scores defined as pa-
rameters to the algorithm. The Smith Waterman [Smith 1981] is a local alignment
algorithm; it modifies the Needleman-Wunsch algorithm to take into consideration
only segments of the sequence rather than the whole. We take advantage of the
output of the scoring function using as parameters Iscore = 1,Dscore = 0,Gscore = 0 as
a measure of similarity among two sequences.

The generated phylogenetic tree is then used as a skeleton to apply the global
alignment. All the leaves of the tree are initialized with the values of the input
samples. Taking advantage of a depth-first visit and thus starting from the bottom
of the tree, we take advantage of the Needleman-Wunsch algorithm to compute a
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value for all the intermediate nodes. Each node is assigned a value generated by
the alignment of its children. Among the two aligned sequences resulting from
this process, the one with the least number of gaps is chosen for the father.

The result of the alignment can be represented in a set of edits to be applied
to the original sequence to build the aligned one. No deletion is generated by the
alignment process, and the edits solely consist in the list of the positions in which
a gap must be added.

For instance, in order to build the aligned sequence _M__AI_L F_ROM starting
from MAIL FROM the following edits must be applied: edits = {0, 1, 1, 3, 6}. The
required edits to align the children of each node are stored in the edges of the
phylogenetic tree as shown in Figure 3.3. Once the traversal is completed, the final
alignment of each leaf can be reconstructed by combining all the edits stored in
each edge of the path between the tree root and the leaf.

Summarizing, the sequence alignment phase takes advantage of existing bioin-
formatics algorithms to align multiple message samples, inserting gaps to maximize
overlaps. The multiple alignment is achieved in two steps:

1. Construction of the phylogenetic tree. Taking advantage of UPGM cluster-
ing, we build a binary tree grouping together the different samples according
to their mutual similarity.

2. Alignment. The phylogenetic tree previously constructed is used as a skele-
ton to recursively align all the samples taking advantage of the Needleman-
Wunsch algorithm. The edits required to perform each alignment step are
stored in the edges of the phylogenetic tree and are used to generate the
mutual alignment of the leaves.

3.1.2 Macro-clustering

In order to produce correct results in the semantic abstraction, it is important to
group together sequences having similar structure and semantic meaning. In-
tuitively, the alignment of two completely different messages can lead only to
accidental overlaps, and is likely to produce very imprecise results. It is thus im-
portant to ensure that the input to the region analysis is composed of semantically
similar messages.

We call the process of grouping together messages likely to share the same
semantic meaning semantic clustering. Two possible approaches can be used to
implement this concept:

• Analysis of the content of the messages. If two messages are very different
from each other, they are likely to be associated with different semantics. For
instance, the structure of an HTTP GET message is likely to be significantly
different from the structure of an HTTP POST message.

• Analysis of the context of the messages. Much more can be inferred by looking
at the context in which a given message appears. The context comprises both
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the position of the message, but also the content of the messages semantically
linked to it. For instance, semantically similar client requests are likely to
receive very similar server answers.

Both these approaches are implemented in ScriptGen. Macro-clustering is the
region analysis component responsible for the analysis of the messages content.
The analysis of the context will be addressed instead in Section 3.3, where the
refinement algorithm will have scope on the whole conversation.

Macro-clustering aims at the identification of groups of messages that are highly
dissimilar and whose alignment should thus be handled separately. This is easily
achievable by taking advantage of the characteristics of the phylogenetic tree built
during the alignment phase. The phylogenetic tree is defined, in bioinformatics
terms, as an evolutionary tree that represents mutations as time goes on. From
a clustering perspective, the phylogenetic tree is nothing else than a dendrogram
result of a hierarchical clustering technique based on a given notion of distance.
Each node of the phylogenetic tree is associated with a height that we have shown
to be monotonic when moving up in the tree levels. The height of a node represents
the level of diversity among the samples belonging to the subtree having that node
as root.

The macro-clustering threshold W defines the maximum height (i.e. the maximum
diversity) of the phylogenetic tree. If the height of the tree root k is greater than
W, the tree is cut into two subtrees having as roots the children of k. The condition
is recursively verified on the roots of the subtrees and the division continues until
the condition is satisfied. Thus macroclustering splits the original phylogenetic
tree in a set of subtrees whose root ki satisfies the condition height(ki) < W. Once
the phylogenetic tree is split into these clusters, the multiple alignment does not
need to be repeated. The alignment of all the leaves of each subtree can be easily
achieved by taking advantage of the edits stored in the edges connecting the new
root to each leaf.

The value of the macro-clustering threshold W has thus an important impact
on the grouping of the input samples. The impact of such threshold on the quality
of the final semantic inferences will be evaluated in Section 3.2.1.

3.1.3 Region synthesis

The region synthesis step aims at analyzing the result of the multiple sequence
alignment and inferring a semantic structure for the protocol messages. This struc-
ture is built upon the concept of region. A region is defined as a set of subsequent
bytes in the protocol stream sharing similar characteristics, and likely to correspond
to a given protocol field or token.

In order to identify the different protocol regions, a set of characteristics is
generated for each byte of the aligned sequences, as shown in Figure 3.4. Tak-
ing into consideration a cluster composed of n aligned sequences, we define two
characteristics that proved to be the most relevant: byte type and byte variability.
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Figure 3.4: Example of region synthesis

Byte type. The type of the byte is defined as the most frequent type of content
among all the aligned samples, excluding gaps. The content can be associated with
two different types: ASCII, Binary. The byte belongs to either of the two types
depending on whether its value falls within the range of values belonging to the
standard ASCII code (values ranging from 0x20 to 0x7E). Such partition of the range
of values can lead to ambiguities: a binary byte might be erroneously classified as
ASCII. We aim at taking advantage of the statistical variability of the samples to
filter out these ambiguities and correctly identifies the byte types.

Byte variability. The byte variability is a measure of the variability of the byte
content among the different samples. Considering the set Ω of all the different
values assumed by the n aligned samples for a given byte (including gaps), the
variability is defined as:

v =
|Ω|

n
(3.2)

For the ease of representation, we show in Figure 3.4 the quantity vs = v ∗ n = |Ω|.
The previous variability metric allows the definition of three variability classes:

• Fixed content. When v ' 0.

• Random content. When v ' 1.

• Mutating content. When 0 < v < 1.

We take advantage of these characteristics to define a region as a sequence of
bytes which i) contain the same kind of data and ii) have same variability class. A
region can be seen as a portion of protocol message which has some homogeneous
characteristics and therefore carries the same kind of semantic information (e.g. a
variable, an atomic command, white spaces, etc...). Two region types are defined
according to the variability class of their bytes:

• Fixed regions. Regions characterized by fixed content. Fixed regions repre-
sent the structural blocks of the protocol, and are assumed to carry a very
strong semantic value.
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• Mutating regions. Regions characterized by variable content (random or
mutating content). In a first approximation, if the content of a region is asso-
ciated with different values in different samples, it carries a weaker semantic
meaning. This approximation will be refined in the micro-clustering phase.

Every region is also associated with a length attribute. While the length of a
fixed region corresponds to the length of its content, the length of a mutating region
is defined by a range. Such range corresponds to the minimum and maximum
length of the portion of samples enclosed in the region, stripped out of gaps (see
Figure 3.4). Representing a fixed region as F(“content”) and a mutating region as
M(length), we can represent the output of the region synthesis for Figure 3.4 as:

F(“MAIL FROM: <")+M(3:5)+F(“@")+
M(1:2)+F(“r")+M(0:3)+F(“e")+M(0:3)+F(".fr>")

This structure can be easily used to produce semantic abstractions of the ob-
served protocol under the form of regular expressions. For instance, the example
in Figure 3.4 can be translated to the following grep-like regular expression:

(MAIL FROM: <)([[:alnum:]]{3,5})(@)
([[:alnum:]]{1,2})(r)([[:alnum:]]{0,3})(e)([[:alnum:]]{0,3})(.fr>)

The example of Figure 3.4 clearly shows the pitfalls inherent in the choice of the
initial training set. In the example, a number of erroneous inferences is performed
on the semantics of the samples. The generalized representation constrains the
username to be between 3 and 5 characters long. Also, it imposes the presence
of the characters “r” and “e” at different positions of the domain name. More
specifically, an “r” is expected at the second or third character of the domain name,
and an “e" is expected between the third and sixth character of the domain name.
These wrong inferences are due to the lack of sufficient statistical variability in the
training set, leading to deductions that are true for the specific training set being
used but wrong for the general semantics of this specific protocol. The collection
of a good and diverse training set is thus of primary importance for the quality of
the semantic inference performed by the region synthesis.

3.1.4 Micro-clustering

The micro-clustering step is a refinement of the macro-clustering output and of the
associated region synthesis phase. We saw in the previous Section that fixed and
mutating regions are associated with different semantic meanings: fixed regions
represent the semantic structure of protocol messages, while mutating regions are
associated with mutating fields that carry weak semantic value. While fixed regions
are associated with bytes having fixed content, mutating regions are associated
with bytes having either random or mutating content. Micro-clustering aims at the
differentiation of the semantic value associated with mutating and random content.
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Figure 3.5: Micro-clustering

Random content is likely to be associated with timestamps and cookie fields.
The value of these fields does not contribute to the semantics of the message. On
the contrary, mutating content is likely to be associated with fields that normally
change among a limited number of frequent values, such as bitmasks or flags. If
many samples of the training set share the same value within a mutating region,
they are likely to have a very specific semantic value, different from the others.
As shown in Figure 3.5, micro-clustering creates a separate cluster for this specific
value, and thus the corresponding mutating region is converted to a fixed one.

Algorithm 1 microcluster(regionmutating)
1: hist⇐ compute_histogram(regionmutating)
2: for value in hist having f req/n > w do
3: splitcluster(value)

Micro-clustering operation is schematized in Algorithm 1. For every mutating
region identified by the preceding region synthesis step, the histogram of the
distribution of its values is computed together with its frequency. All the values
having a frequency (normalized to the number of samples) higher than the micro-
clustering threshold w lead to the generation of a micro-cluster associated with that
specific value.

For a given macrocluster, each mutating region can produce a different refine-
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ment of the sample grouping according to the identified frequent values. The final
result of the micro-clustering refinement is given by the mutual intersection of all
the refinements produced by the analysis of each mutating region. This can be
better clarified through an example. Let’s assume that micro-clustering generated
the following clusters from the analysis of the content of two different mutating
regions over a set of 9 samples:

C1 = {{1, 2, 3, 4}, {5, 6}, {7, 8, 9}} C2 = {{1, 2}, {3, 4, 5, 6, 7, 8, 9}}

where each number refers to the ID of the sample within the sample set. While
the first four samples are associated with the same group by the application of
Algorithm 1 on the first region, the analysis of the second region underlines a
difference between samples {1, 2} and samples {3, 4}. The final outcome of the
micro-clustering is thus generated by the superposition of these groups:

Cresult = {{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}}

For each generated group, we re-run the region synthesis in order to reconsider
the nature of each region. As a followup to the grouping performed by microclus-
tering, the type of some mutating regions will be reconsidered, as shown in the
example of Figure 3.5 for the second mutating region of the first group.

3.2 Threshold sensitivity

We have seen in the previous discussion that the Region Analysis algorithm allows
the semantic abstraction of protocol messages taking advantage of a set of samples
of protocol interaction. Before showing how this technique can be employed to
build Finite State Machines representing the protocol interaction (Section 3.3), we
want to devote some space to the analysis of the impact of the region analysis
parameters on the quality of the semantic inference.

While the region analysis process is meant to be completely automated and
free of any intervention from the human operator, we introduced in the previous
Section a set of thresholds and parameters. These thresholds control the impact of
the different building blocks on the final result, and thus impact its correctness.

• Macroclustering threshold (W). The macroclustering algorithm takes ad-
vantage of the dendrogram built during the multiple alignment to group
together similar messages believed to belong to the same semantic group.
This process is regulated by a threshold W that represents the variability
accepted within a given macrocluster. If W → 0, the region synthesis will
be performed on many small and specific clusters. If W → 1, the region
synthesis is performed on a few big clusters containing a higher amount of
variability.
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• Microclustering threshold (w). Microclustering detects within mutating re-
gions the presence of frequent values that are then used to refine the initial
macroclustering decision. The microclustering threshold w defines the fre-
quency for which a given value leads to such a refinement. Defining as n the
number of sequences and k the number of samples in which a given value
appears, the value is considered frequent if and only if k/n ≥ w.

• Number of samples (N). It represents the number of samples to be used as
input to the refinement phase of the Region Analysis algorithm. A tradeoff
exists between the complexity of the multiple alignment algorithm and the
need to obtain sufficient statistical variability to correctly infer the semantic
structure of the protocols. In order to assess the practical usability of the
algorithm, we need to explore this trade off.

This Section does not aim at being a benchmark for the quality of the semantic
inference produced by the region analysis. We want instead to evaluate its sen-
sitivity to these parameters and evaluate their impact on the interaction among
different building blocks. We thus decided to perform our experiments on a sim-
ple ad-hoc protocol combining representatives of the three variability types: fixed,
random and mutating. The definition of such a protocol allows the execution of the
experiment in controlled but still realistic conditions, easily identifying incorrect
inferences with respect to the protocol definition.

We take into consideration a simple ASCII protocol, in which each client request
is composed of a command and a client identifier in the form of a 16 byte ID.
Three different client commands are defined and considered equiprobable: “GET”,
“STORE”, “QUERY”.

STORE ′uhbltkahtkgayzpv′

GET ′otezhbbnsra f edew′

QUERY ′ezbesddoptblxpyq′

We performed our experiment on a sample of 100 client requests. Each client re-
quest was generated by randomly choosing the type of command and by randomly
generating an ID for the user.

3.2.1 Macroclustering and microclustering

To evaluate the effect of the macroclustering and microclustering thresholds on the
quality of the semantic inference, we evaluated the result of the Region Analysis for
different values of the W and w parameters. We performed the alignment on all the
100 client requests in the sample, and used all the possible combinations of values in
the interval [0 : 1] with increments of 0.05. The result is represented graphically in
Figure 3.6. Different colors in the area correspond to different number of semantic
abstractions.
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Figure 3.6: Effects of macroclustering and microclustering thresholds

It is possible to identify in Figure 3.6 eight different ranges of values that lead
to different semantic inferences, corresponding to eight different areas on the map.

Zone A (0 abstractions). Any combination of values having W < 0.6 leads to
the same result. The high variability of the samples (due to the presence of a 16
bytes long random ID) prevents macroclustering from forming groups with the
required level of similarity, and thus prevents any refinement.

Zone B (4 abstractions), zone C (5 abstractions). For values of W in the
interval ]0.6; 0.7] macroclustering identifies 4 small groups of samples (each group
composed by less than 5 samples) whose user IDs contain similar characters in
similar positions. This leads to wrong semantic inferences, such as the following:

F(”STORE′x”) +M(1) + F(” j”) +M(7 : 9) + F(”a”) +M(3 : 5) + F(”′”)

This semantic inference matches only 2 samples of the whole sample file. The
generated inferences are too specific and match only 10 of the 100 selected samples.
Zone C corresponds to a microclustering refinement on the clustering decision of
Zone B. Such refinement is driven by the repetition of a portion of the user ID in
the grouped samples, and is again caused by a lack of variability in the groups
generated by macroclustering.

Zone D (15 abstractions), zone E (12 abstractions). The relaxation of the
similarity constraint in the macroclustering algorithm allows the increase in the
number of groups. The presence of accidental matches in the user IDs leads
to an explosion of very specific abstractions, each matching just a few samples.
Differently from what we saw for zones B and C, these semantic abstractions are
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able to match all the 100 samples. In Zone D, microclustering further contributes to
the explosion of the number of abstractions through the production of 3 additional
refinements of the initial clustering choice, based again on the accidental match of
bytes of the user ID during the alignment phase.

Zone F (3 abstractions), Zone G (2 abstractions), Zone H (1 abstraction). Only
with high values of W macroclustering creates groups with enough variability to
generate meaningful abstractions. In absence of microclustering (w → 1) high
values of W bring to degenerate solutions such as that of zone H, characterized by
a single abstraction of the form:

M(3 : 4) + F(“′”) +M(16) + F(“′”)

For low values of the microclustering threshold w, the algorithm is able to re-
cover the semantic of the first mutating region, leading to the correct refinement
(corresponding to zone F).

It is clear from this experiment that the macroclustering threshold has an enor-
mous influence on the quality of the semantic abstraction. While high values lead
to oversimplifications of the protocol semantics, low values lead to too specific and
unusable abstractions. While the second condition is not recoverable, the first is re-
covered by microclustering, which reconsiders the initial clustering choice through
an analysis of the mutating region content. For values of W ≥ 0.8 the combination
of macroclustering and microclustering is always able to produce a set of semantic
abstractions consistent with the protocol specification (zone F).

We can conclude from this investigation that the ability of macroclustering to
group together semantically similar samples is limited. This is due to the fact that
the lack of semantic awareness in the notion of distance prevents us from distin-
guishing variations attributed to semantic differences from variations attributed
to the semantics of a given protocol field (such as the user ID in the example).
Referring to the previous example, the variability generated by the random cookie
fields is indistinguishable from the variability generated by a different type of
command. We consider macroclustering reliable only in pinpointing complete
structural differences in the messages by using a very high clustering threshold
(W = 0.95).

As mentioned when introducing the concept of semantic clustering, two pos-
sible techniques can be used to group together semantically similar messages. We
saw here that the clustering based on the content of the messages is unable to fully
achieve this goal. Our practical experience showed that the context of the messages
within the session provides much more reliable information for their classifica-
tion into semantically similar clusters. This concept will be addressed in depth in
Section 3.3.

3.2.2 Number of samples

The quality of the semantic abstractions produced by the Region Analysis algorithm
depends on the number of samples on which the alignment is carried on. Increasing
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Figure 3.7: Effect of the variation of number of samples

the number of samples increases the statistical variability that can be exploited by
the algorithm to correctly infer semantics. Each sample has a cost: firstly, obtaining
a sample of protocol interaction may have a cost in terms of required resources or
time; secondly, the cost of the multiple alignment depends on the number of
samples on which the alignment is performed. For the Region Analysis algorithm
to be usable in practice, the number of samples required to produce a correct
semantic abstraction must be boundable, and must correspond to a reasonable
resource requirement.

In order to investigate the issue, we have repeated the previous experiment
fixing the macroclustering and microclustering thresholds (W = 0.9 and w = 0.2)
and randomly choosing subsets of the original sample set with size N varying in the
interval [1 : 50]. We repeated the selection of the samples and the corresponding
alignments 30 times for each value of N.

The results of the experiment are represented in Figure 3.7. On the left graph
we represent the average time required by the execution of the whole Region
Analysis algorithm on our test system1. The right graph evaluates the output of
the algorithm through the comparison of the 30 outputs with the expected “correct
result”. We represent on the Y axis the percentage of runs that led to such a result.

The complexity of the algorithm is exponential with the number of samples.
The usage of only 16 samples already leads to correct semantic abstractions, and
requires only 0.5 seconds to be performed. Even choosing a very conservative
value such as N = 50, the algorithm completes execution in less than 2.5 seconds.

These results validate the performance of the region analysis algorithm in an
optimal scenario: the samples are manually generated to ensure the maximum
degree of variability in the random fields. While the choice of a synthetic sample
allowed us to purely evaluate the performance of the algorithm independently

1The test was run on a Core 2 Duo 2.4GHz CPU with 2GB RAM.
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from the initial sample, two additional degrees of freedom exist in the real-life
usage of this algorithm: the quality of the initial sample, as well as the complexity
of the protocol itself.

For instance, if a protocol field contains the IP address of the server being
observed and if the sample is built through the observation of the interaction of a
set of clients with a single server, region analysis will erroneously conclude that
such a field belongs to a fixed region and will assign to it a strong semantic meaning.
Similar problems can be encountered with timestamps: a sequence of UNIX epochs
such as

1212669669.38
1212669680.8
1212669692.86
1212669699.82
1212669706.13

would lead to an inference such as F(“1212669”)+M(3)+F(“.”)+M(1:2) that
would fail to match interactions 300 seconds after the last collected sample. It
is clear from this consideration that the choice of a good training sample is ex-
tremely important for the correctness of the semantic inferences performed by
region analysis. This challenge is at the foundations of the design of the SGNET
deployment (Chapter 4). Through SGNET we will take advantage of a distributed
deployment of sensors to maximize the spatial variability of the collected samples
and thus try to reduce learning artifacts such as those previously described.

3.3 Building protocol FSMs

The region analysis algorithm is able to automatically infer from the statistical vari-
ability of a set of samples an approximation of the corresponding semantics. This
approximation is obtained in a totally protocol-agnostic fashion: no assumption
is made on the protocol structure, and no a priori knowledge is assumed on the
protocol semantics. We proposed in [Leita 2006] an incremental algorithm taking
advantage of the region analysis algorithm to build Finite State Machine represen-
tations from samples of protocol interaction.

The input of the algorithm is a flow of samples, generated asynchronously.
Each sample is seen as a conversation, a sequence of client and server messages
generated within a TCP connection or a couple of UDP request/answer messages.
Each message of the conversation corresponds to the application-level payload
(when present) of the packets composing the network trace, cleaned, in the case of
TCP, of artifacts due to packet losses and retransmissions.

The algorithm aims at producing a Finite State Machine representing the proto-
col dialogue between a client and a server. This representation is derived from that
of Deterministic Finite Automaton (DFA) commonly used in theory of computation
to represent regular languages. We have modified the original model to represent
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the dialogic nature of the represented language. A ScriptGen finite state machine
can be formally represented as a tuple (S,ΣC,ΣS,T,L, s,A) consisting of

• a finite set of states (S)

• a finite set called the client alphabet (ΣC)

• a finite set called the server alphabet (ΣS)

• a transition function (T : S × ΣC → S)

• a labelling function (L : S→ ΣS)

• a start state (s ∈ S)

• a set of accept states (A ⊂ S)

It is clear from this definition that a ScriptGen FSM aims at modeling the con-
versation from the point of view of the server. Transitions are associated with items
of the client alphabet determining the transition upon reception of a client request,
while each state is associated with a label representing the corresponding answer
to be provided to the client. While the server alphabet consists of a set of byte
sequences (the answers to the client requests), the client alphabet is more complex
and can consist of semantic generalizations of the input messages generated by the
region analysis under the form of regular expressions. The client alphabet is thus
composed of complex items, which can be modeled with “lower level” DFAs.

The previous definition can be easily adapted to the representation of the proto-
col dialogue from a client perspective. As the goal of this work is the generation of
emulators for server-side honeypots, we will focus our attention on the server-side
FSMs only.

A number of existing honeypot deployments, such as Honeytank [Vanderavero 2004]
and iSink [Yegneswaran 2004] maximize scalability by modeling TCP protocols in
a stateless way. In most cases, in order to be able to correctly reply to a client
request no additional context information is required. Under this perspective, the
choice of modeling the application protocol interaction under the form of a finite
state machine may seem questionable. The choice of following a stateful approach
in the ScriptGen learning is motivated by the need to perform a semantic cluster-
ing of client requests in ‘semantic groups’ to be provided to the region analysis
algorithm. We want to take advantage of the protocol finite state machine to build
a semantic skeleton to be used to group together semantically similar messages.
The intuition underneath this need is that the context in which a given message is
seen has great influence on the semantics of the message itself. For instance, in
the SMTP protocol the first client request in the TCP session is always a HELO
message, while the QUIT request is likely to be at the end of the conversation. The
refinement algorithm proposed here aims at exploiting the state of the connection
and the relative positioning of the client requests to generate groups of messages
very likely to have similar semantic value.
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The refinement algorithm is composed of two separate phases. The first phase
exploits the existing FSM skeleton and the concept of bucket to semantically cluster
the input messages. The second phase applies the region analysis to the generated
groups and generates new states and transitions according to the region analysis
output.

These two phases are described in Section 3.3.1 and 3.3.2 respectively. A specific
problem of the state generation, the state labelling, is separately addressed in
Section 3.3.3 for the sake of clarity.

3.3.1 Classification phase

Algorithm 2 classify(state, conversation)
1: request,answer⇐ pop(conversation)
2: trans⇐match(request,transitions(state))
3: if trans , NULL then
4: label(next(trans)).add_candidate(answer)
5: classify(next(trans),conversation) {Recursive call}
6: else
7: bucket(state)⇐ (request, answer, conversation)
8: cluster(bucket(state))

The classification phase classifies new samples taking advantage of the existing
protocol FSM. The classification process is illustrated by Algorithm 2. Starting
from the root, we use the sequence of requests in the incoming flow to traverse
the existing edges of the state machine, matching the client requests to the existing
edges of the FSM. If for a certain state no outgoing edge matches the client request,
such request and the remaining training conversation is attached to that state’s
bucket. A bucket is a container for the new conversations; the first message of each
conversation is a client request that, through the region analysis step, will lead to
the generation of new transitions for the corresponding state.

By construction, the first requests of the conversations attached to a certain
bucket share the same type of interaction history: they are all preceded by the
same type of requests as it was identified by spanning them over the existing Finite
State Machine. We are thus able to group together the messages on which the
semantic inference will take place according to their past context. In the previously
introduced example of the SMTP protocol, probably a HELO message will not be
grouped in the same bucket as a QUIT message.

The future context is instead analyzed by looking at the partial conversations
stored in the buckets. For each message stored in a bucket, we look at the length
in bytes of the following server answers in the conversation. We take advantage
of this value to cluster the content of the bucket and group together client requests
belonging to conversations likely to have similar impact on the server. For each
conversation Ci in the bucket, we compute its length Li as sum of the lengths of all
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Figure 3.8: Iterative refinement

the future server answers following the unmatched client request.
The employed clustering algorithm is based on two separate phases:

1. We generate clusters grouping together conversations sharing exactly the
same value of Li. If multiple conversations share exactly the same value, they
are likely to be associated with exactly the same impact on the server, which
generate answers of fixed value.

2. We then build clusters of the remaining conversations keeping the relative
variance of the lengths under a certain threshold. This second phase is used
to handle protocols in which the server answer to semantically identical
client requests lead to slightly differing server answers. Given a cluster
C = {L1,L2, ...Li} we define its relative variance as rVar(C) = var(C)/mean(C).
We want in fact to tolerate variations of size proportional to the length of
the server answers. The intuition underneath this requirement is that if an
answer is short, it probably corresponds to an error code or error message. If
an answer is instead very long, it probably corresponds to data content sent
by the server to the client, such as an HTML page in the case of the HTTP
protocol.

The whole clustering algorithm is sufficiently fast to be repeated every time a
new conversation is added to the bucket. The result of such algorithm is the division
of the initial bucket into multiple smaller buckets grouping together semantically
similar client requests according to their past and future context.

3.3.2 Semantic inference phase

The previous phase has constructed groups of client requests likely to share similar
semantic meaning according to the context of the conversation they are into. In the
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semantic inference phase, we inspect in a breadth first traversal the buckets of all
the FSM nodes generated by the classification phase. If a group contains a sufficient
number of samples, the region analysis algorithm is used to infer the semantics of
the messages. Each cluster generated as output of the region analysis algorithm
leads to the generation of a new transition and of a new corresponding state in
the protocol FSM. While each transition is labelled with the regular expression
generated by the region analysis, the corresponding state needs to be labelled with
the answer to be sent back to the client during emulation. The generation of such
answer is not a straightforward process, as detailed in Section 3.3.3.

Upon completion of the breadth first traversal, if new nodes have been gener-
ated the classification phase is iteratively applied to the remaining messages of the
conversations.

Figure 3.8 shows a simple example of iterative refinement. For each state in
the diagram, the label corresponds to the number of training conversations in the
bucket. A training set consisting of 10 flows is used to update an empty state
machine. Since the state machine is empty, none of the initial client requests
contained in the samples will match an existing transition. All the samples are
thus initially put in the root bucket (step 1). The semantic inference phase then
picks the training samples contained in the bucket, and applies the region analysis
algorithm to the samples. Region analysis generates a different transition for each
cluster of sample client requests believed to have a similar semantic meaning.
In this first step, a single transition is generated. After the semantic inference
phase, the classification phase is then triggered and the training flows are matched
with the newly created transition. Since the state machine is still incomplete, the
training samples do not find a match in the following state, and are thus stored
in the corresponding bucket for the next refinement iteration (step 2). The process
repeats until the semantic inference phase is not able to generate other transitions:
this happens at step 4, in which the sample flows do not contain any further
interaction between the attacking source and the server (client closes connection
after having sent 3 requests to the server). The state machine is then complete.

3.3.3 Responding to clients

The update phase previously introduced updates a FSM with the information
provided by a conversation sample. We take advantage of the region analysis
algorithm to infer a partial semantic structure for the client requests, but while
this structure is sufficient to build regular expressions able to identify the nature
of an incoming client request, the generation of a correct answer theoretically
requires full knowledge of the protocol semantic. We take advantage of a heuristic,
which proved to be acceptable in most cases: randomly choose one of the answers
given by the server in one of the conversation samples reaching the state. Such
an approximation is acceptable for many protocols, but fails to correctly handle
complex phases that proved to be critical in the early experimental validation.

During the first experiments with honeypots taking advantage of ScriptGen
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FSMs to interact with clients [Leita 2005], we encountered peculiar results when
handling interactions on complex protocols such as NetBios. In order to study the
behavior of ScriptGen-enabled honeypots, we deployed a first experimental host
in the same network as a high interaction honeypot and observed its behavior over
a period of two months. More specifically, we focused on the activity generated
by attacking IP addresses observed by the two technologies approximately in the
same period. On port 139 TCP, a big discrepancy was detected between the two
honeypot technologies. While clients were carrying on conversations with high
interaction honeypots composed of more than 6 exchanges of client request and
server answers, the same clients were leaving the conversation with the ScriptGen
honeypot after receiving the second server answer.

An explanation for this fact can be found an in depth analysis of the nature of
the interactions on port 139 TCP. Port 139 TCP is associated with NetBT, the NetBios
implementation running over TCP/IP. This port was historically associated with
the Server Message Block protocol used by Microsoft systems to access file and
printer shares, and has been replaced in Windows 2000/XP by port 445, which
allows direct access to the SMB protocol without the additional NetBT layer. The
first step of any conversation on port 139 corresponds to a session establishment
phase, consisting of a session request in which the client identifies itself and the
corresponding answer from the server. Only after this preliminary phase the
additional SMB layer carries on the more complex interaction. In our experiments,
the honeypots have been able to correctly carry on the session establishment with
the client, but failed in correctly handling the SMB protocol.

The heuristic previously introduced for the generation of server answers is
based on the assumption that for any client request of the same type the server
answer does not change. While this is true in many cases, such as the NetBT session
establishment, we can identify two main classes of protocol fields that contradict
this assumption.

• Timestamps. If the server answer contains information on the freshness of
information under the form of timestamps, the value of such timestamps will
vary for two equal requests performed at different times. While such fields
violate the assumptions of our heuristic, such violation does not normally
lead to emulation problems. Even if the answer given by a ScriptGen-based
honeypot uses always the same value for this timestamp, in most protocols
such timestamp will be accepted by the client and interpreted as a simple
time skew in the server clock. Nonetheless exceptions exist to this assump-
tion: protocols such as Kerberos [URL 17] are sensitive to the relative time
differences.

• Cookie fields. In many protocols, one of the two peers involved in the
conversation chooses a cookie value to be put in the message. This value
can be incremental, randomly generated or derived from the internal system
clock. For a correct protocol interaction, the other party must reuse such
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identifier or function of it in the next interaction step. For instance, in the
SMB protocol the client reports its process ID in a specific protocol field, and
the server answer is valid only if the same value is used in its header.

We initially assumed that the simplistic implementation of attack scripts would
not have been sensitive to an incorrect handling of cookie fields. The analysis of
the information collected in [Leita 2005] contradicted our assumptions and led us
to the conclusion that a correct handling of the cookie fields is necessary to carry
on a correct conversation with the attacking clients. In [Leita 2006] we introduced
a more sophisticated handling of the server answers in order to infer content
dependencies.

In order to identify content dependencies, it is necessary to correlate the content
of client requests with the content of the following server answers for all the
conversations of the training sample. We can exploit the statistical diversity of the
samples to reliably infer content dependencies and filter out casual matches. The
process is composed of two separate steps: link generation and consolidation.

3.3.3.1 Link generation

The link generation algorithm takes into consideration each request contained in
the training set, enriched by the output of region analysis, and correlates it with all
the following server answers contained in the corresponding training conversation.

For each sample request, the algorithm correlates each byte belonging to mu-
tating regions with the server answers using a correlation function. In the most
simple case, the correlation function returns 1 if the bytes match, and returns 0 if
the bytes differ. For each encountered match, the algorithm tries to maximize the
number of consecutive correlated bytes starting from a minimum of two.

Let’s consider here an example. For a certain set of messages, the region analysis
generated the following output, in which the regions have been numbered for
convenience:

F1(“PATH: /”)+M1(1:10)+F2(“ FILE: ”)+M2(1:10)+F3(“.”)+M3(1:3)

Two conversations belonging to the training set are considered. Each conversa-
tion is composed of a client request, modelled by the previous sequence of regions,
and the corresponding answer from the server:

1. R1: PATH: /root FILE: bash.rc
A1: FILE: bash.rc OWNER: root MODIFIED: 22:13

2. R2: PATH: /images/.hidden FILE: pic123.jpg
A2: FILE: pic123.jpg OWNER: user MODIFIED: 12:34

The server answer has thus a content dependency with the previous client request.
The algorithm should thus model the first answer as:
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FILE: L(M2).L(M3) OWNER: root MODIFIED: 22:13

where the notation L(M2) represents a content dynamically generated from M2.
Such a model will still introduce approximations during the emulation. Using the
above answer for all the semantically similar client requests, all the queried objects
will be reported as owned by root and modified at 22:13.

In the context of this work, we call the pointers to previous content in the client
requests links. Two issues need to be addressed in the practical implementation of
the link generation algorithm.

Firstly, the practical identification of the content of a mutating region for a
given client request is not straightforward. For this reason, the identification
of the content target of a link is more sophisticated. Instead of referring to the
mutating region containing the content, we refer to the message boundaries (Start
Of Message, SOM and EndOfMessage, EOM) or to significant fixed regions acting
as boundaries for the mutating content. A significant fixed region is a region that
has always an unambiguous position within the requests of the sample set. For
instance, in the example F3 is not significant: for the request R2, it is matched in
two different positions. With respect to R1 and R2, F1 and F2 are instead significant.
In the link generation process the region F3 is thus not considered and is merged
with the two mutating regions M2 and M3 in a single mutating area whose content
can be referenced as L(F2 + 0 : EOM − 0) (a byte offset can be added).

Secondly, running the link generation process on each sequence is likely to
generate a number of accidental correlations. Referring to the two conversations
in the example, the following links would be generated in the two answers A1 and
A2:

FILE: L1(F2 : EOM) OWNER: L2(F1 : F2) MODIFIED: 22:13
FILE: L1(F2 : EOM) OWNER: user MODIFIED: L3(F2 + 3 : EOM − 5):13

The link L2 is generated by the accidental coincidence of the directory name and
the user name in the first conversation, while link L3 is generated by the appearance
of a substring of the filename in the modification time of the second conversation.
We need a method to filter out these matches and leave only those that appear in
the majority of the training conversation. This is achieved by the consolidation
phase.

3.3.3.2 Consolidation

The input to this consolidation phase is a set of “proposals” for the content of a
server answer generated by the previous link generation. The algorithm takes into
consideration each byte and compares the content of each proposal for that byte.
This content can be either a link or the value of the answer in the original training
file. The most recurring content is put in the consolidated answer, while the other
ones are discarded. All the proposals having a content for that byte differing from
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the chosen one will not be taken into consideration any more for the remaining
bytes.

Figure 3.9 represents the consolidation behavior in a very pessimistic case. In
this case, the number of misleading links is as high as the number of proposals.
The algorithm is such that the consolidated answer will always be equal to at least
one of the proposals. Also, increasing the number of training samples will increase
the number of proposals, therefore increasing the robustness to misleading links.
The number of valid proposals at the end of the algorithm can be considered as the
confidence level for the correctness of the consolidated answer.

During emulation, the link information is used to transform the referenced
content of the requests and provide the content for the server answers. Using the
significant fixed regions as markers, and offsets to specify relative positions, it is
possible to correctly retrieve variable length values in most cases. The success of
the algorithm depends in fact on the presence of a sufficient number of significant
fixed regions.

What has been stated herein with reference to simple equality relations can
be extended to other types of relations, such as incrementing counters, by simply
defining different types of links. We left this task for future work, as experimenta-
tion did not highlight the need for it as far as we can tell.

3.4 Emulation

Taking advantage of the resulting FSMs to emulate the protocol interaction is
straightforward, and consists in determining the future state from the current state
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according to the incoming client requests. Once a new state is reached, its label
(and the associated links) is used to respond back to the client.

The emulation of the protocol interaction with clients presents two challenges
that are worth being described more in depth: determining the correct future state
according to the incoming client request and deciding whether the connection
needs to be terminated. These two challenges are discussed in the rest of this
Section.

3.4.1 Choosing the future state

For a given state, the choice of the correct future state according to the incoming
client request can be performed in two ways: by tolerating imperfect matches or
by requiring perfect matches only.

One may choose to be as robust as possible to new activities or to imprecise
choices in the generation of the regions by tolerating imperfect matches. Even
if the regular expression generated by the region synthesis does not perfectly
match an incoming request, the corresponding transition can be chosen as long
as it leads to the maximum possible overlap of the content of the fixed regions
with that of the incoming client request. This choice although leads to two major
drawbacks. First of all, tolerating imperfect matches between the incoming request
and the known transitions might lead to the choice of a wrong transition generating
a completely wrong answer, corrupting the conversation. Also, distinguishing
imperfect matches from new activities becomes impossible.

For the above reasons, we choose to take into consideration only perfect matches.
Even in this case, the way in which region analysis builds the semantic abstractions
does not ensure that an incoming message will be matched univocally by one
transition. For instance, microclustering produces refinements to the output of the
macroclustering, generating specifications of a more generic transition. Both the
microclustered transition and the generic one will match a given incoming request.
It is thus important to take advantage of a matching function.Given an incoming
message M and a set of transitions S = Ti, i ∈ [0 : k], a matching function associates
each transition to a matching score k = f (M,Ti). The transition with the highest
matching score is chosen to determine the future state.

Algorithm 3 score =matching_function(M,Ti)
1: if not(matches(M,Ti)) then
2: score⇐ −in f
3: else
4: for region in get_regions(Ti) do
5: if region is fixed then
6: score⇐ score+ len(region)
7: else if region is mutating then
8: score⇐ score − 10

The matching function used in this work is detailed by Algorithm 3. The
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purpose of this matching function is to ensure that, among multiple candidates,
the most specific transition is chosen. With specificity of a transition we refer to
the amount of bytes of the incoming request that are considered as fixed according
to the semantics defined by the transition. If a transition matches the incoming
message, the scoring function gives a positive score of 1 to each byte matched
by a fixed region, and adds a penalty of -10 for every mutating region matching
the message, regardless of its size. The scoring function introduces thus two
additional tuning parameters, that weight the penalties associated to the different
types of regions.

3.4.2 Final states

Each FSM representation is associated with a single start state that, in case of
TCP protocols, is univocally associated with the beginning of the session. In the
formal definition of the FSM in Section 3.3 we also defined a set of accept states A
corresponding to the final states of the protocol interaction. The characteristics of
the TCP protocol allow us to distinguish among two classes of accept states: client-
side and server-side. The emulation of the two cases has different characteristics.

In most protocols, the termination of the session is initiated by the client. For
instance, in the SMTP protocol the client actively closes the TCP connection as soon
as the email data is delivered. States corresponding to client-side termination are
not necessarily leaves of the ScriptGen FSM representation. For instance, an activity
searching for SMTP open relays is likely to terminate the connection with the server
immediately after having received an answer to the RCPT TO command, traversing
only a portion of the traversal normally associated with the SMTP activity. The
ScriptGen-based emulator does not need to actively handle these cases: when the
client terminates the connection, the emulator reacts to it by simply removing the
corresponding contextual information (e.g. pointer to the current state, link values
for the content dependencies, ...).

In some protocols or in case of error conditions, the connection is instead
terminated by the server. States corresponding to server-side termination are by
construction leaves of the ScriptGen FSM representation. Every time in which these
states are reached, the emulator actively terminates the connection preventing the
client from continuing the interaction.

3.5 Lab-based experimentation

The practical applicability of the ScriptGen approach to the learning of Internet
attacks will be explored in depth in Chapter 4 through the implementation of the
technique in a distributed honeypot deployment, SGNET. While this large scale
experimentation will allow us to have quantitative information on the behavior
of the ScriptGen approach in handling the multiplicity of Internet attacks, it is
interesting to evaluate here the quality of the semantic abstraction performed by
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Name Disclosure Affected port Latest affected configuration
MS04-011 (LSASS) 13/4/2004 139/445 TCP Windows XP SP1
MS02-056 (MS SQL Server Hello) 6/8/2002 1433 TCP MS SQL Server 2000 SP1
MS02-045 (SMB Nuke) 22/8/2002 139 TCP Windows XP SP0
MS06-040 (Netapi) 8/8/2006 139/445 TCP Windows XP SP1

Table 3.2: Analyzed vulnerabilities

ScriptGen on a small number of significant examples taking advantage of lab-
generated datasets.

The experiments proposed here focus on the nature of the semantic abstraction
and on its ability to handle future instances of the attack, and consider solely the
specific network interaction required to exploit the vulnerability. The emulation
of the interactions consequent to a successful exploitation of a victim host will be
extensively addressed in Chapter 4.

Among the exploits taken into consideration during the evaluation of Script-
Gen’s semantic inference, we selected a subset of them associated with the four
vulnerabilities represented in Table 3.2.

We have considered public domain implementations of exploits hitting these
vulnerabilities, taking advantage of the milw0rm repository [URL 23] and of the lat-
est version of the Metasploit Framework [URL 44], which was shown to be respon-
sible for a non-negligible portion of the Internet attacks in [Ramirez-Silva 2007].

We have chosen these vulnerabilities to investigate the behavior of the Script-
Gen semantic inference in handling protocol interactions of different complexities.
The MS04-011 vulnerability is investigated taking advantage of a very simple ex-
ploit tool. The MS02-056 vulnerability is used to show the ability of the semantic
inference to handle semantically structured client requests. The MS02-045 vulnera-
bility is demonstrated taking advantage of a more sophisticated client that performs
basic checks on the correctness of the received answers and generates content de-
pendencies among messages. The MS06-040 vulnerability is finally used to show
the difference between a very simple proof of concept code obtained from milw0rm
and a more sophisticated implementation part of the Metasploit Framework.

The training sample was generated by repeating each exploit every 90 seconds
against a vulnerable host for 100 times. We have tried to evaluate in the experiment
the impact of variability of certain fields on the protocol learning. To do so, we
have forced the reboot of the system at each exploitation attempt. This ensures to
maintain of the application entropy (e.g. process IDs), entropy that would have
been otherwise be significantly reduced by reverting the system to a pre-computed
snapshot at each instance of the experiment.

We have chosen instead of not taking into consideration the variability of IP
addresses within the protocol stream. The client and the server are always asso-
ciated to the same IP address through all the iterations. As previously discussed,
the problem of the variability of the IP addresses will be addressed more in depth
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in the next Chapter, where the samples will be generated by the operation of a
distributed deployment of honeypot sensors monitoring different networks of the
IP space.

We took advantage of the generated sample to produce a FSM representing
the interaction, and we took advantage of this FSM in a simple emulator, taking
advantage of it to interact with clients. We then observed the interaction of the
protocol emulator with the exploit tool, observing both the concordance of the
network interaction with the expected behavior by manually analyzing the network
traces and the output of the attack tool itself.

3.5.1 MS04-011 Vulnerability (LSASS)

The MS04-11 vulnerability, disclosed on the 13th of April 2004, was brought to
the attention of the press for its exploitation in the spread of the Sasser worm.
The vulnerability allows a stack-based overflow in certain Active Directory service
functions in LSASRV.DLL of the Local Authority Subsystem Service (LSASS) in
different versions of Microsoft Windows. In order to reproduce the exploitation of
this vulnerability, we took advantage of a proof-of-concept exploit developed by a
Russian hacker called HouseOfDabus [URL 22].

In order to generate the interaction sample, we tried to reproduce the modus
operandi of an attacker manually using the exploit. We first executed the exploit
in test mode: in this mode, the tool attempts to authenticate with the SMB service
using a Session Setup AndX request. In case of successful authentication, the server
response contains the OS version. The knowledge of the OS version is required
for the correct choice of the offset to be used in the exploitation phase. Once the
OS version is identified, we re-run the tool to perform the actual exploit. As pre-
viously explained, we do not take into consideration here the network interaction
following the successful exploit. The emulation of such interaction generates in
fact dependencies between two separate TCP sessions, and thus between two sep-
arate FSM representations. We will investigate the feasibility of representing these
dependencies in Section 4.3.

Figure 3.10 shows the FSM representation generated by the ScriptGen algorithm
for the generated sample. In the schema, each state is labelled with its frequency,
which is the number of samples traversing it. Each transition is labelled with a
numeric identifier that helps to uniquely represent traversals. For instance, the
whole traversal of the FSM in Figure 3.10 can be represented as 111111111. Buckets
containing samples not yet parsed by the region analysis algorithm are represented
as squares and labelled with the number of enclosed samples.

The FSM was generated using only 10 samples for the Region Analysis algo-
rithm. No difference is encountered by using a higher number of samples for the
semantic abstraction. Some interesting facts can be derived from the analysis of
the generated FSM.

Firstly, the interaction involved in the preliminary OS version test is actually a
subset of the exploitation phase. The overlap of the samples generated by the two
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activities results in fact in a single path, in which the traversal 111 (corresponding
to the OS version test) was traversed twice the times of the traversal 111111111
(corresponding to the real exploit). This is confirmed by an analysis of the exploit
code: if the OS version test is enabled, the program quits after having sent the first
three client requests of the exploit script and having retrieved the OS version. This
is thus an example of client-side session termination whose corresponding state is
not a leaf of the FSM, as previously explained in Section 3.4.2.

Secondly, the protocol interaction generated by this exploit script is extremely
simple. The output of the region analysis corresponds almost always to a single
fixed region corresponding to each client request. The only exception is the 7th
client request, which is composed by two fixed regions separated by a one byte
mutating region. An interpretation for this surprising result is given by the analysis
of the exploit source code. All the client requests are hard-coded in the exploit
code under the form of a binary blob. Also the typically mutating fields of the SMB
protocol, such as the process ID previously encountered in this chapter, are always
assigned the same value.

An interesting fact that appears in Figure 3.10 is the presence of a single sample
in a bucket at node 111111. In one of the iterations of the sample generation, the
LSASS service crashed prematurely and closed the connection instead of replying
to the client request as it was supposed to. The ScriptGen algorithm interpreted
the lack of answer to the client request as a semantic difference, which led to the
decision of putting the sample in a different bucket than the other semantically
similar client requests. Depending on the technique used to generate the samples,
we can expect the generation of a considerable number of stale buckets, composed
of only a few samples erroneously attributed to a different semantic branch because
of erroneous behavior of one of the two parties involved in the conversation. We
can easily address the problem tracking the date of last modification of a bucket in
order to detect unused small buckets likely to correspond to these situations.

The exploit considered here proved to be extremely simple and with an ex-
tremely low degree of sophistication. The semantic abstraction generated by
ScriptGen easily emulated the protocol interaction during the experiment, per-
fectly replicating the behavior of the real server used to build the samples. An
attacking client using this exploit tool would have been unable to recognize the
presence of a honeypot emulating the exploit.

3.5.2 MS02-056 Vulnerability (MS SQL Server Hello)

The MS02-056 Vulnerability, disclosed in August 2002, affects all the versions of
Microsoft SQL Server 2000 and Microsoft SQL Desktop Engine 2000 previous to
the Service Pack 3. By sending a specially crafted login request to TCP port 1433,
an unauthenticated remote attacker can overflow a buffer and gain system level
privileges on the victim. The protocol adopted by SQL Server on port 1433 is the
Tabular Data Stream (TDS) protocol, initially designed and developed by Sybase
Inc. in 1984, and later adopted by Microsoft. In order to reproduce the exploitation
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Figure 3.11: Metasploit implementation of the MS02-056 exploit

of this vulnerability we took advantage of the module windows/mssql/ms02_056_hello
in Metasploit 3.1. The module was run taking advantage of the windows/exec
payload, which forces the victim system to execute a command already present in
the filesystem of the host, in our case the shutdown command to reboot the OS.

Differently from the previous exploit, consisting of several exchanges of client
and server messages in order to lead the vulnerable system to the failure state, the
vulnerability exploited in this case lies in the very first authentication request sent
by the client. The exploitation of the vulnerability crashes the server, which never
answers to the request. The corresponding FSM generated by ScriptGen reflects
this condition, and is composed of a single transition leading to a state with empty
label. Differently from the previous case, the output of the region analysis for the
transition is more complex:

Type Size (bytes) Content
Fixed 36 12 01 00 34 00 00 00 00 ...
Mutating 528
Fixed 4 1B A5 EE 34
Mutating 4
Fixed 24 BA 8A B6 42 50 1E D0 42 ...
Mutating 600
Fixed 5 00 24 01 00 00

This output reflects perfectly the implementation of the exploit. Figure 3.11
shows the implementation of the MS02-056 exploit used in the experiment, and its
correspondance with the output of region synthesis. This validates once more the
ability of the region synthesis to correctly infer the semantically important portions
of the protocol, generating a FSM that is robust to the randomly generated parts
such as in this example. The emulator interacting with the exploit tool taking
advantage of the generated FSM was able to correctly handle and emulate any
future instance of the attack.
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3.5.3 MS02-045 Vulnerability (SMB Nuke)

An interesting vulnerability is MS02-045. Differently from the other vulnerabilities
analyzed in this work, this vulnerability cannot be used to force the execution of
code on the remote host. By sending a specially crafted packet request on port
139, the attacker can mount a denial of service attack on the target machine and
crash its OS. We reproduced the attack taking advantage of a proof of concept
tool developed by Frederic Deletang in 2002 [URL 10]. After every attack, the
system was crashing with a blue screen that led to the automatic reboot of the host,
achieving the same result obtained in the previous exploits through the execution
of a shutdown command on the victim.

Also in this case, ScriptGen has been able to infer a correct representation of the
FSM using only 10 samples of interaction as input to the region analysis algorithm.
No difference was detected when running the algorithm over more samples. The
result of the algorithm is a FSM composed of a single path composed of 6 states. An
interesting difference with respect to the previous LSASS exploit is the complexity
of the exploit implementation. While in the LSASS exploit the exploit script did not
parse the server answers and produced the client requests from a set of predefined
binary blobs, this exploit implements a parser for the SMB protocol that is used
for both checking the client requests and the server answers. Mutating fields in
the SMB header such as the process ID are randomly generated by the exploit,
and the more realistic behavior of the client makes the ScriptGen learning more
challenging, since the complexities inherent with the SMB protocol start to appear.

The presence of cookie fields in the SMB protocol leads to the generation of
content dependencies between client requests and server answers. We can observe
the correct inference of links between client request and the successive answer to
handle the process ID of the SMB protocol, which are then correctly used during
the emulation of the exploit.

3.5.4 MS06-040 Vulnerability (NetApi)

The MS06-040 vulnerability is a relatively recent vulnerability linked to the Net-
Api32 CanonicalizePathName() function. The attacker is able to exploit the vul-
nerability using the NetpwPathCanonicalize RPC call on the SMB service through
interaction on TCP ports 139 or 445. The wide amount of software configurations
vulnerable to exploitation of this vulnerability (ranging from Windows 2000 SP0-
SP4+, to Windows XP SP0-SP1, to Windows 2003 SP0) makes this vulnerability
extremely interesting to the more recent threats. We selected two different exploit
implementations, with different degrees of complexity.

The first exploit implementation is a proof of concept C program written by
the Rootshell Security Group and publicly available on milw0rm [URL 21]. This
exploit follows the lines of the LSASS exploit previously analyzed, and is composed
of a list of client requests stored in the form of binary blobs that are sent one after
the other to the victim host. Any server answer received during the interaction
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Figure 3.12: Metasploit multi-context bind call

is simply discarded by the script. The resulting FSM generated by ScriptGen is
extremely simple, and is composed of a single path of 16 states. All the transitions
inferred by ScriptGen are composed of a single fixed region: all the client requests
sent by the clients are constant strings that never change across two different runs
of the exploit.

A more challenging exploit implementation can be found within the Metasploit
3.1 framework. We took advantage of the windows/smb/ms06_040_netapi module
in conjunction with the windows/exec payload to exploit the vulnerable server and
force the reboot of the host as in previous experiments. The results of the ScriptGen
semantic abstraction when using these samples have been much different from the
expectations, as shown in Figure 3.10 on page 54. The 7th client request leads to
an unexpected number of transitions. The bucket-level clustering in fact puts the
different samples in multiple clusters characterized by different lengths of the server
answers. Only two of these clusters lead to a correct semantic inference, which
leads to the generation of two transitions matching 18 and 17 samples respectively.

The reason for this result lies in the high level of sophistication of the exploit
implementation. The Metasploit framework implements an almost full-fledged
SMB client that tries to maximize the realism of the network interaction in order
to challenge the detection of the exploits for Intrusion Detection Systems. One of
the features implemented by the framework consists in the usage of multi-context
bind calls when binding itself to a given RPC service. The 7th client request in the
network interaction is in fact a DCERPC bind request, in which the exploit tries to
bind to a given RPC service. The structure of the bind request generated by the
Metasploit framework is schematized in Figure 3.12. The purpose of the bind re-
quest is to associate the client to one or more UUID identifiers corresponding to the
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required services. Metasploit hides the required UUID (in this case 4b324fc8-1670-
01d3-1278-5a47bf6ee188, corresponding to the Windows Server service) among a
set of dummy contexts associated with randomly generated UUID identifiers. A
number n ∈ [10 : 15] of contexts precedes the “real” context, while a number
k ∈ [1 : 4] of contexts follows it. This behavior not only leads to a client request
of random length and random structure, but also leads to a server answer with
similar characteristics: the server answer will contain the list of answers, one for
each of these contexts.

The usage of such obfuscated bind calls fully explains the behavior of the
ScriptGen learning when facing those requests. Since the server answers have
different length, the client requests leading to each length are grouped in different
buckets since a different semantic value is assumed. This choice is correct: a given
combination of values for (n, k) leads to a different semantic structure that requires a
different answer. We can identify 24 different combinations of value, which should
theoretically lead to 24 different branches. The insufficient amount of samples in
the experiment leads to the generation of only two of them.

The results of the emulation of the protocol using the generated FSM are con-
sistent with the assumptions. During 100 exploitation attempts on the ScriptGen
emulator, 19 of them traverse the path 1111111111 and lead to the correct emu-
lation of the protocol, and a corresponding success message in the exploit tool.
Path 1111112111 leads instead to an error message, saying that the server answer
is shorter than expected. This is due to the fact that the bucket level clustering
grouped together samples having similar values of (n, k). We can assume that with
a bigger training sample this would not have happened.

The complexity and the sophistication of the Metasploit framework challenge
the learning capabilities of the ScriptGen approach. Still, even in these unfavorable
conditions we have been able to correctly emulate 20% of the attacks, and detect
a missing transition in 63% of them. Only 17% of these attacks failed due to
an incorrect grouping of the samples performed by the bucket-level clustering.
This incorrect grouping was due to the requirement of only 10 samples for the
region synthesis, and driven by the lack of a sufficient number of samples in the
experiment.

Such a case shows the limited capability of the ScriptGen approach to handle
correctly variability in the protocol structure. While the alignment algorithms allow
to take into consideration the variability in the different protocol fields, the random
composition of such fields into variable structures cannot be easily modelled by
ScriptGen. Thanks to the semantic clustering, each different structure is clustered
in a different bucket and will eventually need to a distinct transition per structure,
with a significantly increased resource consumption and learning time.

To isolate the problem and validate the capability of ScriptGen of otherwise
handling correctly the network activity, we tried to disable the bind call obfusca-
tion and repeat the experiment in these more favorable (even thought unrealistic)
conditions. ScriptGen has then been able to correctly generate a single-path FSM
correctly modelling the protocol interaction, and we have been able to use this FSM
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to correctly emulate the interaction with the Metasploit module.

3.5.5 Comparison with Nepenthes

In order to have an idea on the usefulness of the ScriptGen ability to automatically
learn the protocol interaction, we have compared the exploit emulation obtained
in the previous analysis with that obtained by Nepenthes [Baecher 2006] and its
python counterpart Amun [URL 13] in handling the previously analyzed exploits.
We consider in fact these two tools as the most advanced and most interactive
low-interaction honeypots freely available in the current state of the art.

When running the LSASS exploit, both Nepenthes and Amun are able to lead
the exploit into sending all its client requests. Even if the honeypots do not emulate
correctly the SMB protocol and simply send back random content, we have seen
that the exploit implementation does not perform any check on the server answers.
The level of interaction provided by the honeypots is thus sufficient to carry on the
conversation.

Things get worse with respect to the MSSQL Hello exploit. Neither Nepenthes
nor Amun provide emulation for the MS02-056 vulnerability, and do not listen on
port 1433 TCP. An attempt to exploit a Nepenthes or Amun honeypot simply leads
to an error message notifying of the fact that the connection was refused.

Focusing on the capture of self-propagating malware, the MS02-045 vulnera-
bility is not taken into consideration by either of the approaches. Since they do
provide emulation of the SMB protocol to emulate vulnerabilities such as the LSASS
exploit, the SMB Nuke exploit is able to connect and start the protocol interaction
with the honeypots. But as soon as the first server answer is received by the exploit
script, the exploit code tries unsuccessfully to parse it and quits.

Finally, the MS06-040 vulnerability is not supported by Nepenthes but is sup-
ported by Amun, which ships with an increased number of vulnerability modules
that have not been back-ported to Nepenthes. The support for the vulnerability
is again implemented in an extremely simplistic way, which is enough to handle
the extremely simple milw0rm proof of concept exploit. When facing the highly
sophisticated SMB client shipped in the Metasploit framework, an anomaly is
detected at the very first packet exchange:

[-] Exploit failed: Login Failed: The SMB response packet was

invalid

Surprisingly enough, the honeypot does not seem to detect the failed exploita-
tion attempt and does not provide any feedback to the user about the event in its
logs. The maintainers have been notified of the issue.

3.6 Conclusion

We have proposed in this Chapter a novel application of protocol informatics algo-
rithms in order to build semantic-aware representations of the protocol interaction.
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We started from a set of samples generated by the interaction of a real client with
a real server implementing that protocol and we inferred from it an FSM repre-
sentation of the protocol language. The learning algorithm is totally automated
and protocol agnostic: no assumption is made about the semantics of the protocol,
and the behavior of the algorithm is based on a set of thresholds whose influence
has been investigated in this Chapter. We have shown how ScriptGen is able to
correctly learn and model the network interaction for complex binary protocols.
ScriptGen has been able to take advantage of a very small number of interaction
samples (10 samples proved to be enough in most cases) to “reverse” the behav-
ior of exploit implementations of varying complexity and outperform the exploit
emulation capabilities of widely used honeypots such as Nepenthes.

While ScriptGen consists in a very important step towards the increase of the
level of interaction of low-interaction honeypots, it is not enough alone to collect
meaningful data on attack threats. In order to correctly emulate the attack trace
associated with the propagation of modern malware, we need to “understand” and
emulate code injection attacks. Differently from Nepenthes vulnerability modules,
ScriptGen FSM paths presented in this Chapter do not provide any information
on the behavior on the attack after the successful exploitation of a vulnerable
function. We will show in the next Chapter how we have been able to exploit the
characteristics of ScriptGen to overcome these limitations and build a distributed
framework for the collection of in depth information on attack threats.
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In the previous Chapter we presented ScriptGen, an automated algorithm to
abstract semantics from samples of network interaction and represent it under
the form of Finite State Machines. ScriptGen learning can be used to successfully
model the interaction involved in attack tools of various complexity, and allows the
automated generation of responders for protocols. In this Chapter we show how
we have been able to exploit the characteristics of ScriptGen to build a distributed
framework for the collection of data on Internet threats, called SGNET.

SGNET main characteristics can be summarized in the following points:

• Protocol agnosticism. Differently from existing low interaction honeypot
solutions, we want to avoid any a priori assumption on the structure of the
network interactions that SGNET honeypots are going to face.
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• 0-day reactiveness. We want to leverage the ScriptGen characteristics to
detect the presence of previously unknown activities and react to them by
refining the FSM knowledge.

• Code injection dissection. We want to take advantage of the increased
interaction level to study code injection attacks, retrieve in-depth information
on the structure of the attack trace, and download malware samples.

4.1 Introduction to code injection attacks

In Chapter 3 we have evaluated the ability of ScriptGen emulators to handle the
network interaction associated with exploitation tools. The network interaction
evaluated in that context is only a portion of the attack trace involved in a code
injection attack. In order to clearly dissect the code injection attack trace, we reuse
a model introduced by Crandall et al. in [Crandall 2005]. The epsilon-gamma-pi
model was introduced by the authors to describe the content of a code-injection
attack as being made of three parts.

Exploit (ε). A set of network bytes being mapped onto data which is used for
conditional control flow decisions. This consists in the set of client requests that
the attacker needs to perform to lead the vulnerable service to the control flow
hijacking step.

Bogus control data (γ). A set of network bytes being mapped onto control data
that hijacks the control flow trace and redirects it to someplace else.

Payload (π). A set of network bytes to which the attacker redirects the vulner-
able application control flow through the usage of ε and γ.

The payload that can be embedded directly in the network conversation with
the vulnerable service (commonly called shellcode) is usually limited to some
hundreds of bytes, or even less. It is often difficult to code in this limited amount
of space complex behaviors. For this reason it is normally used to force the victim
to download from a remote location a larger amount of data: the malware. In the
context of this work, we propose an extension of the original epsilon-gamma-pi
model in order to differentiate the shellcode π from the downloaded malware µ. A
code injection attack can be characterized as a tuple (ε, γ, π, µ).

It is important to understand that the epsilon-gamma-pi-mu model used in
this work does not exhaustively characterize all possible interactions that could
take place in the case of a code injection attack. In fact, such a model implies as a
final result of a code injection the upload and execution of a single malware to the
victim. According to our experience, this is unlikely to be the case in real world. It
is relatively common for a malware sample (what we could call stage-1 malware)
to download from the Internet further “stages” upon execution. Such stages can
consist of keyloggers, or even updates for the bot itself. While this work will not
take into consideration directly this additional interaction, we will show how we
are able to collect partial information on these interactions taking advantage of the
behavioral information offered from external information sources in Section 5.1.2.
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4.2 Handling 0-day attacks

The ScriptGen emulation as defined in the previous Chapter is composed of two
distinct phases: a first phase takes advantage of a set of samples to generate a
FSM representation of the interaction, and a second phase takes advantage of the
generated FSM to emulate the protocol. This structure implicitly assumes a static
view on Internet attacks, in which the emulation phase faces attacks that have
already been seen in the previous training phase.

This situation is unrealistic. We expect Internet attacks to evolve with time, in
terms of discovery of new vulnerabilities and thus 0-day exploits, but also in terms
of variations of known exploits through different implementations. We need a
mechanism to react to activities never observed before and dynamically refine the
FSM knowledge, closing the loop between the training and the emulation phase.
We achieved this with a proxying algorithm initially proposed in [Leita 2006] and
then refined in [Leita 2008a].

4.2.1 Detecting new activities

A protocol emulator taking advantage of ScriptGen FSM handles activities by
traversing the protocol Finite State Machine according to the requests received
from the client. When facing an activity that does not belong yet to the FSM
knowledge, the emulator will experience a deviation at a certain FSM node: a
given client request will not be matched by any transition.

A simple demonstration of the capability of ScriptGen to detect different activi-
ties can be done using any of the attack tools investigated in Section 3.5. We set up
an emulator taking advantage of the FSM knowledge generated by the interaction
of the MS06-040 exploit implemented in Metasploit 3.1 with a vulnerable Windows
2000 configuration. We already showed in Section 3.5.4 that such FSM is able to
correctly handle future instances of the same exploit when disabling the bind call
obfuscation technique implemented in Metasploit. In order to evaluate the ability
of the emulator to recognize a different activity, we took advantage of the FSM to han-
dle a different exploit on the same port. We chose the MS05-039 vulnerability (CVE
2005-1983), implemented in the Metasploit 3.1 module windows/smb/ms05_039_pnp.
This vulnerability, famous for being exploited by the Zotob worm, involves an
unchecked buffer in the Windows Plug and Play service that can be exploited
through remote interaction on the Windows SMB protocol (ports 139/445).

When running the MS05-039 exploit against a FSM trained with samples of
the MS06-040 exploit, the ScriptGen-based emulator correctly handled the first 5
client requests generated by the exploit tool. An in-depth inspection of the packets
and of the Metasploit code revealed that these initial requests correspond to the
SMB session establishment. Metasploit 3.x implements a simple SMB client that
takes care of common tasks and that is shared by all the exploit tools involving the
SMB protocol. The first part of the conversation is thus actually the result of the
execution of a shared code and this explains the ability of the FSM to handle the
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interaction. The 6th request generated by the MS05-039 exploit is not matched by
any transition in the ScriptGen FSM. The request is a SMB NT_CREATE_ANDX
request to access the pipe \browser. Interestingly enough, this request does not
actually consist in a deviation from the behavior of the MS06-040 exploit: also
the other requests access to the same pipe using an NT_CREATE_ANDX request.
But while the MS05-039 implementation names the pipe “\browser”, the MS06-040
implementation uses capital letters. The service implementation is case insensitive
and thus has identical behavior in the two cases, while the FSM model of the
protocol is sensitive to this difference and considers the change of case of the
parameter a deviation.

We repeated the experiment modifying the case of the pipe name, and the re-
quest was handled correctly by the FSM emulator. A deviation from the FSM model
was then detected at the 6th client request generated by the exploit. Such request
corresponds to a DCE RPC bind request, and contains as UUID the value 8d9f4e40-
a03d-11ce-8f69-08003e30051b, corresponding to the Plug and Play service targeted
by the vulnerability. This is indeed a deviation from the behavior of the MS06-040
exploit, which binds to the UUID 4b324fc8-1670-01d3-1278-5a47bf6ee188, corre-
sponding to the Windows Server service.

This exemplifies the ability of the ScriptGen FSMs to identify deviations in
the protocol interaction associated with new attacks (such as 0-day) but also to
variations of known attacks generated by different implementations or different
configurations of the exploit tool. It is important to underline that ScriptGen
does not blindly detect any variation in the client requests: thanks to the semantic
inference of the region analysis algorithm, ScriptGen is able to identify variations
that do not normally happen. Referring to the previous experiment, the MS06-040
exploit implementation chooses a different SMB Process ID at every instance of
the attack. The FSM model expects that field to be mutating, and its variation is a
characteristic of the protocol interaction. But all the MS06-040 exploits perform a
DCE RPC bind to the same resource identifier, so when an attack is encountered
using a different value for that field the attack is considered different.

4.2.2 Learning new activities

Once a new activity is recognized as such, the emulator is unable to carry on the
conversation taking advantage of the existing FSM knowledge. Since the activity is
unknown, it is of extreme interest to observe the continuation of such conversation.
One possible solution would be to terminate the connection and redirect future
activities generated by the same attacking source to a high interaction honeypot
able to handle the activity. In the case in which the attacker tried again to repeat
the same attack on the same target, the attack would be redirected to the high
interaction honeypot and this would generate a new sample for the FSM refinement.
In practice, we consider this event unlikely to happen in a short time: in the case of
a worm propagating randomly over the whole IP space with a scanning frequency
of 100 hosts per second, in average it would take 497 days for a honeypot IP to be
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Figure 4.1: Proxying phases

hit a second time by the same attacker. While in many other propagation strategies
such number could be significantly lower, this example is used as a worst case to
motivate the usage of alternative techniques.

The proxying algorithm is inspired by an idea initially suggested by Cui in
[Cui 2006c] and then independently expanded in the context of this work. The
algorithm allows us to dynamically react to the detection of a new activity. Once
a conversation within a TCP session is detected as being new with respect to the
current FSM knowledge, we are able to rely on a high interaction honeypot acting
as an oracle and providing the answers to the client requests that are out of the FSM
knowledge. This transition is performed on the fly and in an almost completely
transparent way from the point of view of the attacking client.

As illustrated in Figure 4.1, the operation of a protocol emulator implementing
the proxying algorithm can be articulated over three different states.

• FSM driven operation. The emulator takes advantage of the FSM knowledge
to handle the conversation with the attacker. While interacting with the at-
tacking client, the emulator caches the ordered list of messages [M1,M2, ...Mn]
generated by the attacker.

• Warm up phase. Once a new activity is detected, the emulator is assigned
a high interaction honeypot able to help in handling the activity. Initially,
the emulator and the high interaction honeypot are not in sync: while we
assume the high interaction honeypot to be in a “clean” state, the emulator has
already interacted with the attacking client and this interaction has modified
its internal state (for instance, one or more TCP connections are established
between the attacker and the sensor). In the warm up phase, the sensor
must then sync the honeypot state to its internal state. This is accomplished
by replaying all the messages [M1,M2, ...Mn] generated by the given attacker
during the FSM driven operation.

• Raw proxying operation. During this phase, the emulator acts as a proxy be-
tween the attacker and the initialized high interaction host. All the messages
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[Mn+1,Mn+2, ...Mn+k] generated by the attacker in this phase are relayed by
the emulator to the high interaction host, and all the corresponding replies
[Rn+1,Rn+2, ...Rn+k] generated by the host are sent back to the attacker by the
emulator.

During the above interaction, the set of messages [M1, ...Mn+k] relayed to the
high interaction host and the corresponding messages [R1, ...,Rn+k] generated as
response constitute a new sample of interaction that can be used for the FSM learn-
ing. The combination of an emulator implementing the above proxying algorithm
with a high interaction host allows the automated generation of new samples of
interaction for unknown activities. These samples can be used to refine the existing
FSM knowledge and generate a new FSM path as soon as the corresponding bucket
is filled with enough samples. The proxying algorithm thus “closes the loop” be-
tween the refinement and the emulation phase, interleaving the two processes.

An important decision in the context of the proxying algorithm is the exact
definition of a message. We have seen in the previous Section that ScriptGen
FSMs model the protocol conversation at application level, which is focusing on
application level payloads. The underlying TCP/IP interaction in the FSM driven
operation can be easily handled using the standard TCP/IP stack of the operating
system, greatly simplifying the complexity of the emulator. This would lead to
the straightforward choice of following the same approach also in the proxying
algorithm, defining a message as an application level payload and discarding the
TCP/IP information.

Application level proxying has an important shortcoming: it does not preserve
message boundaries. Working at application level only, there is no way to distin-
guish two separate requests 500 bytes long sent in fast succession from a single
request 1000 bytes long. We do want to preserve this difference for two reasons.

Firstly, the warm up phase must reproduce on the vulnerable host exactly the
same effects that the attack would have had without the intermediation of the
protocol emulator. We identified a number of cases in which the loss of message
boundaries in SMB exploits led to unexpected behaviors. Message boundaries,
as well as TCP PUSH flags, need to be preserved in order to correctly replay the
attack.

Secondly, the conversation sample generated by the proxying algorithm is used
to refine the protocol FSM. In this context, ambiguities in message boundaries are
not acceptable. Let’s consider the following scenario. An exploit sends two sepa-
rate packets 500 bytes long in rapid succession at a given point of the conversation.
If no server answer is associated to the first 500 bytes payload, the boundary be-
tween the two requests is ambiguous and solely depends on timing issues. For
instance, when the activity is unknown, proxying may introduce a small process-
ing delay. As a result of this delay, the two separate requests could be buffered
together and seen by the received as a single 1000 bytes message. This would lead
to the generation of a single transition expecting a 1000 bytes message with char-
acteristics given by the concatenation of the two messages. In different conditions
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such as during FSM driven emulation, the received might be faster in reacting to
new messages in its buffer. The two messages may then be received distinctly and
would not match any more the previously generated transition. By preserving
the whole packet encapsulation, we provide a simple way to correctly preserve
message boundaries and avoid ambiguities.

The previous reasons led us to choose a different approach to handle the proxy-
ing phase, which allowed the preservation of packet boundaries and TCP/IP flags,
such as the TCP PUSH flag. This is accomplished by working at IP level and
considering as message M a TCP/IP packet comprising the original TCP and IP
header. This allows maintaining the packet boundaries and all the TCP/IP flags,
but introduces some complexity drawbacks in replaying a conversation at such
low level. The proxying algorithm configures itself as a TCP session hijack, with
all the complications that this implies.

While solutions such as TCP Opera [Hong 2005] are now part of the state of
the art and successfully address the problem, at the time of building the system
none of them were available yet. We thus developed an ad-hoc solution. Thanks
to a set of design decisions performed in the development of the communication
channel between the emulator and the high interaction host, we have been able to
greatly simplify the problem of replaying the conversation by the emulator to the
high interaction host. As it will be explained in Section 4.3.3, the communication
channel allowing the interaction between the emulator and the high interaction
host is based on a TCP-based protocol called Peiros. We can thus take advantage
of the characteristics of these solutions to simplify the problem of protocol replay:

• Differently from the connection between the attacker and the emulator, the
connection between the emulator and the high interaction host maintains
packet ordering and has zero loss rate. In fact, the underlying TCP protocol
used to tunnel the packets transparently handles any network issue that may
arise on the path between the emulator and the high interaction host. This
ensures that blindly replaying the packets exactly in the same order on the
two systems will produce exactly the same effects.

• The emulator and the high interaction host are under our partial control.
This is needed to ensure that the TCP/IP stack of the two hosts will follow
exactly the same choices in advertising their state (window scale TCP option,
ability to use of TCP SACKs, maximum advertised window, ability to handle
TCP timestamps, TCP Maximum Segment Size, ...). While this is possible
manipulating the configuration of the two hosts, nothing can be done to
control their entropy, and thus, for instance, the choice of the initial sequence
number ISN when establishing a TCP connection.

The above characteristics greatly simplify the problem of the initialization of
the high interaction host. The lack of control on the entropy of the high interaction
host still needs to be addressed. That is, the initial TCP sequence number ISNemu

chosen by the emulator when establishing a connection with the attacker will be
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different from the initial sequence number ISNhost chosen by the emulator when
replaying to it the same connection attempt. The emulator must exploit its position
of man-in-the-middle to compute the difference d = ISNemu − ISNhost and use it to
“convert” acknowledgement numbers in client requests sent to the high interaction
host and sequence numbers in the corresponding answers. A similar approach is
also applied to TCP timestamps when present.

Concluding, low level proxying allows the dynamic initialization of a high
interaction host upon detection of a new kind of activity. Working at IP level
maximizes the reliability of the replay and, thanks to a set of assumptions compat-
ible with the specific scenario, does not impact significantly the complexity of the
algorithm.

4.3 Collection of information on code injection attacks

Section 3.5 showed with lab-based experiments how ScriptGen is able to correctly
infer the semantics of the interaction generated by several tools exploiting different
vulnerabilities. Such validation was focusing solely on the network conversation
leading to a vulnerable state and not on the network interaction following a suc-
cessful exploitation. In the epsilon-gamma-pi-mu model introduced in Section 4.1,
this corresponds only to the epsilon dimension, the exploit. The observed interac-
tion already contains the payload pi and the control flow redirection gamma, but no
information is known on their location in the protocol stream or on their behavior.

When dealing with a limited number of highly popular worms, we can identify
a strong correlation between the observed exploit, the corresponding injected pay-
load and the uploaded malware (the self-replicating worm itself). With the spread
of worms such as Blaster [URL 8], there was a certain degree of correlation between
the different attack dimensions. Thanks to this correlation, retrieving information
about a subset of them was enough to characterize and uniquely identify the attack
[Bailey 2005]. This situation is changing. Taking advantage of the many freely
available tools such as Metasploit [URL 44, Ramirez-Silva 2007], even unexperi-
enced users can easily generate shellcodes with personalized behavior and reuse
existing exploit code. This allows them to generate new combinations along all
the four dimensions, weakening the correlation between them. This motivates our
need to observe and retrieve information about the full attack trace.

The network interaction following a successful code injection is a function of the
content of the injected payloadπ. Such payload may force the victim to open a TCP
port on an arbitrary port number and save the content pushed by the attacker on a
file. Or it may force the victim to perform an FTP download and actively retrieve
a malware file from an FTP repository. The emulation of this phase is extremely
valuable: the ability to successfully carry on its emulation gives access to the
malware µ. In most cases, code injection attacks are generated by self propagating
malware aiming at generating a copy of itself on the victim host. In these cases the
access to the uploaded malware sample is thus equivalent to the access to a copy of
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Figure 4.2: Inter-protocol dependencies

the attacker itself, and is a source of extremely valuable information on the nature
of the attack.

4.3.1 Inter-protocol dependencies

We proposed an initial solution to address the problem in [Leita 2006]. Despite of
the fact that, normally, the scope of a ScriptGen FSM is restricted to a single TCP
session, we proposed to infer inter-protocol dependencies, mainly consisting in
dependency links among states of different FSMs. Figure 4.2 shows an example
of such dependencies: a successful exploit on port 135 opens a normally closed
port (TCP port 4444). We proposed in [Leita 2006] a simple algorithm to infer
dependencies through the analysis of the learning samples. The following cases
were considered:

• Bind ports. A common action performed by a class of shellcodes consists in
forcing the victim to open a normally closed port. This port can be used either
to interact with a process, such as cmd.exe in Windows, or to directly push
a malware file to the victim. When observing a successful connection on a
previously closed port, we assume this state modification to be a consequence
of the last client request sent by the attacker and we model the dependency
accordingly.

• Protocol interleaving. Some protocols generate dependencies among two
different streams. A classic example is the FTP protocol: commands on the
control stream lead to downloads on the data stream. By looking at the
interleaving of messages belonging to two data streams, it is possible to infer
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dependencies that are common to all the samples, and that are thus likely to
be a characteristic of the protocol.

This approach can be extended to other cases, corresponding to the possible
actions commonly associated with the execution of the payload π.

The previously introduced solution is rendered impractical by the employment
of polymorphism in the shellcode code. The idea of taking advantage of poly-
morphic techniques to hide the presence of a shellcode in a network stream was
probably introduced at a Defcon 9 talk by a hacker named K2 in 2001 [URL 16].
The tool ADMmutate presented at the talk provided a simple API to transform
a payload π1 into a payload π2 having the same effect when executed but with
a totally different content. Two distinct executions of the mutation code bring to
two totally different payloads, and this allows attackers to generate payloads that
are extremely difficult to detect with classical intrusion detection systems such as
Snort [Roesch 1999]. Experimental work such as [Polychronakis 2007] reported the
extensive usage of such techniques by real world attacks.

The basic assumption required for inter-protocol dependencies to correctly
model the shellcode execution is the presence of a single effect associated with
each exploit state. Referring to the example of Figure 4.2, we can imagine that
while the represented exploit state on port 135 leads a state modification on port
4444, a different state associated in the FSM will involve, for instance, port 5000.
While such an approach would work correctly when facing non-polymorphic pay-
loads, the usage of polymorphic shellcodes breaks the previous assumption. When
employing polymorphism, two distinct attacks leading to the same action use two
totally different payloads. ScriptGen would interpret such variation as a charac-
teristic of the protocol, and would thus build a single transition with a mutating
region matching all the polymorphic shellcodes embedded in a given exploit. It
would then be impossible to associate a single characteristic action to the traversal
of that path.

Our early experiments led us to conclude that network-centric perspective
followed by inter-protocol dependencies does not cope with the complexity of a
code injection attack.

4.3.2 Dissection of the epsilon-gamma-pi-mu model

Our experience with inter-protocol dependencies made us realize that the network-
centric approach followed by ScriptGen, while suitable for the exploit emulation,
was not suitable to handle the later stages of a code injection attack. We thus tried to
dissect the attack trace into the various stages of the epsilon-gamma-pi-mu model,
and handle each stage in the most suitable way [Leita 2008a]. We introduced three
functional entities associated with the different phases of a code injection attack:
sensor, sample factory, and shellcode handler. These three components are the
main building blocks for the SGNET deployment.

The SGNET sensor is a small daemon to be deployed on a low-end host in
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different Internet locations and in charge of handling the network interaction with
the attacker. From the point of view of the attacker, the sensor handles the network
interaction during the whole attack trace. Nonetheless the packets generated by
the sensor can be generated by other entities and relayed to the sensor, which
blindly injects the packets into the network acting as a proxy.

4.3.2.1 Epsilon: exploit phase

The exploit phase can be handled using the ScriptGen FSM knowledge if the activity
is known. Traversing a FSM to handle an activity is an extremely inexpensive
activity, and can be performed locally by the sensor. Sensors are thus completely
autonomous in handling generic scanning activities and exploitation attempts as
long as the activity falls within the FSM knowledge.

If an activity falls outside the FSM knowledge, the sensor needs to rely on an
external oracle taking advantage of the proxying algorithm introduced in Section
4.2. In the context of SGNET, we call this entity the sample factory. As we have seen,
the interaction of the sensor with the sample factory allows the generation of new
samples for unknown activities that can be used to refine the FSM knowledge.

4.3.2.2 Gamma: the control flow hijack

The final objective of the exploit is to take advantage of a vulnerability to redirect the
control flow of the victim towards an executable code (the shellcode π) injected by
the attacker into the victim memory. In order to correctly understand the behavior
of the shellcode, we need to detect when an attacker is attempting to redirect
the control flow and we need to identify the target of this redirection within the
protocol stream.

In order to accomplish the objective, we took advantage of memory tainting
techniques in the sample factory. Argos [Portokalidis 2006] is a freely available
tool that takes advantage of qemu, a fast x86 emulator [Bellard 2005], to implement
memory tainting. Keeping track of the memory locations whose content derives
from packets coming from the network, it is able to detect the moment in which
this data is used in an illegal way. For instance, tainting allows to detect when
network data is being pointed by the virtual processor Instruction Pointer, and is
thus going to be executed by the victim. We reused the work of Portokalidis et al.
in Argos in order to provide to the sensors not only the network interaction needed
to emulate the exploit, but also to provide host-based information on the presence
of code injections (γ).

The additional information provided by the Argos-based sample factories can
be summarized into two points:

• Detection of a successful control flow hijack. This allows tagging all those
states of the protocol FSMs that are the final stage of a successful exploit.
Also, it allows the reliable detection of all the successful exploitations of
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the high interaction hosts and the stop of their execution as soon as the
attacker successfully takes control of them. This reduces the security concerns
involved in giving access to attackers to vulnerable systems.

• Information on the position of the payload in the protocol stream. We have
modified Argos in order to receive information on the position of the first
byte Bi of the protocol stream that the victim tries to execute as a result of a
successful control flow redirection.

In order to infer from the latter information the position and content of the
payload pi, we take advantage of simple heuristics. Ideally, the payload π should
be located at bytes [Bi, ..,Bi+k] following the first byte being executed by the victim
(Figure 4.3 A). While this happened to be the case for a number of exploits in our
experiments, we identified a number of cases in which the payload identified by
this heuristic was made of only a few bytes. These bytes turned out to be composed
of only NOP instructions and a jump instruction to a different memory location. We
then realized that the structure of these payloads was similar to that represented
in Figure 4.3 B.

Algorithm 4 get_payload(stream,i)
1: l⇐ len(stream)
2: π⇐ stream [ i,l ]
3: while not(valid(π)) and i > 0 do
4: i⇐ i − 1
5: π⇐ stream [ i,l ]

We revised the previous heuristic as shown in Algorithm 4. Assuming to have a
method to check the validity of a given payloadπ (discussed in the next Subsection),
we backtrack from the initial choice until a valid payload is identified. This very
simple heuristic proved to be sufficient to handle the majority of payloads involved
in code injection attacks.

We take advantage of the information on the payload location to tag the FSM
transitions during the incremental refinement, specifying the position of the shell-
code in the corresponding client request. When the final state is reached, the
shellcode is reconstructed as concatenation of all the segments (see Figure 4.4).

The proposed heuristic implicitly assumes that the mapping between the proto-
col stream and the victim’s memory is “linear”. That is, we assume that subsequent
bytes of the shellcode in memory will also be subsequent in the protocol stream.
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While we saw that this assumption holds for most of the observed exploits, we also
identified cases that break this assumption.

• Unicode encoded strings. Some protocols such as SMB encode the string
fields according to the unicode UTF-16 encoding. When running the LSASS
exploit [URL 20] as implemented in [URL 22] and targeting Windows 2000
systems, we saw that the argument of the DsRoleUpgradeDownlevelServer
call, used to overflow the victim’s buffer and push the payload π, is encoded
in such a way. Each byte of the shellcode is encoded in the protocol stream
over 16 bits, where the most significant byte is set to 0. The vulnerable service
will decode such unicode string and load the result in memory. The payload
executed in memory by the victim is thus different from that extracted from
the protocol stream.

• Protocol headers. In some cases, the payload π spans not only over multiple
TCP packets, but also over multiple application protocol payloads. For in-
stance, in the previous LSASS exploit, the shellcode spans over two DCE/RPC
fragments F1 and F2, each of which is prepended by an SMB header H1 and
H2 in the application level payload. When taking advantage of the previous
heuristics to reconstruct the shellcode, we have no way to recognize the SMB
header H2 from the second fragment of the payload F2. The generated shell-
code will thus be polluted by the presence of such header: π = F1 +H2 + F2.

In both these cases, the shellcode sample identified by the previous heuristic
will be corrupted. Our practical experience with the emulation of these samples
taking advantage of the techniques proposed in the next Section showed that this
corruption did not prevent a correct emulation. Heuristics were in fact already
present in the shellcode emulator to detect Unicode encodings and correctly repair
them. Also, the usage of regular expressions to recognize the shellcode behav-
ior allowed being resistant to the pollution of the sample generated by additional
protocol headers. The proposed heuristic proved thus to be sufficient at the col-
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lection of shellcodes of a sufficient quality to allow their emulation despite of the
introduced anomalies.

4.3.2.3 Pi: the shellcode execution

In the case of a successful code injection attack, the sensor relies on a shellcode handler
for the emulation of the payload pi. The shellcode handler is thus an entity that,
given as input a payload and the network characteristics of the sensor, produces
the required network interaction to emulate the payload execution. Similarly to the
sample factory, the shellcode handler behaves as an oracle to emulate an unknown
network interaction in proxying mode. But differently from the sample factory, the
interaction generated by the shellcode handler is not used as a sample for the FSM
learning.

Different approaches exist in the literature to recognize the presence of a
shellcode within a protocol stream. Some approaches aim at recognizing pecu-
liar characteristics of the payload: for instance, detecting the presence of sledges
before the executable payload [Toth 2002, Akritidis 2005]. Some aim at detect-
ing the presence of executable code by checking the correctness of its control or
data flow [Chinchani 2005, Wang 2006]. Others aim at detecting decryption rou-
tines for polymorphic shellcodes emulating their execution [Polychronakis 2006,
Polychronakis 2007].

Despite the considerable attention to the problem of the detection of executable
code in the network flows, little has been done to address the problem of its emu-
lation. Polychronakis et al. in [Polychronakis 2006, Polychronakis 2007] detect the
presence of shellcode in the network streams taking advantage of a CPU emulator.
While the objective of the method is to detect the shellcode, they achieve this objec-
tive through the execution of the decryption procedure of the polymorphic code,
which unpacks the real shellcode payload. The authors do not attempt to execute
the payload: the payload is in fact likely to contain system calls (for instance, socket
operations) that would require a full virtualization environment to be executed.
Another relatively recent open-source project is now trying to accomplish shellcode
profiling using a CPU emulator [URL 3]. While these solutions may prove to be
effective and useful in the future, at the time of the implementation of our system
they were not yet mature or available.

We thus followed a different direction and took advantage of the shellcode
engine used by Nepenthes [Baecher 2006]. The Nepenthes architecture is detailed
in Section 2.1.2.2, page 8. We modified Nepenthes in order to bypass its vulner-
ability modules and directly provide shellcode samples to its shellcode engine.
By doing so, we effectively bypass the most important drawback of Nepenthes,
namely its limited number of handcrafted vulnerability modules, and take full
advantage of its shellcode emulator and download modules. We built a shellcode
handler able to recognize valid shellcode and emulate its behavior. Still, its usage
has shortcomings with respect to full shellcode emulation. Nepenthes’ approach
is knowledge-based also in the shellcode emulation: it employs a set of signatures
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(mainly, regular expressions) to recognize a set of known decryption routines and
unpack simple polymorphic shellcodes. Then, it takes advantage of a set of heuris-
tics to reconstruct from the unpacked payload a URL corresponding to the action
to be taken to download the malware sample. SGNET can thus potentially identify
payloads that the shellcode handler is unable to emulate.

4.3.2.4 Mu: the malware behavior

The shellcode handler allows us to understand the behavior of a shellcode by
mainly converting the payload π into a generic URI representing the download
action that is required to download malware. The shellcode handler is then able
to emulate this behavior taking advantage of Nepenthes download modules, and
ultimately is able to collect malware samples. The malware µ is a valuable source
of information on the root cause of the observed activities. In self-propagating
malware such as worms, the downladed malware corresponds to an exact copy of
the attacker. This might not be the case in more sophisticated malware such as bots:
a botnet may potentially push to the victim a malware that is different from itself.
Still, we can take advantage of the malware to retrieve rich information regarding
the goals of the attacking client.

The characterization and analysis of malware samples is an extremely active
research area. In order to have information on the collected sample, we can identify
two main areas of interest:

• AV signatures. The antivirus (AV) community is very active in the process
of collecting malware samples and classifying them according to a set of sig-
natures. It is thus of great interest when receiving a new malware sample
to retrieve information from the various AV products on their ability to rec-
ognize the sample, and on the name associated with it by the vendors when
available.

• Behavioral analysis. The entirety of the malware collected so far by SGNET
consists of binary executable code for the Windows operating system. It is
thus of interest to retrieve information about the actions performed by the
malware once executed on a real system. A number of existing sandbox im-
plementations exist that perform this task: Anubis [Bayer 2005], CWSandbox
[URL 9] and Norman Sandbox are among the best known ones.

• Structural information and packers. The samples Windows executables and
are thus structured according to the Portable Executable (PE) format. The
PE information provides all the information required to the OS loader to
manage the executable code. This information can be easily retrieved from
the malware, and it is possible to use public signature databases [URL 28] to
associate such structure to the output of well known packing utilities. These
packing utilities are in fact often used by attackers to make the malware
detection more challenging for AV products, to prevent the use of debuggers,
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and often to prevent execution in sandbox environments. Information on the
packer used by a given malware can thus be very valuable in understanding
the level of sophistication of the sample.

The above information can be retrieved relying on existing tools and techniques
developed by other research teams. Most of the information on the collected mal-
ware samples is thus retrieved through information sharing with other projects.
A detailed overview on the information enrichment performed over the data col-
lected by SGNET is postponed to Section 5.1.

4.3.2.5 Interaction

Summarizing, the interaction with an attacker during the emulation of a code
injection attack evolves through different states represented in Figure 4.5. As it is
clear from the diagram, SGNET extends the proxying phases introduced in Figure
4.1 on page 67 with an additional phase, which exploits the shellcode handler to
emulate the collected shellcodes.

4.3.3 The architecture

The resulting architecture of the SGNET deployment is illustrated in Figure 4.6. The
sensors are deployed along the IP space, and due to the small resource requirements
of the ScriptGen approach they can be easily deployed on low-end machines. The
sample factories are deployed in a central farm on one or more high-end hosts,
together with the shellcode handlers. It is very important to understand that
this solution substantially differs from the classical honeyfarms where the farm
is invoked for each and every attack not implemented by, for instance, a honeyd
script. In SGNET the high interaction nodes (Argos machines) are only used when
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new attacks are observed. Upon collection of enough samples of attack activity the
ScriptGen FSMs will be refined and pushed to all the sensors, and the activity will
be handled locally. As we will see in Section 4.4.2 , this has a significant impact on
the dimensioning of the farm.

The different SGNET entities are coordinated through an ad-hoc HTTP-like
protocol named Peiros. The goals of this protocol are threefold.

Firstly, it must provide primitives to the sensors to send service requests to the
other entities, asking for the instantiation of an oracle or submitting a payload to a
shellcode handler.

Secondly, it must allow the exploitation of the distributed deployment of the
sensors in order to maximize the statistical variability of the collected samples. That
is, it must allow sharing the collected samples in order to perform a centralized
refinement. Also, it must allow the coordination of the distribution of the refined
FSMs in order to make sure that all the deployed sensors share the same knowledge
of the protocols.

Finally, it must allow the tunnelling of packets between the various entities,
avoiding the need to modify packets endpoint addresses or modify the routers
configuration in order to deliver tunneled packets to their destination. Delivering
tunneled packets as application payloads over a normal TCP stream allows great
flexibility and transparency in the placement of the various entities.

The interested reader can find in Appendix A an in-depth specification of the
Peiros protocol.

An additional component is introduced in the architecture, which is the SGNET
gateway. The gateway is the core of the whole SGNET architecture. The gateway is
the coordinator for every SGNET sensor. Each sensor on startup takes advantage
of the Peiros protocol to connect to the gateway, and retrieve its own configuration.
Centralizing the configuration details greatly simplifies the administrative tasks.
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Also, the gateway acts as an application level proxy for the Peiros protocol. SGNET
sensors send service requests to the gateway, which transparently dispatches them
to a free sample factory or shellcode handler. The gateway acts then as a load
balancer for the various SGNET entities, using a simple round robin scheduling
policy. Finally, the gateway centralizes the collection of samples generated by the
various sensors and refines the ScriptGen FSMs. As soon as a new refinement
is produced, the gateway is able to push the update to all the sensors, taking
advantage of the Peiros protocol. All the sensors active at a given moment will
thus have the same protocol knowledge, with some approximation due to network
latency and retransmissions. It is important to understand that the architecture
shown in Figure 4.6 is an abstraction of the composition of the different entities. The
Peiros protocol can be easily extended to allow more complex configurations, for
instance with multiple gateways to improve the system availability and scalability.

4.3.4 The SGNET deployment

In order to validate the proposed architecture and study the behavior of ScriptGen
when facing real attacks we have developed and deployed a prototype, which has
been running and collecting data over a period of 8 months.

The SGNET deployment is open to any institution interested in joining the
project. The spirit of the deployment is very similar to that of the Leurre.com
project (see Section 2.2.2.1 on page 18). Any industrial or research institution
interested in accessing the information collected by the deployment is welcome to
become a partner. In order to become a partner, the institution needs to deploy
an SGNET sensor and agree to sign a Non-Disclosure Agreement protecting the
information involving the sources and the targets of the attacks.

At the time of writing, the deployment consists of 22 sensors, beta testers,
deployed in different locations of Europe, America, Asia and Australia.

All the sensors in the deployment share the same network setup: they are
assigned 4 IPs, one of which is used for the remote control of the honeypot and
the Peiros communication of the sensor daemon with the central entities. The
other three IPs are emulated by the sensor and used to collect information on the
attacking clients. In the context of this work, we have decided to assign to all
the IPs a single profile, associated with a well defined setup in the sample factory.
This profile corresponds to an unpatched Windows 2000 Professional OS, with IIS
5.0 installed. While more various configurations are possible and will probably
be used in the future, we preferred here to concentrate on the learning of a single
profile assigning to it all the IP addresses currently available.

The 22 sensors provide thus a total of 66 honeypot IPs that are deployed over
18 different class A networks over the Internet. Each of these IPs contributed
to the collection of data in diverse proportions as visible from Table 4.1. Table
4.1 represents the daily rate of successful connection attempts handled by the
honeypots. The majority of the interactions observed by the deployment and
analyzed within this work involved typical Windows TCP ports, mainly ports 139
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Env Port 139 Port 445 Port 135 Port 80 Others Total
25 656.9 151.0 430.9 18.0 39.9 1296.7
15 411.4 431.6 335.8 17.9 75.5 1272.1
5 821.9 223.5 113.9 26.9 44.6 1230.8

17 719.8 241.6 50.9 6.9 18.1 1037.3
26 575.3 28.4 351.2 3.8 26.5 985.2
19 673.0 74.4 42.8 162.0 14.5 966.7
9 174.8 93.7 29.4 11.8 11.8 321.5

16 102.8 105.0 37.1 1.0 6.5 252.4
10 27.6 135.0 22.7 28.0 20.3 233.6
2 137.1 22.8 1.5 11.7 48.0 221.1
6 38.4 40.6 27.7 20.6 6.7 133.9

14 6.0 3.7 32.8 50.4 21.0 113.9
12 40.9 34.0 0.5 1.4 3.7 80.5
22 0.0 0.0 0.0 6.5 72.5 79.0
11 0.0 0.2 0.0 60.6 9.5 70.3
8 38.8 8.4 6.8 4.8 4.5 63.3

20 6.3 9.8 0.1 10.0 7.4 33.7
23 0.0 0.0 0.0 23.5 0.9 24.4
3 0.0 0.0 0.0 17.8 5.8 23.6

18 0.0 0.0 0.0 4.0 6.1 10.2
7 0.0 0.0 0.2 2.9 3.0 6.2

13 0.0 0.0 0.0 0.2 0.2 0.4
Total 4431.2 1603.7 1484.4 490.6 447.0

Table 4.1: Daily rate of TCP sessions hitting each sensor
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TCP, 445 TCP and 135 TCP. It is possible to see from Table 4.1 that the different
sensors part of the SGNET deployment are characterized by very different volumes
of inbound traffic. Some sensors, such as sensor 22, are not hit at all by any activity
involving the Windows ports: a possible explanation for this behavior can be found
in the presence of packet filters in front of the honeypots, filters out of the control
of the hosting organization. Other differences cannot be instead be explained other
than with differences in the distribution of the activities over the Internet IP space.
For instance, sensor 19 and sensor 25 are hit by approximately the same volume
of traffic on port 445, but differ of one order of magnitude in the volume of traffic
observed on port 80.

The access to the SGNET dataset can be performed in different ways. Among
them, it is worth mentioning a Python-based programming API that allows easy
access to all the information without requiring in depth-knowledge of the under-
lying SQL schema. All the results presented in this work were obtained through
this programming interface. The interested reader can find in Appendix B a docu-
mentation of the underlying ideas and concepts.

4.4 SGNET behavior

The deployment of the SGNET infrastructure represents the first deployment of
ScriptGen based honeypots on the Internet. We have evaluated the learning and
emulation capabilities of ScriptGen when facing a short list of exploits, but many
questions have been left unanswered until now.

• Does ScriptGen improve scalability? In theory, the proxying algorithm
introduced in this Chapter relies on high interaction solutions only to face
new activities. We do not know if such an approach will be effective, which is
if new activities will be learned fast enough to reduce the load on the sample
factories.

• What kind of activities does ScriptGen successfully learn? We expect the
observed activities to be very diverse in their characteristics. Large scale high
breadth phenomena are likely to be paired with short duration, localized ones.
While many samples of activity can be collected in the first case, the latter
case may cease before having given the time to ScriptGen to learn the activity.

• How will the FSM size evolve? While we have seen that ScriptGen is ef-
fective in learning a single exploit configuration, we have no quantitative
information on the variety of the exploitation and scanning techniques prac-
tically employed by Internet attackers. We thus have no a priori information
on the evolution of the size of the ScriptGen FSMs and thus on the feasibility
of using this technique in practice.

The information collected by the SGNET deployment in almost 8 months of
observation can provide answers to these questions.
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In the following pages, Figures 4.7, 4.11 and 4.13 provide a high level overview
on the behavior of the SGNET deployment from three different perspectives. Re-
spectively, they provide an overview on the evolution of the size of the FSM
knowledge, on its ability to offload the sample factories and on its effectiveness
in emulating code injection attacks and collect malware. In the plots, the vertical
dashed lines correspond to the installation of new SGNET sensors.

4.4.1 Evolution of the FSM size

Figure 4.7 shows the growth of distinct FSM traversals in all the ScriptGen FSMs.
The number of distinct traversals in the ScriptGen FSMs increases approximately
linearly with time, with a relatively low growth rate. In the 8 months of observation,
only 438 distinct FSM traversals were generated. These traversals mainly target
port 445 (32%), port 135 (23%), port 139 (21%) and port 80 (13%). In Figure 4.7, it is
possible to see that the creation of new traversals goes in parallel with the death of
a number of them.

We define the death of an activity as the last date in which the activity was
observed. Such a definition generates an ambiguity deriving from the limited
nature of the observation interval T. Modelling an activity A as a periodic process,
we can define its period πA as the average number of days spacing two subsequent
instances of such activity. Upon observation of an event EA1 ∈ T its death can
be assessed only through the analysis of the events in the successive πA days.
Otherwise, it is impossible to discriminate the death of the event from the case in
which event EA2 following EA1 does not belong to T. This ambiguity leads to a
sharp increase in the number of deaths when approaching the end of the interval
T. In order to cope with this problem, we defined the death of the traversals over
an interval T′ prolonged of one month with respect to the observation interval
considered in this work. This has reduced the ambiguity for all the activities A
having a πA < 30.

We can identify three main reasons for the death of a traversal: deprecation,
high specificity, and low activity frequency.

With deprecation we refer to the phenomenon for which the creation of a new
FSM path “deprecates” an existing one. We have seen in Section 3.4.1 on page 50
that the choice of the future state among all the outgoing transitions of the current
state depends on a matching function that assigns a score to each transition match-
ing the incoming message. In special conditions, a newly generated transition Tn

may obtain a higher score than a previous transition To for the incoming requests
that were previously traversing To. In order to investigate the deprecation phe-
nomenon, we searched for all the traversals generated in the period immediately
successive to the death of a traversal on the same port. We detected 12 such cases,
5 of which were generated by the creation of a single path on port 80. A manual
inspection of this path disclosed the following set of regions associated with the
first transition of the conversation:
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M(1) + F(“E”) +M(0 : 7) + F(“T”) +M(0 : 12) + F(“ ”) +M(0 : 17) + ...

Such a path was generated by the incorrect grouping of a set of HTTP HEAD
requests with two malformed HTTP GET requests, simply containing the payload
‘GET ’. In normal conditions, these two types of payloads should have been sepa-
rated by the semantic clustering. The HTTP HEAD requests in fact lead to an error
response from the server, while the malformed GET requests lead to an abrupt
connection termination from the server. A temporary problem in the experimental
setup led to the accidental grouping of these two requests. The pollution of the
sample set led to incorrect inferences resulting from the alignment of these two
payloads:

’GE______T_____________ ’

| | |

’HEAD / HTTP/1.0..Host: X.Y.Z.K....’

The generated transition not only matches HTTP HEAD requests, but also
any HTTP GET request. 5 existing traversals were deprecated by the generation
of this path. Since the answer provided to the client when following this new
traversal is inconsistent with the content that should be provided to an HTTP GET,
the generation of this path diminished the ability of SGNET to observe activities.
This shows the danger inherent in the effect of deprecation, but it also shows that
deprecation can be detected by looking at abrupt changes in path trends.

A second cause for the death of a traversal is its high specificity. When collecting
samples to be used for the refinement, no constraint is posed on its source. A
traversal can thus be generated as a consequence of the repetition of the same attack
launched against, or from, a single IP address. The corresponding traversal is thus
likely to contain information specific to the victim and/or the attacker. Looking at
the top part of Figure 4.8, we can see the Cumulative Distribution Functions on the
number of attackers and victims traversing each FSM traversal. Approximately
25% of the traversals are generated by a single attacker, and 22% involve a single
victim IP. In fact, 89 traversals (20%) are associated with a single attacker and a
single victim IP. 77 of them had a duration of a single day, and died the same day
of their birth.

The problem of highly specific paths can easily be fixed by defining constraints
on the acceptance of samples in a bucket. For instance, we could prevent the accep-
tance of more than k samples generated by the same attacking IP. We consciously
decided not to do that. The intuition underlying this decision is that if, for instance,
a single attacker contributes in an anomalous way to the generation of samples,
then it’s a good idea to assign to it a separate traversal identifier and consider it
as different from others. The absence of constraints on the diversity of the samples
entering in the buckets allows us to easily pinpoint highly localized activities.

Finally, a last contributor to the death of traversals is the bias introduced by
bursty activities. Figure 4.9 provides a measure of the duration of each traversal.
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For every traversal, we have computed the ratio between the number of days in
which the traversal was hit and the total number of days in which the traversal was
present in the FSM knowledge. This measure is meant to discriminate between rare
activities observed a limited number of days in their total lifetime from activities
that appear daily in a constant fashion. Figure 4.9 shows the histogram and the
cumulative distribution function for such parameter. 50% of the traversals have
been observed only in less than 10% of their lifetime. Half of the traversals can
thus be attributed to very bursty or rare activities rather than regularly scanning
ones. The burstiness of these traversals is evident when looking at the number of
days in absolute terms. 159 paths (36%) were traversed during only one day; 72
(16%) were traversed during 2 days; 44 (10%) were traversed during 3 days. As
shown in Figure 4.10, these bursty activities are also associated to a small number of
attacking sources: activities lasting less than 5 days are most of the times associated
to less than 5 attacking clients.

Despite the death of a considerable number of traversals in the 8 months of
observations for the reasons previously explained, an interesting fact comes to
our attention. The lower part of Figure 4.8 shows an overview on the nature of
the 438 paths generated in the 8 months of observation. Plotting these traversals
according to the number of attackers and victims involved in each activity, we can
have a visual picture of the dimensions of the phenomenon involved in each path.
Dividing the area of the graph in 4 sub-areas, the bottom-left part includes the vast
majority of generated paths. Out of 438 traversals, 48 traversals corresponding
to successful code injections and 320 traversals corresponding to other activities
involve less than 100 attackers and less than 20 target IPs (i.e. less than 7 honeypot
sensors). 83% of the FSM knowledge is thus used to handle highly localized and
small sized activities. In the 8 months observation period, this knowledge was used
to handle only 41,018 traversals, which is only 6% of the total amount of traversals
observed in SGNET. Focusing on the top-right area of the graph, 27 traversals (6%
of the FSM knowledge) handled a total of 501,734 attack instances that is 77% of
the total amount of attacks observed by SGNET.

This shows a an interesting fact on SGNET but also reflects an important char-
acteristic of the scenario of malicious activities observable on the Internet. We can
identify a small set of highly visible activities, involving a high number of attackers,
and probably randomly scanning the whole IP space. These activities constitute
by far the majority of malicious activities: according to our observations, 77% of
the traffic observed by our honeypots is associated with just a few FSM traversals.
The continuous growth of the FSM knowledge in the 8 months under analysis is
instead associated with small bursts of activity, of short duration, and involving
small numbers of attackers and victims. We don’t expect the total number of cre-
ated FSM traversals to stop increasing. As Figure 4.7 suggests, the steady state is
likely to correspond to the continuous creation of new paths and the contemporary
death of other paths involving short term localized activities that vanish shortly
after having appeared.

These numbers ensure our method will continue to be feasible in the future
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Period (days) avg daily attackers avg daily attackers (proxied)
1-60 82.41 31.03

61-150 166.40 39.76
151-210 171.66 25.51

Table 4.2: Average number of attackers handled by the deployment

regardless of the growth in terms of absolute number of paths. Given the ephemeral
nature of the activities we are observing, the total number of active traversals in the
FSM knowledge tends to stabilize and is far from raising scalability concerns (the
maximum number of active traversals, generated by the overlap of the processes of
birth and death, is 169 over the 8 months of observation). Finally, ScriptGen proved
its ability to correctly learn not only high visibility activities, but also the bursty
localized activities that consist of the bottom left area of Figure 4.8. This property
combined with the capabilities of the SGNET distributed deployment gives the
SGNET dataset a potentially very interesting insight on Internet threats.

4.4.2 FSM learning and sample factories

Figure 4.11 gives an overview of the ability of the FSM knowledge to offload
the sample factories from handling previously encountered activities. The plot
compares the daily number of attacking sources that were handled solely by the
FSM knowledge with that of those attacking sources that exhibited a new behavior
and thus required the intervention of a sample factory.

Table 4.2 numerically describes what can be already seen graphically from
Figure 4.11. The gradual increase in the number of honeypots handled by the
system increases the amount of traffic that is handled by the deployment: in the
first 60 days of the observation period, the deployment observes an average of
82.41 attackers per day. In the last 60 days of the observation period, the number of
average daily attackers grows to 171.66 per day. Despite of the fact that the average
number of attackers is almost doubled in the last period, the load on the sample
factories tends to decrease.

The reduction of load on the sample factories despite the global increase of
honeypots and the corresponding increase in number of observed attackers shows
that SGNET is able to scale. That is, the knowledge acquired by SGNET with the
initial set of sensors is successfully reused to handle similar activities hitting newly
installed sensors. This analysis shows that the learning is successful in preventing
future usage of the sample factory for the same type for activities, but does not
provide yet any information on the quality of the protocol emulation, that will be
addressed in the next Section.

While SGNET is effective in reusing existing traversals to handle activities
common to multiple platforms, we have seen that most of the traversals in the FSM
knowledge handle very localized activities. On this basis, we would expect the
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Figure 4.12: Effect of the installation of new sensors

installation of a new platform to have an impact on the load of the sample factory.
In fact, installing a new platform should allow the observation of a considerable
amount of localized activities hitting a network location on which SGNET had
previously no knowledge. In order to verify this intuition, we have aligned the
information on each installed platform according to the installation date in Figure
4.12. Day 0 on the X axis corresponds to the installation date of each platform, and
the graph shows the resulting cumulative ratio of unknown activities in the first
40 days of lifetime. In the first 20 days of lifetime of a newly installed sensor, the
sensor affects the sample factories according to the previously exposed intuition.
After this period, the load seems to converge to a stable value.

4.4.3 Ability to emulate code injections

We have investigated until now the ability of SGNET to scale to multiple honeypots
by taking advantage of the shared FSM model. The scalability investigation carried
on so far needs to be complemented by an evaluation of the correctness of the
generated traversals. A single traversal matching any inbound client request would
be scalable, but would be unable to carry on correct conversations with the attacking
clients.

In order to evaluate the ability of the SGNET infrastructure to handle code
injection attacks, we focus here on the evolution of the size of the malware collection
generated by SGNET. The malware download is the last stage of a code injection
attack: a success of this stage is thus considered a reliable indication of the correct
emulation of the whole attack trace. Figure 4.13 shows the growth of the number
of samples collected by the SGNET infrastructure, both in absolute terms and in
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Sensor ID Collected samples Lifetime Samples per day
19 943 109 8.65
5 1593 211 7.54

26 133 20 6.65
25 259 42 6.17
17 869 147 5.91
15 496 160 3.10
9 364 175 2.08
8 68 38 1.79
2 332 204 1.63

16 187 147 1.27
14 68 60 1.13
6 3 40 0.08
7 7 206 0.03

10 3 125 0.02

Table 4.3: Samples collected by each sensor

terms of distinct MD5s.
Two interesting facts can be deduced from the observation of Figure 4.13.
Firstly, the ratio between the number of malware downloads and the number

of distinct samples is constant. This may look counter-intuitive: one would expect
the number of different malware samples to converge to a number corresponding
to the number of different malware variants currently visible by the deployment. A
closer examination reveals that 2521 samples, so 49% of the total, were downloaded
a single time along the observation period. This phenomenon is due partly to the
extensive usage of polymorphism in modern malware, and partly to the corruption
of malware samples in the download phase. Both of these phenomena will be
addressed more thoroughly in Section 5.1.

Secondly, differently from the growth in FSM paths, the growth of collected
samples seems to be heavily influenced by the addition of some sensors. Table 4.3
provides information on the relationship between the number of collected samples
and the days of activity for each of the sensors. Looking at the average number
of samples per day, it is clear that the contribution of the different sensors to the
collection of malware is extremely diversified. Different sensors are hit by different
amounts of code injection attacks and thus contribute in different rates to the
growth of the sample set.

4.5 Comparison with similar work

The structure of the SGNET deployment as presented in this work has a number
of similarities with existing infrastructures and analysis methods. We preferred to
postpone their in depth analysis up to this point in order to be able to make specific
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comparisons between our infrastructure and existing work.

4.5.1 Honeyfarms

When considering the general structure of SGNET, it is possible to identify some
similarities with the concept of honeyfarm[URL 35]. The main concept underneath
the definition of honeyfarm is the usage of different types of tunnels to redirect
traffic from different locations to a central farm of virtualized hosts acting as high
interaction honeypots. Many different implementations of this concept exist in
the literature, such as Collapsar [Jiang 2004] or the Honeynet Project Honeymole
[URL 41]. The SGNET architecture differs from these approaches in three main
points.

Scalability. While in normal honeyfarms all the traffic targeting the monitored
addresses is constantly relayed to the virtualized hosts, in SGNET the allocation of
a virtualized host to handle an activity is a rare event triggered by the observation
of a new kind of activity. We saw in Section 4.4.2 that in the 8 months of observation
the utilization of the sample factories to handle new activities was reduced, despite
of the fact that the number of sensors participating to the collection of data was
more than doubled. This gain is obtained through the usage of the ScriptGen FSM
knowledge as an evolving filter, which handles autonomously all the activities that
are already known and thus offloads the sample factories.

Reproducibility. A considerable amount of exploits is effective only when run
for the first time on a vulnerable system. That is, many exploits modify the system
state. When providing a virtualized host to multiple attackers, this factor needs
to be taken into account. With reproducibility we refer to the ability of a system
to provide to all the attacking clients exactly the same state, and thus behave in
the same way when facing multiple instances of the same attack. Differently from
Collapsar and Honeymole, SGNET sets up tunneling towards a high interaction
host on a per-attacker basis. That is, each attacker generating an activity that is not
part of the FSM knowledge is assigned to a clean snapshot of the vulnerable system
to which he is given exclusive access. Such a policy is unfeasible in honeyfarms
due to the excessive load, which becomes proportional to the number of attackers
witnessed by the system. A similar policy is instead implemented in Potemkin
[Vrable 2005], where Copy On Write techniques allow a significant reduction of the
instantiation cost of each host. In SGNET instead we successfully implement such
a policy thanks to the offloading achieved by the ScriptGen FSMs, which handle at
the border of the infrastructure the majority of the attacks.

Containment. When handling farms of virtualized hosts, a trade-off exists
between the quality of the observations and the security of the system. A virtu-
alized host can potentially be attacked and compromised, and eventually used as
a stepping stone by attackers to compromise other systems. It is thus important
to carefully define the policy according to which the network interaction of the
farm can propagate to the Internet. For instance, it is advisable to allow the farm
to perform DNS requests but at the same time it is essential to block any exploit
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attempt towards other hosts. The knowledge based approach used by Honeynet
Project Honeynets or by Collapsar needs constant maintenance in order to avoid
misjudgements in the containment decisions. Taking advantage of memory taint-
ing techniques, SGNET employs a behavior-based containment in the detection
of code injections that allows the termination of the host execution as soon as an
attacker successfully hijacks the control flow.

4.5.2 Learning the protocol behavior

The idea of automatically learning the protocol behavior to build honeypot respon-
ders was first introduced by Chowdhary et al. in [Chowdhary 2004]. In this work
the authors proposed to automatically infer the evolution of the protocol state from
a set of conversations taking advantage of the input of a human expert to define
the protocol syntax. For instance, the approach would automatically infer a model
of the HTTP interaction starting from a definition of the syntax of its various mes-
sage primitives. Differently from ScriptGen, the authors mainly focused on the
evolution of the protocol state during, for instance, the human interaction of an
attacker interacting with an FTP server and browsing the different directories. Our
work aimed instead at the syntactic inference of the protocol structure and on the
inference of information of its semantics, with special attention to automated and
deterministic attack scripts. Our inference of the evolution of the protocol state is
thus less sophisticated, but is enough to suit our requirements.

The idea of using bioinformatics algorithms to perform protocol analysis was
initially predated by Marshall Beddoe in the Protocol Informatics Project [Beddoe 2005].
The Protocol Informatics project does not aim at automated protocol analysis; the
objective of this work consists instead in the detection of relevant fields in order to
help manual reverse protocol engineering. Two different research teams took ad-
vantage of such algorithms to perform automated protocol analysis. This resulted
in our work on ScriptGen [Leita 2005] on the one hand, and Weidong Cui’s work on
RolePlayer [Cui 2006c, Cui 2006a] on the other. Both ScriptGen and Roleplayer aim
at the automated analysis of the protocol format in order to replay conversations.
While ScriptGen focuses only on server-side honeypots, RolePlayer is a generic
replayer that can reproduce both the server side and the client side of a network
conversation. While RolePlayer and ScriptGen share many similarities, they are
also characterized by two differences.

Firstly, ScriptGen’s region analysis bases the semantic inference on statistical
characteristics of a sufficiently large and diverse number of samples. The alignment
algorithms used by ScriptGen are normally performed of a big amount of samples
considered to be similar by the semantic clustering process described in Section
3.3. On the contrary, RolePlayer leverages two conversation samples semantically
similar but syntactically different to perform the inference.

Secondly, ScriptGen aims at achieving as much as possible the protocol agnos-
ticism by minimizing the assumptions on the protocol structure and by trying to
take advantage of a limited number of very generic heuristics (e.g. intra protocol
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dependencies for the cookie fields). RolePlayer instead leverages external informa-
tion on the samples (e.g. IP address of the attacker/victim, hostname of the victim,
...) and heuristics to recognize this information within the protocol.

RolePlayer was used in a high interaction honeyfarm called GQ [Cui 2006a,
Cui 2006b]. While the structure and the purpose of GQ are profoundly different
from those of SGNET, many similarities can be identified between the usage of
ScriptGen within SGNET and the usage of RolePlayer within GQ. RolePlayer acts
in fact as a filter to offload the telescope from known activities, and implements
a proxying algorithm similar to that proposed in this work to react to unknown
ones. The differences among the two systems are manifold.

• Firstly, ScriptGen and RolePlayer are used in the two deployments with
different goals. In GQ, RolePlayer is mainly used as an efficient filter to offload
a high interaction honeyfarm. The analysis of the propagation techniques
used by the malware, of its propagation time and other statistics reported
in [Cui 2006a] is based on the observations of the underlying honeyfarm. In
SGNET instead the contribution of the honeyfarm to the data collection task is
rather limited. The sample factories are solely instrumental to the generation
of information used by ScriptGen for the incremental learning. In SGNET
the ScriptGen-based emulation and the resulting classification based on FSM
traversals has instead a central role in the generation of the dataset. The
interaction of the sensors with the other components of the infrastructure
is used to generate detailed information on all the different phases of the
code injection attack. We will show in the next Chapter the usefulness of
this information in studying the propagation techniques employed by self-
propagating malware.

• Secondly, due to its different structure, SGNET employs ScriptGen in a dis-
tributed fashion: many distinct sensors deployed in different locations con-
tribute to the shared knowledge. This is compatible with the requirements
of ScriptGen, which needs the collection of many diverse samples in order to
make meaningful semantic inferences.

• Finally, ScriptGen is used within SGNET for the sole emulation of the exploita-
tion phase. We propose in SGNET an alternation of different components in
charge of the emulation of the different phases of a code injection attack.
Such “dissection” is used to extract as much information as possible on each
observed event along the various dimensions of the epsilon-gamma-pi-mu
model. In GQ, RolePlayer is instead in charge of the emulation of the whole
attack trace for known activities and, as previously said, does not take active
part into the collection of information on the observed events.

Small et al. in [Small 2008] recently presented an alternative technique to au-
tomatically build protocol responders without taking advantage of bioinformatics
techniques. Their work focuses on ASCII-based protocols (mainly, HTTP) and
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takes advantage of a set of pre-processed traces to build protocol responders for
honeypots. Taking advantage of clustering and language analysis techniques, the
authors propose a method to build responders for the HTTP protocol and use them
to monitor the spread of search worms [Provos 2006]. Differently from ScriptGen
and RolePlayer, this method specifically targets a set of protocols and thus does
not aim at being protocol agnostic.

4.5.3 Automated protocol reverse engineering

While ScriptGen and other related work aim at the inference of the protocol syntax
only up to the point of the successful replay, a considerable amount of recent
work has gone further and has addressed the automated reverse engineering of
the protocol structure to produce syntactic/semantic information on the different
protocol fields.

Cui et al. in Discoverer [Cui 2007] extended the previous work on RolePlayer.
While Discoverer shares with RolePlayer some of the heuristics used for the de-
tection of certain classes of fields, it profoundly differs in the methodology. While
ScriptGen and RolePlayer take advantage of alignment techniques on the raw
stream bytes in order to detect overlaps and approximations of the different pro-
tocol tokens, Discoverer initially tokenizes the protocol stream taking advantage
of a set of heuristics. The alignment is used in Discoverer to detect similarities
among the different token patterns, and thus join together erroneously tokenized
messages.

A considerable number of recent research work takes advantage of static and/or
dynamic analysis techniques to look at the way the application parses the net-
work input. While the first approaches were not scalable and could be applied
only on very simple synthetic protocols [Newsome 2006], more recent approaches
were successfully tested on real-world protocols and on binary file structures
[Caballero 2007, Lin 2008b, Lin 2008a, Wondracek 2008, Cui 2008]. For instance,
[Wondracek 2008] and [Cui 2008] take advantage of memory tainting techniques
applied on multiple messages of the same type to correctly identify the different
protocol tokens and assign to each of them a semantic description (e.g. identifica-
tion of mandatory fields, optional fields, constraints on their values, ...).

The objective of automated protocol reverse engineering goes much beyond the
initial objective for which region analysis was conceived. ScriptGen does not aim
in fact at fully reconstruct the protocol syntax, but aims instead at understanding
the structure of the specific interaction of the observed exploits. We can say that
the objective of the ScriptGen FSM abstraction is not that of reverse engineering
the protocol. ScriptGen aims at reverse engineering the interaction generated by a
specific implementation of an exploit. For instance, if ScriptGen observes an attack
taking advantage of always the same value in a cookie field, it will incorporate it in
a fixed region and will assign it the same semantics of protocol keywords (i.e. the
“HTTP” string in an HTTP GET request). This apparently limiting choice allows
ScriptGen to distinguish this specific exploit from another implementation that, for
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instance, takes advantage of a random value for that field.

4.6 Conclusion

In this Chapter we have presented SGNET, a distributed honeypot framework for
the collection of quantitative data on code injection attacks. We have proposed a
method to exploit ScriptGen’s characteristics and build a system able to incremen-
tally refine its knowledge on network attacks. We showed how it is possible to
incorporate into the FSM knowledge information on the structure of code injection
attacks supplied by Argos memory tainting techniques. The resulting honeypot
emulators become able to correctly observe exploits without any a priori knowledge
on their structure, following the protocol agnostic approach at the foundations of
ScriptGen. We show how we are able to couple the exploit emulation with the
Nepenthes shellcode handler, and correctly download malware.

Through the implementation of a prototype of this infrastructure, we provide
in this Chapter a detailed analysis of the behavior of ScriptGen when facing real-
world attacks. We show that ScriptGen approach is scalable, both in terms of FSM
complexity and in terms of load on the sample factories.

While the total number of generated traversals continues to increase over time,
the creation of new traversals goes in parallel with the death of old ones. Many
of the activities observed by SGNET are in fact ephemeral, and have a very short
duration in time. Considering this process of continuous birth and death of traver-
sals, the net number of traversals required to handle the network interaction of all
the honeypots in a given timeframe is generally below 200.

The process continuous birth of traversals generates a continuous load on the
sample factories. This load does not significantly increase with the increase in
number of sensors deployed in the architecture. The reasons for this achievement
are twofold. Firstly, the ScriptGen semantic abstraction and the shared semantic
knowledge characteristic of SGNET allow the reuse of the same FSM traversal
to handle the same type of activity on different sensors. Secondly, the impact of
the installation of a new sensor on the observation of localized activities to which
the deployment was previously blind is quickly “absorbed” by the system. The
FSM learning is normally able to acquire the knowledge required for the normal
interaction of a new sensor in a period of approximately 20 days.

The results of the analysis of ScriptGen behavior offer a preliminary insight
on the characteristics of the threats observed by the SGNET deployment. More
specifically, Figure 4.8 on page 86 shows an interesting picture on the breadth of
the network activities. SGNET allows us to depict a scenario in which a limited
number of global high-visibility activities is interleaved with a proliferation of
diverse, ephemeral activities that are highly localized. It is difficult for the moment
to make inferences on the nature of these activities. In the next Chapter, we will
present a simple methodology to classify these activities and associate them to
contextual information useful to gather intelligence on their ultimate root cause.
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Chapter 4 introduced SGNET, a distributed honeypot framework based on the
ScriptGen learning techniques and used to collect unbiased and rich information
on Internet threats. We took advantage of the dataset generated by 8 months of
operation of a prototype implementation to validate the ScriptGen approach.

Until now, we have not been able to make any inference on the nature of the
observed activities. What kind of malware did SGNET download? How does
it propagate? How are the different traversals exploited to spread malware? Is
a traversal uniquely associated with a given malware activity? We have started
Chapter 4 conjecturing on the increased degrees of freedom in the epsilon-gamma-
pi-mu space, and we have built upon this conjecture many of the design choices of
the SGNET architecture. The information collected by the real-world operation of
the deployment can allow us to evaluate this conjecture.

In this Chapter we introduce a simple data mining technique to categorize the
code injection attacks observed by SGNET along the dimensions of the epsilon-
gamma-pi-mu space. For this categorization to be possible, the raw dataset gener-
ated by the SGNET interaction needs to be enriched with additional information.
Little information is available, for instance, on the nature of each malware sample
downloaded by the deployment, or on the nature of the observed exploits. In
Section 5.1 we present an information enrichment framework that takes advantage
of various tools to enrich the raw SGNET dataset with additional perspectives on
the observed events. In Section 5.2 we will bridge these different perspectives in a
comprehensive classification along the various dimensions of the epsilon-gamma-
pi-mu space.
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5.1 Information enrichment

The raw SGNET data collected by the deployment activity is processed and en-
riched on a regular basis by an information enrichment framework [Leita 2008b].
We have built around the SGNET dataset a framework allowing to process the
information collected by the deployment and enrich it by taking advantage of dif-
ferent analysis tools and information sources. This process includes sources and
techniques inherited from previous work in the Leurré.com project [Pouget 2006]
and extends it with additional ones, specific to the SGNET additional data on code
injection attack. The interested reader can find a complete overview of these tech-
niques in [Leita 2008c]. In the context of this work, we selected three of the most
relevant and interesting ones.

5.1.1 Labelling traversals with knowledge based signatures

In Section 4.4 we saw how SGNET has been able to correctly learn activities and
synthesize the different interactions into a set of traversals of the FSMs. While a
limited number of traversals was associated with global activities, we have been
able to see a proliferation of localized activities with very short duration. The
total number of traversals generated by SGNET in the 8 months of observation is
438. 70 of these traversals have been tagged as successful code injection attacks
by the sample factories. Still, we have no information on the nature of these
traversals. From the way they are constructed, we know that many of them are
highly specific to a specific honeypot sensor. Also, the same exploit run with
different parameters (i.e. different offset in the control flow hijack) is likely to
produce different traversals. While the presence of this high amount of specific
paths tells us a lot about the diversity of the activities on the Internet, we are not
able to know in practice how many different types of exploits are causing these
traversals.

In order to have information on the nature of the activities that we are ob-
serving, we took advantage of the output of an Intrusion Detection System, Snort
[Roesch 1999]. We took advantage of the Sourcefire VRT Certified Rules released
on the 15th of July 2008 and of Snort 2.8.1. For every traversal we collected a sample
of TCP sessions collected by all available sensors that observed the activity. We
limited the maximum size of the sample set to 1000 TCP sessions, which is 1000
traversals. If more samples were available we randomly selected them among the
pool of available ones. We then parsed the output of Snort for each of these samples
and we defined sets of alert identifiers (called Snort IDs) generated by each attack
instance. We considered as a representative set for each traversal the most frequent
set observed among the samples.

Table 5.1 provides an overview on the characteristics of the different groups of
traversals associated with the same alert set:

• References: when applicable, references to the full vulnerability report.
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Figure 5.1: Locality of traversals

• NP: total number of distinct FSM traversals that raised this alert set.

• NIJP: total number of FSM traversals that raised this alert set and that are
tagged by the sample factory information as successful code injection attacks.

• NI: total number of attack instances hitting one of the traversals in the group.

In order to retrieve information on the scale of the observed activities and
compare it with the nature of the alert, we reuse a concept introduced in Figure
4.8 on page 86. We showed how the different traversals could be classified in 4
different types according to their breadth in terms of number of attackers and of
victims involved in the activity. This concept is summarized in Figure 5.1 where
for each of the 4 quadrants of the graph we provide a comma-separated tuple
representing the number of traversals and the number of traversals leading to
successful code injections.

• Q1: activities involving a low number of attackers and victims, thus highly
localized. The majority of the traversals generated by SGNET are included
in this area, even if this area accounts for less than 6% of the total amount of
attacks observed in SGNET in the observed period.

• Q2: activities involving a low number of attackers hitting a large number of
victims. We can hypothesize that these activities correspond to high breadth
scanning activities performed by individual attackers.

• Q3: global activities involving a large number of attackers and victims. These
activities are likely to be associated with global phenomena such as the spread
of worms or big botnets.
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• Q4: activities involving a high number of attackers but focused on a small
number of victims. This kind of coordination may be explained by the
presence of botnets coordinated through C&C channels. This would explain
the presence of a high number of attackers focusing their scanning activity
on a very localized portion of the IP space.

While the attribution of the different quarters of Figure 5.1 to the different
types of activity is purely a conjecture and, at this moment, cannot be verified
methodically, it give hints on the nature of the observed activities.

Looking at table 5.1, we can see that the 438 distinct traversals could be grouped
in just 22 groups. An interesting and surprising fact can be immediately spotted by
the last lines of table 5.1: the biggest group, accounting for a total of 442736 attack
instances (67.9 % of the total) is associated with an empty alert set. Moreover,
other three groups are solely associated with alerts belonging to the shellcode.rules
set of rules, which searches for common repetitions of NOOP instructions into
protocol payloads. Due to the high number of false positives associated with these
rules, they are normally disabled. Out of the 652296 attack instances observed by
SGNET in the considered period, Snort generates meaningful alerts only for 93065
of them, that is, only 14%. Among the undetected activities, a considerable number
of instances is associated with a single traversal, hit 303812 times and belonging
to quarter Q3, corresponding to the brute force attack on the SMB shares run by
the Allaple worm as part of its propagation strategy (see [URL 12]). Also, 43 of the
traversals that are not associated with any meaningful alert have been tagged by
SGNET as successful code injection attacks. This clearly shows a major deficiency
of Snort in correctly identifying malicious traffic.

A considerable number of alert groups, associated to well-known vulnerabil-
ities exploitable with code injection attacks, are not associated in practice to any
successful code injection. A possible explanation for this behavior might be insuf-
ficient interactivity of the honeypots, leading the attackers to prematurely abandon
the conversation. Manual analysis of the conversation samples associated to these
alert groups ruled out this hypothesis. The exploitation attempts for these vulner-
abilities are fully emulated by SGNET honeypots, but the Argos memory tainting
did not flag such activities as successful in hijacking the control flow. The most
likely cause for this behavior is that the exploitation attempts were tuned for a
different OS configuration than the profile used in the experimentation.

Looking at the relationship between alert sets and traversals, we can see that
in most cases multiple traversals have been associated with the same alert set.
Attack instances hitting different FSM traversals are associated with differences
in the protocol interaction with varying semantic relevance. Two attack instances
classified in the same way by Snort are thus often considered different by ScriptGen.
By looking at Snort rules, we can see that Snort often aims at detecting the necessary
condition for an attack to take place, focusing on conditions that do not normally
happen in a benign application. For instance, Snort detects attempts to use the
Windows DCERPC protocol to bind to vulnerable functions that are not normally
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invoked remotely. Since ScriptGen traversals classify activities according to the
entirety of the network interaction, they are likely to identify differences among
activities that Snort is unable to spot.

Looking more in detail at the different groups associated with each alert set, we
can identify some interesting facts.

Firstly, all the alert groups on port 80 are not associated with code injection
attacks but are associated with application-level threats. For instance, the most
popular alert group consists in the “test.php access” [URL 34]. Certain PHP based
applications can provide useful information to the attacker through a “test.php”
script accessible in the web server root. This activity is likely to be associated with
scanning attempts in order to discover the presence of such PHP applications on
the Internet. As a corroboration to this hypothesis, most of the activities associated
with this class of attack belong to the group Q2. Such observation is compatible with
the hypothesis of a small number of sources taking advantage of automated tools to
discover vulnerable servers. It is very interesting to see that WebDAV search scans
[URL 33] belong instead to the group Q4. This kind of activity is indeed extremely
localized and almost always hits a single sensor. The partner hosting this sensor has
already been targeted in the past by Distributed Denial of Service attacks based on
WebDAV search requests targeting one of their webservers. Our hypothesis is that
attackers are continuously scanning the network of this partner, probably taking
advantage of a botnet, and are searching for WebDAV enabled web servers that
could be used to repeat such an attack. Only a single alert group involving port
80 is instead associated with a globally spread activity (group Q3), and consists
in an attempt to disclose ASP scripts’ source code using the “Translate:” header
[URL 32].

Most of the attacks observed by the SGNET deployment are concerning the
typical Windows Netbios ports, namely TCP ports 445, 139 and 135. On these
ports, we can identify multiple groups characterized by different combinations of
significant alerts and of alerts related to the detection of NOOP instructions in the
payloads. The latter alerts are generated by a set of signatures (shellcode.rules) that
while included in the VRT Certified Rules are normally not enabled by default due
to the high rate of false positives associated with them. The different groups can be
associated with 4 different vulnerabilities, namely MS04-007 (ASN.1 library heap
overflow), MS06-040 (Server Service NetpwPathCanonicalize Overflow), MS04-
011 (LSASS Service DsRolerUpgradeDownlevelServer Overflow), MS03-026 (RPC
DCOM Interface Overflow).

Despite the fact that the sample factory used to perform the learning is vul-
nerable to all the 4 vulnerabilities, a good number of alert groups do not contain
successful code injection traversals, and those that do also contain unsuccessful
traversals. We believe this phenomenon is associated with the exploit parame-
ters. For instance, the LSASS exploit previously seen in Section 3.5.1 on page 53
can target different OS configurations: Windows XP Professional, Windows 2000
Professional, and Windows 2000 Advanced Server. The target is specified by a
command line parameter when running the exploit and leads to different invo-
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cations of the vulnerable service according to the characteristics of the targeted
Operating System. When running the exploit against an SGNET sensor using the
wrong target code, no code injection is detected and the exploit fails. SGNET
observed a small number of exploitation attempts taking advantage of the LSASS
exploit both on port 445 and on port 135. None of them led to a successful code
injection though.

The two main classes of exploitation vectors observed by the SGNET deploy-
ment involve the MS04-007 ASN.1 exploit and the MS03-026 RPC DCOM Interface
overflow. While the first one has high predominance in the Q3 group and is thus
associated with global activities, the second one has a significant amount of repre-
sentatives in all of the 4 areas of Figure 5.1. The RPC DCOM exploit is the main
propagation vector for the Allaple infection [URL 12], a polymorphic worm that
we have observed since the beginning of our experiments, and other older worms
such as Blaster [URL 8] or Welchia. Also many different bots are known to be
taking advantage of this exploit to propagate [The Honeynet Project 2005c]. It is
thus possible that we are witnessing a superposition of different kinds of activities
hitting our honeypots, both global scanning performed by hosts infected by the
previously mentioned worms and other more coordinated or more localized scans
performed by botnets of different size.

We witnessed exploitation attempts taking advantage of the MS06-040 vulner-
ability. Such exploitations are rare, and have been observed towards the end of
the observation period (last week of June 2008). According to the SGNET obser-
vations, this vulnerability does not seem to be actively exploited yet by any large
scale phenomenon, but only by the isolated activity of single attackers.

We already saw that a majority of the attack instances observed by SGNET is
not associated with any meaningful alert. Among these instances, those associated
with traversals tagged as successful code injection attacks attracted our attention.

Two code injection traversals belong to an alert group composed of a single
x86 NOOP alert. A manual inspection revealed both traversals to be associated
with a MS03-026 DCE RPC exploit on port 135, and accounted to a total of 15968
successful code injections. An alert group exists for this exploit on port 135, but
in such alert group no successful code injection attack is witnessed. A more in-
depth analysis revealed that out of a sample of 1000 samples of activity associated
with these traversals, the corresponding alert is raised only 14 times and is not
thus comprised in the representative alert set. The alert associated with the DCE
RPC exploit (SID 8690 [URL 31]) takes advantage of the flowbits Snort directive to
reduce false positives. Taking advantage of the flowbits directive, it is possible to
add statefulness to Snort rules. In this case, the alert for the exploitation of the
IActivation interface depends on the previous bind to this interface on the same
DCE RPC connection. If Snort does not detect such a bind attempt in the previous
interaction, the alert is not triggered. For an unknown reason that we have not
been able to pinpoint, the bind attempt is not detected by Snort in the conversation
samples and thus once the exploitation is witnessed the alert is not raised. We
contacted the Snort development team and notified them about the issue.
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41 FSM traversals leading to successful code injections have been grouped
together as a consequence to two alerts generated by the detection of different
NOOP instructions in the protocol stream (x86 NOOP, x86 inc ebx NOOP). Of the
7692 successful code injections instances belonging to this group, we found out
that 5276 were associated with a single traversal. The FSM traversal involves an
interaction on port 139 and involves a malformed field in the invocation of the
SPNEGO (Simple and Protected GSSAPI Negotiation Mechanism) authentication
in a Netbios Session Setup AndX request, a known way to exploit the ASN.1 MS04-
007 vulnerability. The exploit has very similar structure to the one witnessed on
port 445 and correctly recognized by Snort, with the addition of the initial NetBT
(NetBios over TCP/IP) session establishment that is not required for the interaction
on port 445. The manual analysis of the Snort signature with SID 12710, part of
SourceFire’s specific-threats.rules and associated with the ASN.1 exploit, showed
that the alert would correctly match also the exploitation attempt on port 139. The
Session Setup AndX request used in the two cases has in fact exactly the same
structure. But the signature does not contemplate the analysis of packets on TCP
ports other than 445 and the alert is thus not triggered. Interestingly enough,
also the implementation of knowledge-based honeypots such as Nepenthes for
this vulnerability does not contemplate an interaction on port 139 involving this
vulnerability.

Summarizing, the Snort knowledge-based information on the network interac-
tion associated with the different traversals offers an interesting perspective on the
types of activities observed by SGNET. Only a few vulnerabilities are underneath
the whole set of code injection attacks observed by SGNET. While the number
of vulnerabilities is low, the scenario is far from being simple. The FSM-based
classification used within SGNET allowed us to underline a proliferation of dif-
ferent traversals likely to be associated with different variants of the exploitation
tools, and also different methodologies to trigger the same vulnerability. In such
a complex and diverse scenario knowledge based approaches fail to exhaustively
handle all the possible entry points for an attacker to exploit its victims: only a
small percentage of the activities observed by SGNET is associated with a mean-
ingful alert by Snort. These observations corroborate previous observations in the
field on the limitations of knowledge-based Intrusion Detection Systems in the
detection of Internet attacks [Zurutuza Ortega 2007] and clearly show the impor-
tance of collecting quantitative intelligence on the attack threats to improve their
performance.

5.1.2 Malware behavior analysis

Until now, we have focused only on the network interaction and on the prop-
erties of the information generated by ScriptGen. The emulation capabilities of
SGNET allow going beyond the exploit phase and, among other things, allow the
collection of malware samples. SGNET does not give us any information on the
nature of the collected samples. What do these samples do once executed on a
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real host? What level of sophistication are we observing in modern malware? In
order to find answers of these questions we took advantage of the information
offered to us by Anubis. Anubis1 is a malware analysis tool created by Bayer et al.
[Bayer 2005, Bayer 2006]. It analyzes the behavior of Windows executables by run-
ning them in an emulated environment and monitoring their actions. Differently
from many other sandbox solutions such as CWSandbox [URL 9], Anubis performs
the analysis in an unobtrusive way by monitoring the OS from the standpoint of a
CPU emulator, making its detection more difficult.

Every malware sample downloaded by SGNET is automatically submitted to
Anubis on a daily basis, and the information generated on the sample behavior
is stored in the SGNET dataset in an aggregated form. This information greatly
enhances our knowledge on the ultimate purpose of the observed code injection
attacks, and on the nature of the observed threats.

Table 5.2 shows an overview on the different characteristics of the malware
samples collected SGNET. The different columns represent different high-level
behaviors identified by the Anubis sandbox:

• AUTOSTART: the sample registers processes to be executed at system start.

• INTERNETSETTINGS: the sample modifies the settings of Internet Explorer.

• WINDIRCOPY: the sample creates files in the Windows system directory in
order to hide its modifications.

• DLF: the execution of the sample leads to the download of additional binaries
from the Internet.

• IRCBOT: the malware joins an IRC network.

To these high level behaviors, we add the CIDR prefix scanned by the mal-
ware during the sandbox execution. The results underlined in Table 5.2 are quite
interesting in different aspects.

First of all, an important portion of the malware collected to SGNET can be
associated with low-sophistication threats that do nothing else than scanning the
Internet in an attempt to propagate. According to the Anubis information, out
of 5325 malware downloads 927 (17%) of them lead to the download of low-
sophistication samples. Only 191 downloads (4%) led to the collection of samples
coordinated by an IRC channel.

Secondly, Anubis provides us with information on the connection attempts
performed by the samples while executed. This information can be incomplete:
the sample is executed by the sandbox for a default period of 2 minutes, which may
not be sufficient to observe the scanning behavior of the sample. For the samples
for which we observed outbound scanning, the scanning seems to be very focused
on narrow areas of the IP space. Most samples focus their scanning on class B (/16)
networks or smaller.

1http://anubis.iseclab.org/

http://anubis.iseclab.org/
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Thirdly, 1250 downloads (23% of total) led to the collection of a sample that
could not be executed within the Anubis sandbox. Examining more closely these
samples, we detected truncations of segments of the file and often invalid header
information. The cause for this phenomenon seems to be found in network errors
(e.g. premature connection termination) in the malware download phase. The
Nepentes-based shellcode handler does not seem to detect these conditions, and
stores an anomalous file as sample without providing any warning on the abrupt
connection termination. We assume this problem to be a generic problem of the
download protocols implemented in Nepenthes, and so to be applicable also to
other malware repositories based on similar malware download techniques. The
Nepenthes developers team has been made aware of the issue.

We have previously identified a considerable amount of malware samples (2521
samples) that were downloaded only once during the observation period of SGNET.
We attributed this phenomenon to the increasing spread of polymorphic techniques
in modern malware. A basic form of polymorphism consists in re-packing the mal-
ware sample at every propagation attempt using a random seed. Such a technique
ensures each malware sample to completely mutate its binary content at every
generation, making its detection much more complex to AV vendors. From our
standpoint, the employment of such techniques leads to the proliferation of unique
samples (downloaded only once) and makes the problem of attribution of two
events to the activity of the same malware type much more complicated. How
to define two completely different binaries to be similar and thus attribute two
different code injections to the activity of the same malware?

The problem of malware classification is an extremely interesting problem
widely addressed in current research [Bailey 2007, Rieck 2008]. While addressing
this problem in-depth is out of the scope of this work, we have taken advantage
of simple techniques to identify similarities between two different instances of a
polymorphic malware. The behavioral information provided by Anubis proved
to be instrumental to the achievement of this goal. For instance, one of the first
polymorphic malwares that we are aware of is the Allaple worm [URL 12]. Al-
laple is characterized by the creation of a file, named “urdvxc.exe”. 1174 of the
2521 unique samples generate a process with such name. In a first approximation,
searching for the above string in the behavioral information provided by Anubis
would seem to be sufficient to group together the whole Allaple family.

A more in depth analysis reveals that the problem is far more complex. The
group of 1174 samples generating a process named “urdvxc.exe” does not have
in fact uniform characteristics. For instance, 501 of these samples also generate
an additional file, C:\Documents and Settings\user\Local Settings\Temporary Internet
Files\Content.IE5\012N45I3\ccxebztz.exe, which is not generated by the other sam-
ples. Moreover, there seem to be important structural differences in the different
malwares composing this set.

Despite the polymorphic nature of these samples, the distribution of their file
size is not random. Figure 5.2 clearly shows that a significant amount of samples is
clustered around very specific file lengths. 242 samples for instance have a size of
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Figure 5.2: Distribution of the file size for samples creating the urdvxc.exe process

exactly 57856 bytes, while 177 of them are 67584 bytes long. This strongly suggests
the existence of subgroups among the identified set, with possibly different origins
or different microscopic characteristics that cannot be identified from the high-level
behavioral analysis taken into consideration so far.

A possible explanation for the existence of different classes of samples sharing
the same size could be found in different variants of the same source code, recom-
piled by the same author or by different authors sharing the same code base. In
order to investigate this theory, we tried to look at some of the header information
provided by the Packed Executable format taking advantage of the pefile library
[URL 7]. We assume in fact that different compilers or different revisions of the code

Group # Linker Machine OS sections Count First seen
1 5.12 0x014c 0x40 3 886 ?? (1-JUN-07)
2 5.12 0x014c 0x40 5 140 ?? (1-JUN-07)
3 5.12 0x014c 0x40 4 103 ?? (1-JUN-07)
4 8.12 0x014c 0x40 3 37 1-OCT-07
5 8.12 0x014c 0x40 7 8 4-AUG-07

(The earliest data contained in the SGNET dataset is dated back to the 1st of June 2007)

Table 5.3: Value of some PE header fields for samples creating the urdvxc.exe
process
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may lead to different characteristics at PE level. Table 5.3 partially backs up this
hypothesis: the 1174 samples are grouped into 5 different groups, mainly differing
for the number of PE sections and the linker version. Indeed, this result suggests
the existence of different variants, sharing the same high level behavior but with
structural differences. Also, the sets generated grouping the samples according to
their sizes are all subsets of the sets generated by the PE information. Two samples
with same size differ in content as a result of their polymorphic nature, but always
have the same PE header information. Also, looking back in the data collected
by the experimental setup deployed in June 2007 we can see that group 4 and 5
are relatively recent: they appeared respectively in October and August 2007. No
information is instead available on the other three groups: it is likely that their
birth precedes the date in which we started the data collection.

The problem of polymorphic malware is a very interesting problem. Spread
of malware using such techniques leads to a proliferation of samples that make
the problem of the assessment of the similarity of two different threats a hard
problem. We focused here our attention on Allaple, one of the main contributors to
polymorphic malware in our dataset. Even this relatively simple malware shows
the difficulty of the underlying problem. Samples sharing very similar or identical
high level behavior reveal differences and subgroups when analyzed from more
low-level perspectives. Such a scenario is probably an effect of the extensive sharing
of code among attackers and the consequent proliferation of different variants of the
same code base. This scenario is continuously evolving, and leads to a phylogenesis
of different mutations of malware code.

5.1.3 Malware labelling using AV information

When collecting malware samples with SGNET, little or no information is available
a priori on the nature of the threats. We have seen that behavioral information
provided by Anubis helps in understanding what a given malware is doing and
to detect similarities among instances of polymorphic malware. This behavioral
information is although not helpful in weighting the relevance of a sample. We want
a technique allowing us to easily distinguish among the propagation of well-known
malware such as Blaster [URL 8] and the propagation of new malware variants on
which little or nothing is known. In order to make this separation possible, we
took advantage of the analysis output of AntiVirus (AV) engines.

VirusTotal [URL 45] is a free web service provided by Hispasec Systemas, an IT
Security Laboratory in Malaga. VirusTotal receives malware samples and provides
in exchange a comprehensive report on the signatures assigned to the sample by
various commercial AV solutions supported by the service. At the moment of
writing, VirusTotal supports 36 different antivirus softwares, whose signatures
are updated daily. Also, the samples received by the VirusTotal service are au-
tomatically shared with the different vendors: submitting malware to VirusTotal
indirectly helps the AV community to refine the signatures for the various products.

All the malware collected by the SGNET deployment is automatically submitted
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Algorithm 5 submission_policy(sample)
1: n⇐ get_number_submissions(sample)
2: last_reports⇐ get_reports(sample)[n − 7 : n]
3: if n ≥ 30 and all_equal(last_reports) then
4: submit⇐ False
5: else
6: submit⇐ True
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Figure 5.3: Cumulative distribution function for the ratio of vendors recognizing
each sample

to VirusTotal, and the generated report is stored in the SGNET dataset. While in
Anubis each sample is submitted and analyzed only once, the submission policy
for VirusTotal is more sophisticated and is schematized in Algorithm 5. In order
to observe the evolution of the labels provided by each vendor for the sample we
collected, we repeat the analysis for at least 30 days.

When trying to evaluate the ability of the different vendors to recognize the
collected samples, we encountered a rather peculiar problem. Some samples, rec-
ognized by some vendors as well-known and rather old types, were never recog-
nized by other vendors. When cross-correlating this information with the Anubis
information we identified these low-recognition samples with those samples that
Anubis flagged as non-executable due to missing portions of the binary. In other
words, the 1250 corrupted samples identified by Anubis are often not recognized
by many AV vendors.

In order to evaluate the impact of sample corruption on AV performance, we
compared the performance of all the AV vendors with the two classes of samples.
As a measure of performance, we took into consideration the recognition rate,
which is the ratio between the number of AV vendors that correctly recognized
a sample and the total amount of AV vendors provided by VirusTotal. Among
all the reports generated by the resubmission policy for each sample, we selected
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Figure 5.4: Performance of different vendors when analyzing corrupted samples

MD5 Packer First seen
2b68b2ca1ab620f33d220411f93941bf kkrunchy 0.23 alpha 09-APR-08
39b81ab57624d9b174d9f13e0b73691a EXECryptor 2.2.4 16-FEB-08
5865e732663d75b501ffd7d98bc49005 MoleBox V2.3X 31-JAN-08
a3781d5747a5bd632d0966e061416088 Upack v0.33 - v0.34 Beta 31-JAN-08
a5e409732960219264fbb643ad982c2c ASProtect v1.23 RC1 09-APR-08
e0d35579ef892259370a08dd938a15e3 UPX 2.90 [LZMA] 16-MAR-08

Table 5.4: Samples not recognized by any vendor

the most recent one, which corresponds to the best recognition rate. Figure 5.3
shows the CDF for the recognition rates achieved by the AV vendors for the two
classes. Whereas 80% of the vendors always recognize the regular malware sam-
ples, the CDF for the corrupted ones is much less steep and underlines a significant
difference in performance of the various AV solutions.

The output of an AV engine when analyzing such corrupted samples is not easy
to define. Should a binary that cannot be executed be considered as malicious?
On the one hand, the specific implementation of an engine or of the corresponding
signature may or may not be affected by missing parts of the original binary.
On the other hand, different vendors may have different policies with respect to
these corrupted files. Figure 5.4 validates this intuition. Each bar on the X axis
corresponds to one of the 37 vendors supported by VirusTotal, and represents the
percentage of corrupted malwares recognized by that vendor. A minority of the
vendors raises almost no alerts for the corrupted files, considering them harmless.
But the majority of AV products ignores the inconsistent structure of the executable
file (easily detectable looking at its headers) and considers the sample as malicious.

The identification of the corrupted files performed by Anubis allows us to filter
out this ambiguity and focus on the 2088 samples that can be correctly executed
within a real OS. Of these 2088 samples, only 20 were correctly flagged as malicious
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Figure 5.5: Number of vendors not recognizing a given sample

by all the AV vendors provided by VirusTotal. As shown in Figure 5.5, most of the
samples are recognized by all but three vendors, and only 11 of them are undetected
by more than 7 vendors.

By looking at Figure 5.5 it is clear that the vast majority of the malware samples
observed by SGNET honeypots was already known to most vendors. This fact is not
surprising for several reasons. Firstly, the scope of the experimental deployment
on the IP space is rather limited compared with the extensive deployments used
by Antivirus vendors to collect new samples and update their signatures. Being
hit by a new malware variant before it is witnessed by the vendors is thus a rather
unlikely event. Secondly, as previously explained many of these samples employ
polymorphism: a large portion of unique samples is likely to be associated to a
small number of polymorphic worms, and this biases the results.

It is quite interesting to identify in this set 6 samples that in the submission
period did not trigger any alert from any of the 32 vendors active at that moment
in VirusTotal. These samples are listed in Table 5.4, with the information on the
packer provided by the PeID database. In fact, all these samples take advantage
of a commercial or well-known packer. A minority of the samples that we observe
take advantage of such packers: only 31 samples out of 2088 take advantage of a
packer recognized by the PeID database, while in most cases the packer, if existent,
is undetected. According to the claims of some vendors [URL 37], some of these
recognized packers offer highly sophisticated obfuscation techniques. We can thus
hypothesize that the presence of such packers has made the detection of the samples
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Figure 5.6: Evolution of the detection performance along the days of re-submission

more complex to the different AV vendors, and this led to a delay in the ability of
vendors to take advantage of the submissions to update their signatures.

In normal conditions, many vendors seem to actively react to VirusTotal sub-
missions, refining their signatures to recognize the new samples. Figure 5.6 shows
the ratio of samples that, on average, the different vendors have been able to recog-
nize in the different days in which each sample was resubmitted. The improvement
between the first day of submission and the 30th is of approximately 1%, thus very
small. But looking at the single vendors, the active reuse of samples received via
VirusTotal is more evident. For instance, in 14 cases a vendor did not recognize
the sample at the first submission, but immediately refined its signatures so that
the same sample was recognized the day after. Other vendors exposed similar
behaviors but with longer delays.

The reaction of AV vendors to our submissions to VirusTotal is not necessarily
to be considered a good thing. The 14 samples that were correctly recognized by
a vendor at the second submission were all variants of a polymorphic malware.
The fact that the vendor was able to recognize a sample only after having seen
one indirectly meant that the vendor was not able to cope with the polymorphic
packing technique used by such sample, and that was building signatures for each
separate instance of the packed executable. This underlines a generic problem of
the AV community when dealing with the proliferation of packers for malware: the
lack of unpacking routines allowing to build signatures on the unpacked binary.
This problem is currently being addressed by additional components included in
modern AV systems, components that in most cases are disabled in the command-
line interface used by VirusTotal.
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Allaple.gen6
3 Net-Worm.Win32.Allaple.e

106 Net-Worm.Win32.Allaple.b

W32/Virut.P

1 Net-Worm.Win32.Allaple.d
16 Virus.Win32.Virut.q
1 Backdoor.Win32.Rbot.bni
7 Net-Worm.Win32.Allaple.e
1 Net-Worm.Win32.Allaple.b

W32/Virut.BF
2 Backdoor.Win32.VanBot.ps

159 Virus.Win32.Virut.n

Allaple.gen10
10 Net-Worm.Win32.Allaple.e
1 Backdoor.Win32.Rbot.bni

Allaple.gen1
37 Net-Worm.Win32.Allaple.d
85 Net-Worm.Win32.Allaple.e
17 Net-Worm.Win32.Allaple.b

W32/Virut.T
2 Net-Worm.Win32.Allaple.b
2 Virus.Win32.Virut.q
1 Backdoor.Win32.Rbot.bni

Table 5.5: Labelling inconsistencies among vendors

AV information was used until now only to discriminate between detected
and undetected samples, but no attention was given to the label assigned to the
samples by the vendors. We initially considered the possibility of using labels
provided by AV vendors to group together samples likely to be associated with
the same phenomenon, thus addressing the problem of polymorphism. A more in
depth analysis of the AV labels revealed a set of inconsistencies and imprecisions
that led us to abandon the idea. Two different kinds of inconsistencies can be
identified: inconsistencies in the name given to each sample by the same vendor,
and inconsistencies in the grouping resulting from the usage of the labels.

Looking at successive reports for the same sample, one would expect the label
given by a vendor to remain constant. We detected instead a considerable amount
of variations in the label assigned by a vendor to the same malware sample. In
total, we have been able to observe 10314 modifications to the name given to a
sample by a given vendor. We identified 1081 different modifications often applied
to groups of samples. Many of these modifications consist in a better specification
of the name. For instance, 625 MD5s initially classified by a vendor as “Suspicious
file” have been later classified as “Win32.Allaple.b”. Other modifications instead
involve names associated with completely different behavior, and thus underline a
labelling error made by the vendor when generating the signature. For instance, 25
MD5s have been classified by the same vendor as “suspicious”, as “Allaple.gen3”,
as “Virus.Win32.Virut.n” and as “W32/Virut.BF” in different days. An exhaustive
analysis of all these cases is left for future work, but this brief overview clearly
shows the labelling problems inherent in AV signatures.

Labels are assigned by each vendor without any shared agreement on the
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naming conventions. It is thus not easy to compare labels assigned by different
vendors. But even if the label string differs, one would expect the grouping of
samples performed by two vendors to be consistent. Grouping the samples in sets
according to their label, we have compared the groups generated by two different
vendors on a set of 848 samples analyzed on the same day by VirusTotal. We have
detected 6 inconsistencies in the resulting grouping as represented in Table 5.5,
confirming previous results obtained by Bailey et al. in [Bailey 2007]. The table
shows how the different elements of a set defined by the first vendor are mapped
on the sets defined by the second one.

Summarizing, our experience with the output of different AV engines on the
SGNET malware collection underlines some interesting challenges. Firstly, while
the lack of a common naming convention among different vendors is a commonly
known fact, the labelling problem goes much beyond the simple assignment of a
common name. Our results seem to suggest that the main focus of the AV com-
munity consists in the detection of malware and not on the rigorous classification
of the different variants, as also pointed out in [Bailey 2007]. Also, the prolifera-
tion of packers and of different forms of polymorphism is indeed a challenge for
AV vendors. Signature-based approaches seem to be insufficient to handle the
increase of diversity generated by these techniques, and justify the adoption of
behavior-based approaches. While these approaches are present in most of current
AV implementations, their results do not appear in VirusTotal reports.

5.2 Semantic lattices

Until now, we have separately examined different perspectives of the SGNET
dataset. We examined the distribution of the traversals and their nature taking
advantage of signature-based approaches, and we examined the content of the
SGNET malware collection from the behavioral point of view and taking advantage
of the output of different AV engines. We have purposely delayed the bridge
between these different aspects. Here we want to propose a methodology to
combine all these different perspectives into a generic overview on the relationships
between the different dimensions of the epsilon-gamma-pi-mu model.

Section 5.1 showed that the definition of the coordinates in the epsilon-gamma-
pi-mu is a rather challenging task.

ScriptGen’s FSM traversals are an identifier of a certain activity type. That is,
two activities seen by two different honeypots and sharing the same FSM traversal
are very likely to be the same. The opposite inference instead does not hold. For
the way FSMs are generated in SGNET, two different traversals do not necessarily
correspond to two different activities. In Section 4.4 we called this phenomenon
high specificity. In order to identify extremely localized activities, we allowed the
generation of traversals generated by a single attacker or observed by a single sen-
sor. This phenomenon is widespread in the SGNET dataset: 20% of the generated
FSM traversals are associated with a single attacker and a single victim. It is highly
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likely that multiple traversals with similar characteristics are associated with the
same kind of activity.

The problem of the identification of malware samples was shown to be an
extremely hard problem in Section 5.1.2. The usage of polymorphic techniques
prevents us from identifying a malware from its content (i.e. its MD5 hash). The
high level behavioral information on the other hand proved to be too simplistic:
the generated groups clearly had structural differences likely to be generated by
different revisions or variants of the code. The information provided by the AV
vendors proved instead to be unusable in practice for classification purposes.

Little was said until now about the gamma and pi dimension and on the corre-
sponding available information. The gamma dimension corresponds to the bogus
control flow information used to redirect the victim instruction pointer towards
the shellcode. We can say that SGNET collects information on a code injection
attack using a “black box” approach. While host-based information is used to un-
derstand and correctly emulate the attack trace, the collected information focuses
on the effects of the code injection on the network interaction. Differently from
the other dimensions of the epsilon-gamma-pi-mu model, the gamma dimension
is invisible from this perspective. If the bogus control flow data is correct, the attack
is recognized as successful by the Argos-based sample factories. If instead the
bogus control flow data is incorrect (e.g. it is targeting a different OS version), the
instruction pointer will not be redirected towards a tainted memory area and no
attack will be detected. In a simplistic approximation that will be probably refined
in future work, we considered as sole representative of the gamma dimension the
notion of success for a code injection attack. Considering in this context the sole
categorization of the successful control flow hijacks, the gamma dimension loses
significance with respect to the other three.

The previously explained challenges can all be reduced to differences in the
variability of some characteristics of the attack trace. For instance, a malware
family may be characterized by its MD5; another malware family may always have
different MD5 but may always share the same file length; another malware family
may have always random size and random MD5, but may instead be identified
by the name of the process generated when the sample is executed, or by the
number of generated mutexes. A similar scenario is identifiable also for the other
dimensions: a set of exploits may be associated exactly to the same traversal, while
another set may be associated with many highly specific traversals that share the
same set of Snort alerts.

In order to handle this situation we took advantage of a simple algorithm
derived from a simplification of that proposed by Klaus Julisch in [Julisch 2003].
Julisch proposed to take advantage of attribute-oriented generalization hierarchies
to define generalizations of different fields in intrusion detection alerts. Julisch
modelled each alert as a tuple composed of different attributes and associated each
attribute to a generalization hierarchy. For instance, the generalization of a given
IP address can be information on its nature (i.e. web server). Given a set of alerts,
Julisch proposed a clustering algorithm aiming at the generation of clusters of a
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Figure 5.7: Generalizations and lattices

minimum size specified as an input parameter to the algorithm. Each cluster is
built in such a way as to minimize the heterogeneity of the attributes, which is to
maximize the specificity in terms of the corresponding generalization hierarchy.

The usage of the generalizations with respect to classical definition of distances
also fits very well to the epsilon-gamma-pi-mu (EGPM) clustering problem. Let’s
consider for instance the attribute binary length for a group of malware samples.
A single byte of difference between two samples has the same semantic value
of a difference of 100 bytes: a difference in size implies a difference in structure
regardless of the volume of such difference. Also, a cluster can be characterized
by identical size for all the samples, but can also be characterized by the complete
randomness of the size of its samples. It would be difficult to take advantage
of classical hierarchical clustering approaches based on the concept of distance to
model such difference.

We propose in this work a simplification of the work done by Julisch that
proved to be sufficient to achieve our classification objectives. In the original
work proposed in [Julisch 2003], each attribute is associated with a generalization
hierarchy based on the semantic of the field. For instance, the generalization
hierarchy for a port number can group port numbers according to the type of service
normally associated with these ports. We simplified this concept by assigning
generalization hierarchies to attributes according to their datatypes rather than
their semantics. All the attributes taken into consideration have been assigned to
one of these two hierarchies, graphically represented in Figure 5.7 (left):

• Simple type. In the case of simple scalar values (malware hash, malware
file length, exploit port,...) a very simple generalization is defined. The
generalization of the attribute is the node n(∗), which matches all the possible
values for the attribute.

• Set type. In case of attributes associated with sets of values (for instance the
set of Snort alerts generated by a traversal) we define a generalization hierar-



124 Chapter 5. Exploring the epsilon-gamma-pi-mu space

chy on 3 levels. The first level is what we called weak set. A weak set matches
any proper superset of itself. For instance, the weak set weak_set(1, 2, 3)
matches both set(1, 2, 3, 4) and set(1, 2, 3, 5). The second generalization level
is generated by the expansion of a weak set into smaller weak sets composed
of each of its elements. Finally, the generalization of a weak set composed of
a single element is the root n(∗).

The use of only two different hierarchies for the totality of the attributes is a
significant oversimplification of the work done in [Julisch 2003]. While a future
expansion of the method to handle semantic-specific generalization hierarchies
is an interesting research venue for the future, we will show here how this very
simple approach was sufficient to achieve our goals.

The hierarchical structure of the generalizations makes clustering a straightfor-
ward operation when a single attribute is involved. Given a hierarchical structure
L composed of k nodes {n1,n2, ...,nk}we can label each node with a frequency { f (n)}.
Whenever a sample is taken into consideration, all the nodes of the structure match-
ing its value will have their frequency increased by one. For instance, in the example
of Figure 5.7 for the set datatype, the value set(1, 2, 3) will increase the frequency of
the following nodes: n(set(1, 2, 3)),n(weak_set(1, 2, 3)),n(weak_set(1)),n(weak_set(2)),n(weak_set(3)),n(∗).

The clustering based on generalizations is governed by two thresholds: clusterthresh
and relevancethresh.

The clusterthresh parameter defines the minimum size of a cluster. Each cluster
is identified by the most specific node n ∈ L in the set M = {n, f (n) ≥ clusterthresh}

and the components of the cluster will be the leaves of the corresponding subtree.
The relevancethresh is required to filter out the artifacts deriving from the usage

of this clustering technique in an incremental way. Let’s consider, for instance,
an attribute representing the file size of each malware sample, modeled with a
generalization hierarchy of type simple and using clusterthresh = 3. An initial sample
set composed by distinct values, such as 15424, 17423, 19854, 18541 would lead to
the generation of a generic cluster having as root n(∗). If the initial sample set
is incremented by the following values: 15424, 17423, 15424, 17423 the clustering
decision will change. The nodes n(15424) and n(17423) will reach the threshold
clusterthresh and will thus lead to the refinement of the initial clustering decision.
The attribute, initially considered as a random attribute, is now used to identify two
malware classes: one with size 15424 and one with size 17423. In general, an event
will be properly classified only after having been observed at least clusterthresh times.
That is, the algorithm has an inertia. The highest is the frequency of a cluster, the
highest is the confidence in its classification. The relevancethresh parameter specifies
the minimum required frequency to consider a clustering decision sufficiently
reliable.

Until now, the clustering technique was presented taking into consideration a
single attribute per time. Figure 5.7 (right) graphically shows the extension of the
algorithm to the multidimensional case. The product of multiple generalization
hierarchies generates a lattice structure. In such a structure every node has as
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immediate relatives all the nodes generated by the generalization of each of its
attributes. The size of the structure is thus exponential with the number of attributes
and with the complexity of the generalization hierarchies associated with each
attribute. While such complexity would be infeasible in more complex scenarios
and would require heuristics such as those proposed in [Julisch 2003], it fits to the
small scale of our experiment.

We considered the following attributes to be significant to generate clusters
along the three dimensions epsilon, pi and mu.

Epsilon.

• Path ID (simple). The path identifier uniquely identifies a FSM traversal.

• TCP port number (simple). The port number on which the exploitation takes
place.

• Snort alert identifiers (set). The set of Snort IDs associated with a FSM
traversal.

Pi.

• Download strategy (simple). A binary flag indicating whether the malware
sample is pushed to the victim through a TCP connection initiated by the
attacker (PUSH protocol) or whether the victim is forced to actively start a
download (PULL protocol).

• Download protocol (simple). The specific protocol used to perform the
download among those supported by Nepenthes.

• Involved TCP/UDP port (simple). The TCP/UDP port characterizing the file
transfer. In the case of PUSH protocols, this port corresponds to the port that
the victim is forced to open in order to receive the malware. In the case of
PULL protocols, it corresponds to the server port to which the victim connects
in order to retrieve the malware.

• MD5 hash of the shellcode binary (simple). Included to identify the vari-
ability of the payload within the samples of a cluster.

Mu.

• MD5 hash of the binary (simple). Included to differentiate polymorphic
samples from non-polymorphic ones.

• Size (simple). Size of the sample (in bytes).

• Number of created mutexes (set). Number of mutexes generated by the
sample and by all its generated subprocesses in the 2 minutes execution time
monitored by Anubis.
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• Created processes (set). Name of the processes created by the sample during
Anubis execution time.

• Number of PE Sections (simple). Number of separate sections (code/data)
defined in the PE header.

• Linker version (simple). Version of the linker that generated the binary
according to the Portable Executable header.

• Packer (simple). Name of the packer identified by the PEiD signatures (when
detected).

• Self modifying sections (set). Set of PE section numbers marked both ex-
ecutable and writable. This is known to be an indicator of the presence of
a packing routine, which modifies an executable section of the sample at
runtime.

We applied the classification algorithm on the ordered list of code injections ob-
served in the 8 months of data collection period using the parameters clusterthresh = 3
and relevancethresh = 10. Three different lattices were generated for the three dimen-
sions, which were thus trained independently. We included in the analysis of the
mu dimension only those samples that were detected as executable by Anubis,
thus filtering out all the corrupted samples. In the rest of this work, we will refer
to the name e-clusters, p-clusters and m-clusters to refer to the clusters of activities
along the epsilon, pi and mu dimensions respectively.

5.3 Results

In the observation period, we have been able to group all the 29283 observed code
injections into 19 different e-clusters, 57 different p-clusters and 73 different m-
clusters. This led to the generation of 413 distinct tuples corresponding to all the
observed combination of e-clusters, p-clusters and m-clusters.

Figure 5.8 provides an overview of all the observed code injections associated
with the exploitation of the ASN.1 vulnerability (MS04-007) on TCP port 139.
Two separate epsilon clusters (e2 and e3) are associated with such an exploitation
attempt. One of them is characterized by a specific FSM traversal, while the other
one is composed of multiple highly specific traversals.

Interestingly, the totality of the e2 exploits always pushes to the victim a single
type of payload (p57). This payload is based on a download method called by
Nepenthes creceive. In a creceive download, the attacker forces the victim to run a
very small downloader that binds itself to a given TCP port. The downloader saves
to the victim’s hard drive and executes the binary content pushed by the attacker
upon connection. The payload p57 is characterized by the same binary content and
by the same listening port for receiving the sample. This is rather surprising, and
in our opinion not an optimal choice from the point of view of the propagation
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success. In order to successfully block any propagation attempt taking advantage
of this exploitation technique it is sufficient to block this port at the border of the
network. Being the port number a high port, it is likely to be blocked by default.

Despite its simplicity and its lack of variability, the payload p57 is responsible
for the download of a high number of m-clusters. For each of these clusters, we
reported in Figure 5.8 the label associated with the malware samples by Kaspersky
antivirus. The reason for the choice of this particular vendor lies in the character-
istics of the provided labels. While other vendors often assign very generic labels,
we found the labels assigned by this vendor enough to distinguish among different
variants of the same malware family.

Four of the five predominant mu clusters are associated with the Allaple
[URL 12] worm. We have seen in Section 5.1.2 the challenges associated with
the identification of the different variants of this polymorphic worm. Our cluster-
ing algorithm attempted to infer automatically these groupings according to their
behavioral and structural characteristics.

When comparing the information collected by SGNET with the information
provided by various AV vendors on Allaple, we identified an interesting amount
of contradictory information on the vulnerabilities exploited by this worm. Many
reports described Allaple as propagating through the RPC DCOM vulnerability
or through the MS06-040 vulnerability, and not many of them acknowledged the
ability of Allaple to exploit the ASN.1 vulnerability. All the four groups shown in
Figure 5.8 and labelled as Allaple variants (m2529,m3145,m7042,m7261) were seen
by SGNET as propagating solely on port 139 and exploiting the ASN.1 vulnerability.
This may not be the sole propagation method for this malware: different high
interaction profiles may reveal in the future also different infection methods that
we are not able to witness at the moment. Still, we found the information provided
by the different vendors very few acknowledgements on its ability to exploit such
a vulnerability.

The propagation strategy used by the malware group m732 shown in Figure 5.8
and labelled by Kaspersky as Rbot.bni catched our attention. Figure 5.9 shows an
overview of all the exploitation vectors and all the different epsilon-pi combinations
that led to the download of such m-cluster. While most of the infections were
witnessed through the previously analyzed ASN.1 exploit on port 139, SGNET
honeypots observed a more diversified propagation strategy. This malware family
was in fact also witnessed exploiting the ASN.1 exploit on port 445 and the DCOM
RPC exploit on port 135. While all the ASN.1 exploits took advantage of the
payload p57 previously described, the RPC DCOM exploit took advantage of a
completely different download strategy. The exploits on the e22 cluster forced the
victim to actively open a connection and download the malware from the attacker
on a random port.

The payload cluster p15 is also characterized by randomly mutating payloads.
The manual analysis of the payloads showed that, after a sledge of NOOPs and 12
bytes having always same content in all the payloads, the rest of the payloads was
differing every time. While we leave an in depth analysis of the payloads and on



5.3. Results 129

ASN.1 exploit

ASN.1 exploitASN.1 exploit

ASN.1 exploit

DCOM RPC exploit

Rbot.bni

MD5: 
3875b6257d4d21d51ec13247ee4c1cdb
Size: 57344 
Mutexes: 1
Process name: none
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

PUSH payload
Protocol: creceive 
Port: 9988
Content: fixed

Port: 135 
Path: ID 473
Snort alert set: {648}

Port: 139 
Path: many
Snort alert set: {1394,1390}

Port: 139 
Path: ID 458
Snort alert set: {1394,1390}

Port: 445 
Path: ID 966
Snort alert set: 
{1394,12710,1390}

Port: 445 
Path: many
Snort alert set: 
{1394,12710,1390}

PULL payload
Protocol: link 
Port: random
Content: random

Ep
si

lo
n

Pi
M

u

Figure 5.9: Propagation ability for mu group m732



130 Chapter 5. Exploring the epsilon-gamma-pi-mu space

the usage of polymorphic techniques in shellcodes as future work, this is a clear
example of variability between exploitation technique, injected payload and effect
of the payload on the system.

Figure 5.10 shows an overview of all the exploitation attempts associated with
the epsilon cluster e22, previously encountered in the analysis of Rbot.bni.

Figure 5.10 reveals the presence of a high amount of p-clusters not associated
with any m-cluster. While this phenomenon was less apparent in Figure 5.8 due
to the low amount of diversity in the payloads, the wide amount of different
payloads associated with the exploit group e22 makes this phenomenon more
visible. Many of the payloads not leading to successful downloads employ PULL
strategies. Since it is the victim of the exploit the one in charge of connecting
back to the attacker, we could hypothesize that such connection attempts are being
blocked by some firewall on the path between the attacker and the victim. The
scale of the phenomenon and the correlation between the failures of the download
attempts with the protocol being used led us to the identification of a coding
problem associated with our implementation of the shellcode handler. The epsilon-
gamma-pi-mu classification and the results of their analysis allowed us to detect the
problem, which will be fixed in future releases of the deployment. Nonetheless,
its late identification affected the vision of the SGNET on the mu dimension in
the considered dataset. The problem does not affect the validity of the analysis
performed in this work, but shows a limitation in perspective. This limitation is
assimilable to that caused by the choice of a specific high interaction host profile
for the generation of the dataset taken into consideration in this work.

Differently from what we saw for the ASN.1 exploit, the same traversal is
used here to push different payload types. Three different classes of payloads
can be identified: a PULL payload (p24073) forces the download of malware from
the attacker on port 2755; a PUSH payload (p258) forces the victim to accept the
malware on a random port using the protocol blink; finally, there is a proliferation
of clusters related to PULL payloads taking advantage of the protocol link. The
distribution of the latter class is rather interesting. A single payload cluster (p15)
is associated with downloads on random ports. In parallel to this, a considerable
number of p-clusters is instead associated the same download strategy but on well
defined ports.

Manually inspecting these p-clusters, we found out that they were all generated
by a very small number of attacking IPs, repeating the attack many times against
the same or another honeypot. Although each IP appears many times in each p-
clusters, we often found attacks generated by a single IP in more than one of them.
A possible explanation for such behavior is the following: at each execution, the
malware runs the service in charge of distributing a copy of itself on a randomly
chosen port and instructs its victims to download from that same port. When
restarted, the port chosen by the malware changes and thus the same infected
machine appears in a different pi cluster.

The variability in terms of payloads is also reflected by a variability in terms
of malware variants pushed through these combinations of epsilon and pi. While
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none of the mu clusters in Figure 5.10 correspond to polymorphic malware, all of
them are associated with IRC-based C&C channels.

5.4 Conclusion

In this Chapter we presented a two-step process for the inference of relationships
among three of the dimensions of the epsilon-gamma-pi-mu model. Firstly, we
showed how we have been able to enrich the SGNET dataset with the result of
different tools and web-based analysis services. Secondly, we showed a simple
way to exploit this augmented dataset to cluster observed injection attacks over
different dimensions of the epsilon-gamma-pi-mu space.

We add in this Chapter several lessons to those derived from the observation
of ScriptGen’s interaction in Chapter 4.

In Section 5.1.1 we underlined significant deviations between the observations
of SGNET and the signature-based knowledge of Intrusion Detection Systems such
as Snort. We have been able to identify successful code injection attacks for which
no signature was present in the latest version of the VRT Sourcefire rules, showing
on the one hand the limitations of knowledge-based approaches and on the other
hand the need to rely on datasets as sources of intelligence on attack trends.

In Section 5.1.2 and 5.1.3 we presented two different perspectives over the
collected malware samples: behavioral information and the detection performance
of different commercial AV engines. All these perspectives underlined different
challenges inherent to malware classification and gathering of information on their
characteristics.

Finally, we introduced a simple clustering technique allowing us to combine
all the different perspectives in a global view on the structure of the observed
injection attacks in terms of exploits, shellcodes, and resulting malware samples.
We showed how the level of correlation between these three dimensions is today
extremely low. Different threats take advantage of the exploitation techniques in
different ways, reusing the same exploit with very different payload types. The
assumption with which we started Chapter 4 and that motivated the design choices
underneath SGNET proved to hold: current Internet threats are characterized by
high variability in terms of combination of exploits and payloads used by malware
to propagate itself.

The results of this work open many questions and many interesting avenues
for further research, and show the potential usefulness of a similar dataset in
intelligence gathering on code injection attacks.
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Conclusion and future challenges

6.1 Challenges and future avenues

This work is centered on a data collection framework for the distributed observation
of server-based code injection attacks. We have built a prototype that allowed us
to collect valuable data and organize it in a centralized dataset. Through the
analysis of this dataset, we have been able to give at least partial answers to many
of the questions that opened this work. The analysis of the behavior and of the
observations on this infrastructure has also opened a number of questions and
challenges likely to open new avenues for future research.

6.1.1 Evolution of the Finite State Machines (FSM)

We have seen during the SGNET operation the continuous creation of Finite State
Machine traversals, and the continuous death of them. ScriptGen’s Finite State
Machines are dynamic objects, which reflect the dynamic nature of the scenario
witnessed by SGNET. Our analysis underlined in several occasions the necessity
to monitor the FSM knowledge and detect anomalies.

We saw in Section 4.4.1, for instance, how the generation of an incorrect traversal
can deprecate other traversals and bias the observations. We also witnessed the
generation of highly specific traversals hit only for very limited periods of times
and never traversed again. The evolution of the FSM knowledge needs to be con-
tinuously monitored and correlated with the trends of the observations performed
by the deployment in order to cope with the dynamic nature of the threat scenario.

6.1.2 Abusing ScriptGen

We have studied in this work the ability of ScriptGen to cope with generic Internet
attacks. The reader might wonder whether it would be possible for an attacker
to generate specific network interactions to manipulate or disrupt the SGNET
observation capabilities.

In Section 3.5.4 we have seen how the randomization of the protocol structure
can push ScriptGen’s learning ability to its limits and lead to excessive consumption
of resources and learning time. Such “computational attacks” could be used to
impact the ability of the SGNET infrastructure to correctly perform the learning by
exhausting its resources.

Moreover, in Section 4.4.1 we saw that the effect of “deprecation” of traversals
is generated by accidental pollutions of the sample set. An attacker could exploit
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the deprecation effect to make the deployment blind to certain types of activities.
It would be possible for an attacker to generate ad-hoc activities to control the
learning process and generate on purpose bogus transitions preventing SGNET
from correctly handling a certain class of code injection attacks and from correctly
downloading the associated malware.

While these attacks are theoretically possible, we their impact on the system to
be low: an automated analysis of the evolution of the FSM dynamics can easily
detect and erase such abuses.

6.1.3 ScriptGen FSM traversals and vulnerabilities

The proliferation of highly specific traversals poses an interesting problem. Ideally,
the generation of a new traversal is related to the observation of a new activity, and
is thus of interest. In practice, we saw many highly localized traversals and we
showed their association to a very small set of underlying vulnerabilities. How
to discriminate the exploitation of a new vulnerability from a different exploit
implementation addressing a known vulnerability?

Knowledge-based approaches such as Snort, used in this work to associate the
traversals to set of alerts, proved to be insufficient to correctly perform the task,
and left a considerable amount of observed activities unclassified.

The problem might find its solution through the usage of tainting and host-
based information to infer the system service affected by the vulnerability inde-
pendently from the exploit interaction.

6.1.4 Shellcode emulation

The knowledge-based approach based on Nepenthes consists in a first step in the
emulation of the shellcodes collected by SGNET. While we have been able to take
advantage of this solution to collect a considerable amount of malware, we have
been able to identify a number of limitations to the employment of this solution,
mainly associated with the usage of knowledge based signatures, that can be easily
defeated by simple modifications to existing packing routines.

Recent work such as [Polychronakis 2006, Polychronakis 2007] investigated the
usage of CPU emulators to unpack polymorphic shellcode. Usage of similar tech-
niques would allow to significantly reduce the number of knowledge-based heuris-
tics required to correctly understand the shellcode behavior.

6.1.5 Epsilon-gamma-pi-mu clustering

We proposed a very simple classification technique to identify clusters in the var-
ious dimensions of the epsilon-gamma-pi-mu model. This classification showed
very interesting facts and helped us to underline the very low degree of interdepen-
dency among exploits, shellcodes and malware. We consider of extreme interest
for future research the refinement and the exploitation of these techniques to gather
intelligence on malware and on its propagation strategies.
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6.1.6 ScriptGen and generic interaction models

This work has evaluated the usage of protocol learning techniques on a relatively
simple problem, the generation of interaction models to handle deterministic ex-
ploit tools. Future work might expand the scope of this evaluation to benign
protocol interaction associated to a common network.

The comparison of the generated automata with the protocol specification in
case of open protocols such as HTTP or SMTP would provide a valuable benchmark
for the understanding of the real limitations of this method, and might provide
interaction models useful to domains such as automated protocol identification.

6.2 Conclusion

This work started by stating the necessity to generate quantitative and rich datasets
on Internet attack threats. We addressed a challenge only partially solved in
modern data collection techniques. The challenge derives from the combined need
to deploy a large amount of distributed sensors over the Internet with that of
achieving a sufficient level of sophistication to perform meaningful inferences. We
proposed a protocol learning technique, called ScriptGen, explicitly addressing
this challenge taking advantage of bioinformatics algorithms.

Echoing the thesis statement that opened this work, we showed that protocol
learning techniques allow the automated inference of semantics out of a set of in-
teraction samples and the generation of responders able to correctly handle future
instances of the same activity. We showed how these techniques can be used to
dynamically react to the appearance of previously unknown activities, incremen-
tally refining the protocol knowledge. We have implemented our techniques in
a distributed infrastructure able to take advantage of a set of sensors deployed
worldwide to contribute to the generation of a common knowledge on the proto-
cols behavior. Taking advantage of existing memory tainting techniques and of a
shellcode emulator, we have enabled our infrastructure to correctly emulate code
injection attacks and collect rich information on their structure.

The SGNET framework resulting from this work is associated with some char-
acteristics that render the generated dataset of extreme interest. Firstly, the obser-
vations are based on protocol agnostic assumptions. No a priori knowledge on the
nature of the expected observations is used, allowing the infrastructure to poten-
tially observe also unknown exploitation attempts. Secondly, the system achieves
very high scalability and is suitable for the distributed deployment of a high num-
ber of sensors. The dataset analyzed in this work is based on the observations of
23 sensors, but this number can be increased in the future in order to provide a
unique perspective on the Internet network attacks. Finally, the operation of the
data collection framework and its integration with external data sources offer a
wide perspective over the characteristics of the various phases of the code injection
attacks. We offer in this work a comprehensive analysis of the observed exploita-
tions based on simple clustering techniques that is likely to open new avenues for
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future research.
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7.1 Définition du problème

La sécurité est un concept très générique qui comprend de nombreuses et
différentes perspectives. L’une des principales menaces actuelles qui pèse sur la
sécurité Internet est la prolifération de ce qu’on appelle “malware” ou logiciels
malveillants. Le concept de ver, un logiciel qui peut se propager de façon autonome,

Mois

D
im
e
n
s
io
n

F. 7.1 – Evolution de la dimension des botnets



138 Chapitre 7. Résumé en Français

a été introduit avec le ver Morris en 1988. Les propagations de vers comme Blaster
et Slammer coexistent avec la croissance de botnets dont le comportement est
coordonné par un canal dit de “Commande et Contrôle” (C&C).

La communauté des chercheurs en sécurité informatique a développé un nombre
considérable d’initiatives pour le suivi et l’observation de ces menaces afin de
construire des défenses adéquates. Récemment, des conjectures ont été faites sur
l’accroissement de l’efficacité des attaques en ce qui concerne leur capacité à com-
promettre des systèmes vulnérables et à accroître la taille de leurs botnets [?]. La
Figure 1.1 montre l’évolution du nombre de bots suivis par la fondation Shadow-
Server au cours de la période comprise entre Septembre 2007 et Septembre 2008.
La fondation ShadowServer recherche et surveille les canaux de C&C basés sur
les sites de discussion en ligne (IRC), et collecte des informations sur le nombre
de participants. Ces chiffres montrent une croissance régulière de la population
de botnets suivis, croissance qui a commencé en Janvier 2008 et qui suggère une
amélioration des méthodes de propagation. Cette tendance va en parallèle avec
l’augmentation de la sophistication des techniques utilisées par les logiciels mal-
veillants afin d’interdire leur analyse et leur identification [Nazario 2007]. On ob-
serve également une croissance exponentielle des différentes versions des logiciels
malveillants [Turner 2008].

Malheureusement, les informations obtenues après analyse de ces menaces sont
souvent fondées sur des bases de données privées ou, pire, ne sont que des conjec-
tures. Cette situation mène à un intérêt croissant pour la collecte de données pour
la compréhension et l’étude des techniques de propagation utilisées par les logi-
ciels malveillants. Comment tel ou tel malware se propage-t-il ? L’augmentation
de l’efficacité ou de la sophistication de sa propagation s’accompagne-t-elle éga-
lement d’un recours à des techniques d’exploitation plus complexes ? Quels types
de vulnérabilités sont effectivement utilisées pour compromettre les victimes ?

Répondre à ces questions est une tâche très complexe qui requiert de s’attaquer
à trois problèmes distincts : prendre en compte la diversité des applications, la
diversité spatiale des attaques et parvenir à glaner des informations suffisamment
riches sur les phénomènes à étudier.

7.1.1 La diversité des applications

L’Internet est aujourd’hui un système extrêmement complexe en raison de la
sophistication des applications et des protocoles associés. La popularité croissante
des applications Web complexes et le nombre croissant de clients pour les appli-
cations réseau, telles celles permettant de faire transiter la voix sur les réseaux
IP (VoIP), ouvre un éventail de vulnérabilités aux attaquants et des moyens d’en
tirer avantage. Selon [Turner 2008], 2134 vulnérabilités ont été découvertes dans la
deuxième moitié de 2007, 73 % en sont considérées comme facilement utilisables à
des fins malveillantes. Les applications concernées par ces problèmes varient entre
applications Web, navigateurs Web, autres types de clients, des serveurs et des
applications locales. Chaque classe d’applications a des caractéristiques différentes
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qui peuvent être exploitées de différentes façons par les attaquants. Le processus
nécessaire au suivi de ces activités est donc spécifique à chaque classe.

Ce travail aborde ce problème en s’intéressant à une catégorie spécifique d’ac-
tivités : les attaques d’injection de code côté serveur. Pour cette classe, nous dé-
veloppons une technique pour apprendre les protocoles et gérer la diversité des
applications impliquées dans ces activités. A la différence d’autres travaux dans
le domaine, nous choisissons d’éviter toutes les hypothèses sur la nature des ob-
servations et nous essayons d’être agnostique en ce qui concerne la structure des
protocoles.

7.1.2 Diversité spatiale

Les travaux précédents qui se sont intéressés à la collecte d’informations sur
l’évolution des attaques dans l’Internet [Dacier 2004a, Cooke 2004] ont montré que
les différents réseaux sont caractérisées par des profils d’attaque très différents.
La production de données d’observations issus d’un seul point d’observation en
un seul réseau conduit à la génération d’informations pertinentes à ce réseau
spécifique, mais pas représentatives de tout l’espace des addresses IP.

Cette diversité spatiale nécessite l’extension des points d’observation à un plus
grand nombre de sous-réseaux afin de couvrir autant que possible l’espace des
addresses IP. Autant que possible, il est nécessaire de réduire au minimum le coût
d’installation et de maintenance de chaque point de collecte de données.

7.1.3 Richesse des informations

Les informations recueillies doivent être suffisamment riches pour permettre
des inférences raisonnables sur la nature et les causes des phénomènes observés.
Par exemple, des informations de haut niveau sur les événements observés dans
un réseau ne sont pas suffisantes pour pouvoir différencier les divers types d’acti-
vité. [Yegneswaran 2004] explique que la discrimination entre les différents types
d’activités n’est possible que par le biais d’une conversation assez longue avec les
attaquants.

7.2 Objectifs

Ce travail aborde les questions précédemment exposées pour une classe spé-
cifique d’attaques : les tentatives d’injection de code côté serveur. Une technique
qui s’est avérée extrêmement efficace dans la surveillance et la collecte de données
pour cette classe d’attaques est l’utilisation de pots de miel. Les pots de miel sont
des ressources réseau dont le seul objectif est d’être contactées par les attaquants,
qui ne connaissent pas le type de réseau et donc ignorent la nature particulière des
systèmes contactés. Les pots de miel, par conséquent, ont la capacité de collecter
seulement le trafic suspect. Ces techniques sont largement utilisées pour la collecte
des données sur les activités suspectes. Cependant, leur emploi nécessite de faire
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un choix entre représentativité des données collectées d’une part et leur richesse
d’autre part

Postulat : Les techniques de pots de miel existantes sont incapables
de collecter à la fois des données représentatives et suffisamment
riches.

Les deux points principaux de ce postulat peuvent être expliqués de la façon
suivante :

– Pour générer un ensemble de données représentatif des attaques présentes
sur l’Internet, les points d’observation choisis pour les pots de miel doivent
être les plus nombreux possibles. Cette nécessité a conduit à la mise sur pied
d’installations distribuées de pots de miel comme celle du projet Leurré.com
[Pouget 2006] dans lequel les plateformes de pots de miel sont installées par
des volontaires intéressés à exploiter les informations recueillies.

– La nature distribuée de ces installations de pots de miel a un impact direct
sur la richesse des informations recueillies. Les technologies de pots de miel
nécessaires pour permettre un niveau suffisant d’interaction avec les clients
sont soit trop chers par rapport à la nature de l’architecture, soit sont fondées
sur des hypothèses sur la nature des attaques qui compromettent la généralité
des observations.

Le travail présenté dans cette thèse offre une solution nouvelle qui permet de
répondre à ces deux exigences contradictoires à l’aide d’une nouvelle technologie.

Hypothèse. Les malwares qui se propagent automatiquement sont les
principales causes des attaques d’injection de code observées par
les pots de miel. Il est possible d’interagir de façon satisfaisante
avec des attaques de ce type à l’aide de programmes déterministes
qui définissent, de façon prédeterminée, les réponses à fournir aux
requêtes des clients attaquants.

Ce travail se base sur cette hypothèse de départ pour générer une méthode
automatique d’analyse des protocoles, appelée ScriptGen, capable d’apprendre la
structure des protocoles grâce à un ensemble d’échantillons d’interaction observés
sur le réseau. Elle va déduire partiellement la sémantique du protocole étudié. L’ap-
proche est agnostique par rapport à la structure du protocole : aucune hypothèse
n’est faite quant à la structure des messages échangés et, a fortiori, quant à leur
sémantique. Ceci permet d’éviter tout biais dans les observations produites. Les
émulateurs utilisent une machine à états finis représentant les interactions connues.
Cette approche permet, pour un coût faible, d’interagir avec les clients suffisament
longtemps pour voir leur attaque complète. Cela permet également, grâce à ce coût
faible, d’installer un grand nombre de pots de miels capables d’extraire de riches
informations sur la nature des activités observées.

Objectif. Dans cette thèse, nous voulons montrer que :
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– L’apprentissage automatique des protocoles utilisés dans les attaques
est possible, et permet la génération d’émulateurs capables de gérer
correctement les futures instances des mêmes activités.

– L’apprentissage automatique peut être utilisé pour accroître progres-
sivement les connaissances sur les interactions d’un protocole et ré-
agir dynamiquement à de nouvelles activités.

– L’apprentissage automatique permet aux pots de miel de gérer à
faible coût les activités connues et requiert l’utilisation de techniques
plus coûteuses seulement pour la gestion d’activités encore incon-
nues. Le processus d’apprentissage donne un haut niveau d’évoluti-
vité à un coût raisonnable en termes de complexité.

– L’augmentation du niveau d’interactivité des pots de miel peut être
combinée avec des techniques de “memory tainting” et d’émulation
de code pour traiter les attaques d’injection de code et télécharger
des échantillons de logiciels malveillants.

– Ces techniques peuvent être utilisées pour générer une base de don-
nées riches d’informations précieuses sur les stratégies de diffusion
de malware et de la durée de vie des menaces.

La résolution des points précédents nous a conduit à créer SGNET, un système
distribué de pots de miel basé sur des techniques d’apprentissage automatique des
protocoles. A ce jour, SGNET se compose de 23 capteurs installés dans différents
réseaux en Amérique, en Europe, en Asie et en Australie. SGNET est ouvert à
toutes les institutions interessées à bénéficier des informations qu’il collecte.

7.3 ScriptGen

Le concept de pot de miel a été introduit en 1995. Dans [Halme 1995] les auteurs
introduisent l’idée dans le cadre de la “redirection d’intrusion” pour attirer les
attaquants d’un réseau vers un autre spécialement préparé pour les étudier. Ce
concept a été formalisé par L. Spitzner dans [Spitzner 2002] de la façon suivante :

‘ Un pot de miel est une ressource d’un système d’information dont la seule
valeur réside dans le fait qu’elle soit utilisée de façon non autorisée.”

Cette définition rassemble tout type de ressource réseau dont la valeur réside
dans l’interaction avec les attaquants, éventuellement jusqu’au point d’être com-
promise par des attaques. La mise en oeuvre de ce concept dépend d’un certain
nombre de variables, dont la plus importante est la nature de l’activité recherchée.
Un pot de miel peut servir à observer le comportement des serveurs de réseau
lorsqu’ils sont contactés par des assaillants (pot de miel côté serveur). De façon
duale, un pot de miel peut essayer d’observer le comportement des applications
clientes qui interagissent avec des serveurs malveillants (pot de miel côté client).
Ce travail se concentre sur la première de ces deux classes.

La plupart des implémentations de pot de miel côté serveur émulent la pré-
sence des ressources du réseau sur un ensemble d’adresses IP inutilisées. Un tel
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bloc d’adresses IP non utilisées est communément appelé “dark space” dans la
littérature. Ces adresses peuvent appartenir soit à un réseau d’entreprise comme
moyen de détection des intrusions ou des anomalies internes, soit à un réseau
routable pour l’étude des attaques venant de l’Internet. L’usage d’adresses IP qui
ne sont pas associées à d’autres services permet de filtrer le trafic bénin et de se
concentrer sur ce qui est malveillant.En effet, mis à part les erreurs de configura-
tion, il n’existe aucune raison de voir ces machines contactées pour de “bonnes
raisons”. Il faut noter que cette approche conduit à un biais dans la nature des
activité observables. En effet, les attaques visant une machine spécifique, le serveur
web, mail ou DNS de l’entreprise par exemple, ne seront pas vues par les pots de
miel. En d’autres termes, ces approches ne permettent de voir que les attaques qui
n’ont pas de connaissance préalable de la configuration du réseau qui’ls veulent
attaquer.

L’état de l’art comprend un grand nombre d’implémentations différentes de
ce concept. Ces implémentations diffèrent principalement par la façon dont elles
émulent la présence d’un hôte sur le réseau étudié. Spitzner [Spitzner 2002] classe
les différentes solutions en fonction de leur niveau d’interaction avec l’attaquant,
en parlant de pot de miel à basse ou à haute interaction.

Les pots de miel de basse interaction sont généralement implémentés sous
forme d’application de faible ou moyenne complexité qui imitent la présence de
services réseau sans jamais offrir aux attaquants de réelle vulnérabilité dont ils
puissent tirer parti. Souvent, ces pot de miel utilisent des scripts pour simuler la
présence de services réseau IP tels httpd, ftpd ou encore smtpd. L’émulation d’un
pot de miel à basse interaction peut être aussi simple que d’associer un socket à
plusieurs portes et terminer les connections dès qu’elles sont établies.

Le niveau avec lequel un pot de miel émule des ressources peut varier considéra-
blement selon les différentes implémentations, offrant des perspectives différentes
sur les attaques observés. Chaque approche tente d’établir un compromis entre la
complexité de la solution et la richesse des informations collectées.

Les pots de miel à haute interaction utilisent un système d’exploitation complet
pour engager la conversation avec les attaquants. Les systèmes de virtualisation
comme VMware [URL 46] ou qemu [Bellard 2005] sont des solutions simples pour
l’émulation de plusieurs instances d’un système d’exploitation sur une seule res-
source physique.

S’appuyant sur des systèmes d’exploitation réels, les pots de miel à haute inter-
action offrent le plus haut niveau possible d’interactivité avec les assaillants. Dans
les pots de miel à basse interaction, la création de scripts d’emulation est souvent
coûteux ou presque impossible. Dans le cas des pots de miel a haute interaction, ce-
pendant, l’émulation de protocoles n’est pas un problème. Un nouveau problème
se pose cependant dans la mise en oeuvre de ces systèmes, à savoir le confine-
ment des activités malveillantes qui peuvent y avoir lieu. En effet, par définition,
ces systèmes sont vulnérables, vont être compromis et vont être utilisés par des
personnes ou logiciels malveillants. Il est important de contrôler les pots de miel
pour ne pas qu’ils servent, par exemple, à mener à bien des actes répréhensibles.
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1 MAIL FROM : <alice@eurecom.fr
2 MAIL FROM : <bob@eurecom.fr>
3 MAIL FROM : <carl@free.fr>

T. 7.1 – Exemple d’entrée pour l’algorithme

La responsabilité légale du propriétaire du pot de miel se trouverait engagée dans
ces méfaits, ce que personne ne souhaite. Différentes solutions existent mais ces
techniques ne sont pas complètement fiables ou nécessitent un coût prohibitif au
cours de la vie opérationnelle du système, notamment en termes de surveillance et
de reconfiguration.

Nous proposons dans ce travail une nouvelle technique permettant de combiner
les avantages de l’interaction des pots de miel à haute interaction (la richesse des
informations recueillies) avec celles d’un pot de miel à basse interaction (facilité
d’installation et de maintenance). ScriptGen peut observer une série d’interactions
entre un client et un serveur et construire à partir de cet ensemble d’échantillons
un modèle, sous forme de machine à états finis. Ce modèle peut être utilisé pour
interagir ensuite avec les attaquants du même type. Nous allons voir comment
ce modèle peut être utilisé avec un technique de proxy pour un apprentissage
incrémental des nouvelles activités en profitant de l’interaction avec un pot de miel
à haute interaction pour générer des échantillons d’activités encore inconnues.

7.3.1 Analyse par régions

Le point central de ScriptGen est l’algorithme d’analyse par régions. L’analyse
par régions est responsable de la reconstruction partielle d’une structure séman-
tique du protocole à partir d’un ensemble d’échantillons. L’entrée de l’algorithme
d’analyse par régions est constituée d’un ensemble de messages considérés comme
étant sémantiquement similaires. Un exemple d’entrée est indiquée dans le tableau
7.1. Il s’agit de la commande “MAIL FROM” dans le protocole SMTP. Il est très
important de comprendre que cette entrée est libre de toute sémantique et est consi-
dérée par l’algorithme comme un ensemble de séquences d’octets non structurés.

Pour reconstruire la sémantique du protocole depuis cette entrée, l’algorithme
d’analyse par régions utilise des algorithmes bio-informatiques pour produire l’ali-
gnement des échantillons. Cette idée s’inspire du travail fait dans le “ Protocol In-
formatics Projet” de Marhsall Beddoe [Beddoe 2005]. Beddoe a proposé d’utiliser
ces techniques d’alignement pour simplifier les opérations d’ingénierie inverse des
protocoles.

Les techniques d’alignement sont utilisées en bio-informatique pour trouver des
chevauchements dans deux ou plusieurs séquences d’acides aminés afin d’identi-
fier des gènes spécifiques. Il existe deux techniques différentes : alignement local
et global. Les algorithmes d’alignement local tentent d’identifier la plus proche
sous-séquence entre deux séquences, puis tentent d’identifier les similitudes entre
les deux voies d’évolution. Les algorithmes d’alignement global sont utilisés pour



144 Chapitre 7. Résumé en Français

0
A

0
A

0
A

0
A

0
A

0
A

2
A

2
A

2
A

0
A

0
A

0
A

0
A

0
A

0
A

0
A

0
A

0
A

0
A

0
A

2
A

3
A

3
A

3
A

3
A

0
A

2
A

3
A

0
A

2
A

2
A

3
A

MAIL FROM: <alice@eur   ecom.fr>
MAIL FROM: <  bob@ orange   .fr>
MAIL FROM: < carl@ fr  ee   .fr>

Région fixe

Région variable

Variabilité
Type

[3-5] [1-2] [0-3] [0-3]
MAIL FROM: <     @  r   e   .fr>

F. 7.2 – Synthese des regions

identifier les alignements du début à la fin d’une séquence, et sont utilisés lorsque
deux séquences sont très similaires.

En bref, les algorithmes d’alignement permettent d’identifier les chevauche-
ments entre les séquences grâce à l’introduction d’espaces. D’un point de vue du
protocole, l’insertion d’espaces permet l’identification des parties invariantes du
protocole même en présence de champs de longueurs variables. Par exemple, en
appliquant un algorithme d’alignement à l’ensemble des séquences dans le Tableau
7.1 on obtient les résultats suivants :

MAIL FROM : <alice@eur___ecom.fr>
MAIL FROM : <__bob@_orange___.fr>
MAIL FROM : <_carl@_fr__ee___.fr>

L’algorithme d’analyse par régions utilise la production des algorithmes d’ali-
gnement pour reconstruire une structure sémantique du protocole. L’algorithme
définit un ensemble de caractéristiques pour chaque octet des séquences alignées,
comme c’est montré dans la Figure 7.2. Pour chaque octet, on détermine :

– Type d’octet. A chaque octet, nous assignons un type qui correspond au type
le plus fréquent pour cet octet dans tous les échantillons. Le type, ASCII ou
binaire, est déterminé sur base des valeurs les plus fréquentes pour ces deux
types.

– La variabilité de l’octet. Pour chaque octet, nous estimons la gamme des
valeurs données par les différents échantillons et nous distinguons trois caté-
gories : octets avec valeur constante, octets dont le contenu est complètement
aléatoire, et octets dont le contenu prend un nombre limité de valeurs.

Nous définissons une région comme une séquence d’octets contigues ayant
les mêmes caractéristiques en termes de type et de variabilité statistique. Nous
supposons, et validons par après, qu’une région est équivalente avec une bonne
probabilité à une zone du protocole. Nous distinguons des régions fixes ou va-
riables en fonction des caractéristiques de variabilité d’octets qui la composent.
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alice
bob
carl
david
eric
...

eurecom
orange
free

eurecom
eurecom

...

alice
david
eric

MAIL FROM: <     @eurecom.fr>

MAIL FROM: <     @       .fr>

bob
carl
...

orange
free
...

MAIL FROM: <     @       .fr>

MAIL FROM: <*@*.fr>

MAIL FROM: <*@*.fr>

MAIL FROM: <*@eurecom.fr>

F. 7.3 – Micro-clustering

Le contenu des régions fixe est toujours le même dans tous les échantillons
de la conversation. Ces régions sont associées à des commandes sémantiquement
importantes ou à des séparateurs.

Les régions dites variables contiennent des valeurs qui, soit, sont complète-
ment aléatoires, soit varient dans une gamme limitée de possibilités. Les premières
peuvent être associées avec des estampilles ou des cookies, avec un valeur séman-
tique très faible. Les deuxièmes ont un valeur sémantique plus importante, qui est
conservée par le biais du processus de “ micro-cluster” représenté dans la Figure
7.3.

Le processus d’analyse par région exécute deux types différents de regroupe-
ment sur les échantillons d’entrée. Nous les appelons ‘micro-clustering” et “macro-
clustering”. Le processus de “macro-clustering”, exécuté en parallèle à l’alignement
de séquences, regroupe les échantillons en fonction de leur contenu. Si l’entrée des
séquences montre de profondes différences dans le contenu de leurs octets, ces sé-
quences seront associées à des groupes distincts. La division en groupes est ensuite
affinée grâce à l’étape de “micro-clustering”. Pour toutes les régions variables asso-
ciées à un ensemble limité de valeurs, le processus de “micro-clustering” regroupe
ces séquences en fonction des valeurs, diverses mais en nombre limité, associées a
cette région.

La synthèse des régions peut générer pour chacun de ces groupes une structure
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sémantique partielle du protocole, avec une sémantique semblable à celui des
expressions régulières : les invariants du protocole sont préservés, tandis que les
parties aléatoires sont associées avec des valeurs de “don’t care”. Par exemple,
nous pouvons déduire de la Figure 7.2 l’expression régulière suivante :

(MAIL FROM : <)([[ :alnum :]]{3,5})(@)
([[ :alnum :]]{1,2})(r)([[ :alnum :]]{0,3})(e)([[ :alnum :]]{0,3})(.fr>)

Nous invitons le lecteur intéressé par les détails de l’algorithme à se référer à la
Section 3.1.

7.3.2 Génération de machines à états finis

L’algorithme de synthèse par régions permet la génération des abstractions sé-
mantiques depuis une série de demandes des clients sémantiquement similaires. En
pratique, cet algorithme est capable de générer automatiquement des expressions
régulières en mesure de reconnaitre les instances du même type de demande.

ScriptGen représente l’interaction du protocole comme une machine à états finis
représentant le langage du protocole du point de vue du serveur. Formellement,
une machine à états finis ScriptGen est un tuple (S,ΣC,ΣS,T,L, s,A) composé de

– un ensemble fini d’états (S)
– un ensemble fini appelé dictionnaire du client (ΣC)
– un ensemble fini appelé dictionnaire du serveur (ΣS)
– une fonction de transition (T : S × ΣC → S)
– une fonction d’étiquetage (L : S→ ΣS)
– un état initial (s ∈ S)
– un ensemble d’états finaux (A ⊂ S)
La portée de l’interaction modélisée par cette machine à états finis correspond

à une connexion TCP complète : le début de la connexion correspond à l’état initial
de la machine à états, la déconnexion est associée à un état final. Les transitions sont
associés avec des expressions régulières générées par l’algorithme d’analyse par
régions, et permettent de suivre l’évolution de l’état de la connection en fonction
de la demande envoyée par le client. Chaque état est étiqueté avec la réponse à
renvoyer au client. Il faut remarquer que la définition de la machine à états finis
pourrait être facilement inversée pour la modélisation des interactions client, mais
ceci est en dehors du contexte de ce travail.

Un certain nombre d’implémentations de pots de miel, comme Honeytank
[Vanderavero 2004] et iSink [Yegneswaran 2004] choisissent de maximiser leur ca-
pacité à répondre à un grand nombre de requêtes, c’est à dire à simuler l’existence
d’un grand nombre de pots de miel, en utilisant des approches sans mémoire. Ceci
n’est pas notre cas puisque nous devons mémoriser, pour chaque connection, sa
position dans notre machine à états. Ce choix est justifié par la nécessité de lan-
cer un groupement sémantique des échantillons en entrée. Nous avons vu qu’une
condition préalable à l’algorithme d’analyse par régions est l’utilisation de requêtes
sémantiquement similaires en entrée.
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ScriptGen réalise la plus grande partie du groupement sémantique grâce à la
notion de contexte liée à la connexion TCP. Par exemple, dans le protocole SMTP,
différentes étapes d’interaction correspondent à différentes positions au sein de
la connexion. Ainsi, dans une communication normale, la commande “HELO”
précède toujours la commande “BYE” et est généralement localisée au début de la
connexion. Une approche sans mémoire ne nous permettrait pas de tirer parti de
cette information.

Chaque nouvel échantillon en entrée est classé par l’algorithme en profitant de
la machine à états finis en tant que “ossature sémantique”. Chaque message de
la conversation est comparé avec la machine à états finis actuel et associé a l’état
correspondant. Dans le cas d’une nouvelle activité qui n’est pas encore représentée
dans la machine à états finis, il y aura une demande spécifique du client qui ne
correspondra pas à une transition depuis l’état courant. La demande sera alors
ajoutée à la liste “ bucket” de cet état. Elle devra être traitée ultérieurement par
l’algorithme d’analyse par régions afin de générer une nouvelle transition. Deux
types de contexte sont pris en compte pour le classement sémantique :

– Contexte passé. Résultat de l’interaction précédant la demande prise en
compte. Il sera géré par comparaison avec les transitions de la machine à
états finis existante selon le processus décrit ci-dessus.

– Contexte futur. La sémantique d’une requête client peut être en outre clas-
sée en fonction de ses effets sur les réponses futures du serveur. Toutes les
demandes associées au “ bucket” d’un état donné sont ensuite regroupées
en fonction de la taille des réponses suivantes générées par le serveur dans
l’échantillon d’interaction.

La répétition récursive du processus d’ajout de l’échantillon et de génération
de la transition par le biais de l’algorithme d’analyse par régions permet d’affiner
la machine à états finis et d’ajouter des nouvelles connaissances.

Il est important de comprendre que la qualité des inférences de l’algorithme
d’analyse pour les régions dépend de la taille et de la “qualité” de l’échantillon.
Dans un souci de brièveté, nous n’abordons pas ce problème ici. Il est traité en
détail dans le chapitre 3.

7.4 SGNET : mise en oeuvre de ScriptGen

SGNET est la mise en oeuvre pratique de la notion de ScriptGen dans un système
distribué de pots de miel. SGNET incorpore les caractéristiques de ScriptGen et les
exploite pour obtenir des pots de miel qui sont :

– Agnostiques par rapport aux protocoles.
– Capables de réagir automatiquement aux nouvelles attaques (0-day attack).
– Capables d’émuler et de recueillir des informations détaillées sur le compor-

tement des attaques, l’insertion du code shell et le chargement des échan-
tillons de code malveillant.
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Capteurs Générateurs dés échantillons

Emulateurs de code shell

SG1

SG2

SG3

SF1 SF2 SF3

SH1 SH2

GW
Réseau 
Privé

F. 7.4 – Architecture de SGNET

Un prototype a été mis en oeuvre et évalué au cours de ce travail. L’installation
a recueilli des données pendant 8 mois en profitant d’un total de 23 installations
de capteurs dans différents continents (Europe, Etats-Unis, Asie, Australie). Les
informations ont été collectées dans une base de données et enrichies grâce à
diverses sources de données supplémentaires.

Dans ce travail, nous considérons une attaque d’injection de code comme com-
posé de 4 étapes, dérivées à partir d’un modèle initialement défini par Crandall et
al. in [Crandall 2005].

– Epsilon. L’interaction de réseau nécessaire pour contrôler le flux de contrôle
des applications vulnérables et le conduire vers le point où il est possible de
prendre le contrôle.

– Gamma. Les octets utilisés par l’interaction réseau pour détourner le flux de
contrôle vers un point sous le contrôle de l’attaquant.

– Pi. L’ensemble des octets de réseau exécutés par la victime comme consé-
quence du détournement du flux de contrôle.

– Mu. L’échantillon de code malveillant téléchargé comme conséquence de
l’exécution de π.

SGNET émule l’interaction avec les clients pendant toutes ces phases par le biais
de divers outils : ScriptGen pour l’émulation de l’interaction associée à l’exploit
(epsilon) ; Argos [Portokalidis 2006] pour l’identification des attaques d’injection
de code ; Nepenthes [Baecher 2006] pour l’identification et l’émulation du payload
π et le téléchargement des logiciels malveillants µ.

7.4.1 Architecture

L’architecture de SGNET, représentée en Figure 7.4, est composée de quatre
éléments.

Capteurs : les pots de miel qui, installés dans divers réseaux, interagissent avec
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les clients malveillants. Les capteurs sont responsables de l’interaction réseau avec
les attaquants au cours de chaque étape de l’attaque. Le trafic peut être produit
localement par les capteurs ou peut être généré par les entités à distance et passé
aux capteurs à travers un tunnel de paquets. Les capteurs utilisent la machine à
états finis générée par ScriptGen pour interagir avec les clients pour toutes les
activités “connues” par le modèle d’interaction actuel.

Générateurs d’échantillons : si un capteur reçoit une requête inconnue, il ne
sera pas en mesure d’interagir correctement avec l’attaquant : cette requête n’aura
pas de transition associée a l’état courant dans la machine à états finis. Dans ce
cas, le capteur ne peut décider de la bonne réaction de façon indépendante. Nous
proposons dans ce travail un algorithme de proxy qui permet au capteur de tirer
parti d’un pot de miel de haute interaction pour continuer la conversation avec
l’agresseur. Le pot de miel agit comme un proxy entre l’attaquant et un générateur
d’échantillons, dérivé d’Argos [Portokalidis 2006]. Cette session fournira un nouvel
échantillon de l’interaction qui peut être utilisé pour améliorer les connaissances
de la machine à états finis. Les caractéristiques d’Argos nous permettent également
d’obtenir des informations sur le détournement des flux de contrôle de la victime
et, à partir de là, de “comprendre” le stade γ.

Emulateurs de code shell : après avoir identifié le payload π, nous utilisons
des modules d’un autre logiciel, Nepenthes [Baecher 2006]. Ces modules sont ca-
pables, à l’aide d’heuristiques, de déterminer ce que fait le code shell injecté, sans
pour autant l’exécuter. Grâce à cette information, Nepenthes peut imiter l’inter-
action associée à π. Concrètement, cela revient à télécharger le malware complet
sans prendre le risque de lancer de commandes inopportunes. Encore une fois,
l’interaction est passé aux capteurs via un tunnel.

Passerelle : la passerelle est l’élément central de l’architecture.Elle agit en qualité
d’équilibreur de charge pour les requêtes de service émis par les capteurs vers les
composants du réseau interne. En outre, le portail rassemble tous les échantillons
générés par l’interaction entre les capteurs et les générateurs d’échantillons et
génère des nouvelles versions de la machine à états finis en utilisant les algorithmes
précédemment décrits. Quand une nouvelle version de la machine à états finis est
produite, le portail met à jour la connaissance de tous les capteurs actifs.

L’interaction entre ces composants est assurée par un protocole ad-hoc inspiré
du protocole HTTP, appelé Peiros. Ce protocole permet aux capteurs de générer
des demandes de service aux générateurs des échantillons et aux émulateurs de
code shell, et peut transférer des paquets IP bruts pour la mise en oeuvre d’algo-
rithmes de proxy. En outre, le protocole permet à la passerelle de mettre à jour la
connaissance des capteurs quand une nouvelle version de la machine à états fini a
été générée. Plus de détails sur ce protocole peuvent être trouvés dans l’annexe A.

Les informations recueillies par les différentes composantes de SGNET nous
aident à construire un scénario complet sur les attaques d’injection de code obser-
vées par le prototype expérimental. L’interaction avec la machine à états finis de
ScriptGen permet de classer les différentes activités en fonction des chemins suivis
lors de l’émulation. Le processus d’apprentissage résultant de l’interaction avec les
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générateurs d’échantillons fournit des informations sur les attaques d’injection de
code terminés avec succès. Pour chaque attaque d’injection de code, les émulateurs
de code shell nous permettent de comprendre l’effet du payload π et de téléchar-
ger des logiciels malveillants. Toutes ces informations sont intégrées et corrélées
dans une base de données. Cette base de données est enrichie par les informations
générées par des outils externes. Parmi les principaux nous relevons les suivants :

– Informations sur les alertes générés par Snort ([Roesch 1999])
– Informations sur le comportement du code malveillant (Anubis [Bayer 2005])
– Informations sur la capacité des solutions antivirus commerciales à identifier

le code malveillant téléchargé (VirusTotal [URL 45])
– Informations sur les entêtes PE des code malveillantes (PEfile [URL 7])
Toutes ces informations sont intégrées dans la base de données, et permettent

de maximiser les informations disponibles sur chaque événement observé par
l’architecture.

7.4.2 La base des données de SGNET

Dans ce travail, nous proposons une analyse des données générées par le proto-
type durant la période d’expérimentation de 8 mois. Cette analyse se concentre sur
deux perspectives spécifiques d’intérêt à ce travail : comprendre le comportement
de ScriptGen face à des attaques réelles ( Section 4.4) et étudier la structure des
attaques d’injection de code observées ( Chapitre 5 ).

L’information générée par SGNET nous offre la possibilité d’étudier et valider la
capacité de ScriptGen à modéliser l’interaction des protocoles dans des conditions
réalistes. En particulier, cette information nous permet de répondre aux questions
suivantes :

– Est-ce que ScriptGen améliore l’évolutivité ? En théorie, l’interaction entre
les capteurs et les générateurs d’échantillons est seulement nécessaire pour
gérer les activités qui ne font pas déjà partie du modèle de la machine à états
finis. L’augmentation progressive de la “ connaissance” des activités au cours
de ce processus d’apprentissage devrait permettre de réduire la fréquence
d’usage des coûteux générateurs d’échantillons. Cette capacité dépend de la
diversité des activités observées, et de la rapidité avec laquelle ScriptGen est
capable d’apprendre. En étudiant notre système dans des conditions réelles,
nous pouvons confirmer si la pratique confirme les hypothèses théoriques.

– Quel type d’activités ScriptGen peut il apprendre ? Nous montrons com-
ment les activités observées par ScriptGen appartiennent à des catégories
différentes. Nous observons, en particulier, des processus d’attaque présents
sur une large échelle, impliquant un nombre considérable de victimes et
d’agresseurs mais nous voyons aussi un certain nombre d’activités de courte
durée associées à un nombre limité de victimes et d’agresseurs. Grâce à ces
données réelles, nous pouvons montrer comment ScriptGen est en mesure
d’apprendre correctement les deux types d’activités, bien que, dans le der-
nier cas, le temps disponible pour l’apprentissage soit limité et le nombre
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d’échantillons soit remarquablement réduit.
– Comment évolue la taille de la machine à états finis ? Il est intéressant

d’étudier, grâce aux données réelles, l’évolution de la taille de la machine à
états finis. Si la diversité des activités Internet était excessive, la taille de cette
machine pourrait exploser et rendre la méthode inopérante. Nous montrons
que, en pratique, la taille de la machine à états finis est le résultat du chevau-
chement d’un processus de mise en place de nouvelles branches et de “mort”
d’autres. Le résultat de cette combinaison donne un nombre relativement
constant de branches actives à tout moment.

En parallèle à la validation de ScriptGen, nous avons présenté dans le chapitre
5 une technique d’extraction de données pour l’étude des attaques d’injection de
code dans leurs 4 étapes : epsilon, gamma, pi et mu. La nécessité de l’introduction
de la technique de l’extraction de données découle de la nécessité d’identifier
correctement l’invariant dans différentes dimensions.

Par exemple, l’identification correcte d’une famille de logiciels malveillants
n’est pas un problème trivial. Récemment, nous avons observé un recours crois-
sant à des techniques de polymorphisme dans les logiciels malveillants. Chaque
diffusion de logiciels malveillants comme Allaple [URL 12] modifie son contenu.
En prenant deux échantillons différents, déterminer leur appartenance au même
type devient un problème complexe. Nous proposons donc une technique d’ana-
lyse qui étudie les différentes caractéristiques de chaque observation ( dans le cas
des logiciels malveillants leur structure et leur comportement lors de l’exécution )
et tente d’identifier l’invariant de chaque classe.

En appliquant cette technique à chaque dimension epsilon-gamma-pi-mu d’une
attaque, nous pouvons étudier les relations entre les différentes dimensions et iden-
tifier, par exemple, les logiciels malveillants qui peuvent se propager en exploitant
différents exploits. De plus, on identifie un nombre de cas dans lesquels un seul
type d’exploitation est utilisé pour la propagation d’un grand nombre de différents
types de logiciels malveillants, suggérant la réutilisation de code entre les différents
développeurs de logiciels malveillants.

7.5 Conclusion

Ce travail trouve son origine dans la nécessité de disposer de bases de données
quantitatives et riches sur les menaces d’Internet. Nous avons considéré un pro-
blème qui n’était que partiellement résolu par les techniques de collecte de données
appartenant à l’état de l’art. Ce problème est associé au besoin conjoint d’instal-
ler un grand nombre de capteurs en différents réseaux de l’Internet et d’obtenir
un niveau de sophistication suffisant pour générer des déductions significatives
sur l’origine des menaces. Nous avons proposé une technique d’apprentissage
automatique de protocoles, appelée ScriptGen, en utilisant des algorithmes de
bio-informatique pour trouver une solution à ce problème.

Nous avons montré que que l’apprentissage des techniques de protocole per-
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met de déduire automatiquement la sémantique à partir d’un ensemble des échan-
tillons d’interaction et de générer des émulateurs capables de gérer correctement
les instances futures d’une même activité. Nous avons également montré comment
ces techniques peuvent être utilisées pour réagir dynamiquement à l’apparition de
requêtes encore inconnues et d’affiner, ainsi, les connaissances sur le protocole de
manière incrémentale. Nous avons mis en oeuvre ces techniques dans une architec-
ture en mesure d’exploiter une série de capteurs installés dans plusieurs réseaux
de différents continents afin de contribuer à la création de modèles d’interaction.
Grâce à la combinaison de plusieurs techniques existantes, nous avons bâti une
infrastructure capable d’émuler correctement les attaques d’injection de code et de
recueillir des informations détaillées sur leur structure.

L’infrastructure résultant de ce travail nous permet d’obtenir des informations
extrêmement intéressantes sur les logiciels malveillants et sur la façon dont ils sont
diffusés. Tout d’abord, les observations sont basées sur des techniques agnostiques
en ce qui concerne la structure du protocole. Il n’y a pas d’hypothèse sur la structure
ou la sémantique des interactions qui seront étudiées. Deuxièmement, le système
démontre une grande évolutivité et est adapté à l’installation d’un grand nombre
de capteurs. La base de données utilisée dans ce travail est basé sur les observations
de 23 capteurs, mais ce nombre peut être augmenté considérablement à l’avenir
pour générer une perspective unique sur les attaques Internet. Enfin, le fonction-
nement de cet environnement pour la collecte de données et son intégration avec
des sources extérieures offrent une vaste perspective sur les caractéristiques des
différentes phases d’attaques par injection de code. Nous proposons dans ce travail
une étude détaillée des attaques observées en tirant parti des simples techniques
de regroupement qui vont ouvrir des perspectives intéressantes pour les futurs
travaux de recherche.
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The Peiros protocol

The Peiros protocol is an ad-hoc HTTP-like protocol generated as a consequence to
our need to close coordination among the different SGNET entities. As described
in Section 4.3.3, we can identify three main types of remote interaction among the
different components of the SGNET distributed deployment.

• SGNET sensors are independent entities for most of their operation. We
have although presented two cases in which a sensor in unable to continue
its interaction independently and needs to rely on an external entity. The
sensor needs to interact with a sample factory to handle previously unknown
activities, and needs to interact with a shellcode handler whenever a code
injection attack is observed. This type of interaction thus involves a sensor
actively requesting a service to a remote entity.

• In both the previously described interactions, we need to be able to tunnel raw
packets among the sensors and the involved entities. We need the tunneling
to be flexible and friendly with respect to any possible firewall on the path
between the two endpoints.

• The SGNET gateway needs to keep the state of the sensor up-to-date by
pushing to them any update of the current FSM knowledge as soon as it is
produced. Moreover, for the ease of maintenance we want to centralize the
configuration of the sensors (open ports, high interaction profile associated
with each IP, ...). The gateway thus needs primitives to inform the sensors of
their configuration upon their appearance in the infrastructure.

We decided to integrate all these different requirements into the specification
of a single distributed protocol developed ad-hoc for this specific scenario. This
choice allowed us to achieve the maximum amount of freedom in the definition of
the requirements without being bound to the specifications or limitations of any
existing general-purpose solution. The reader might wonder if this freedom is
sufficient to justify the increased overhead of developing an ad-hoc protocol with
respect to reusing existing solutions. As is described in the appendix, the complex-
ity of the Peiros protocol has been kept to a minimum, making the implementation
of Peiros-enabled components extremely easy.

The Peiros interaction mimics the syntax and the structure of the HTTP protocol.
Every Peiros interaction is composed of the following phases:
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1. Connection establishment. During this phase, the client connects to a Peiros-
enabled service and queries it about its capabilities. The capabilities indicate
what kind of services the Peiros service is willing/enabled to offer to the client.

2. Service request. According to the capabilities discovered in the connection
establishment, the Peiros client requires a given service to the server. The
server will accept the service request if the capability is implemented and if
it has enough resources to handle such request. If a Peiros entity implements
a capability, it can in fact refuse to serve a certain client to prevent resource
exhaustion.

3. Service interaction. Upon acceptance of the service request, the interaction
between the client and the server is dependent on the type of capability being
served.

4. Connection drop. Either party can terminate at any moment the service by
sending a Peiros-level termination message. The other participant to the
interaction is forced to acknowledge the termination and stop interacting.
The TCP connection does not need to be terminated and can be used for
further service requests.

Within this work, we have taken advantage of 4 distinct capabilities to imple-
ment all the required interaction among the different SGNET entities.

C1: sample-generation. This capability is associated with the basic operation
of a sample factory, and provides to the sensors the ability to instantiates a high
interaction profile with a certain network configuration and proxy raw packets to
and from its network interface.

C2: shellcode-detection. This capability is complimentary to capability C1,
and consists in the ability to take advantage of memory tainting techniques for the
identification of successful code injection exploits and the position of the first byte
of the associated shellcode. Capability C2 was separated by C1 to allow coexis-
tance of high interaction techniques supporting memory tainting with other more
scalable high interaction techniques unable to perform tainting of the control flow.
While this diversification exists in the protocol specification, it is not currently im-
plemented in the running prototype. We will thus refer in the rest of the document
to the combined capability C1+C2.

C3: shellcode-handling. A Peiros-enabled service implementing this capa-
bility offers to the clients the ability to analyze and emulate the behavior of a
binary shellcode sample. The client can thus provide to the server a byte sequence
corresponding to the identified shellcode as well as some contextual information
about its network configuration, and receive: 1) a notification of recognition of the
shellcode; 2) the required network conversation to emulate the shellcode behavior
taking advantage of the same tunneling capabilities offered by capability C1.

C4: update-subscriber. A client can use this capability to subscribe to a “feed”
of FSM updates for a given honeypot IP address. Such subscription implicitly
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allows the client to receive information on the open ports: upon reception of a FSM
model for a given port, the client will bind a socket on that port and associate it to
the received model. This allows the gateway to control the configuration of all the
sensors and the profiles associated with each IP.

A.1 Protocol syntax

The Peiros protocol specification defines a standard set of messages. Each message
is defined according to an HTTP-like syntax. Depending on the message type, the
message might require an answer from the recipient of the message. The grammar
of a Peiros message can be generically be described as follows:

literal ::=
(letter | digit | accepted_special) *

spaced_literal ::=
literal (‘ ’ literal) *

number ::=
digit *

letter ::=
lowercase | uppercase

lowercase ::=
‘a’...‘z’

uppercase ::=
‘A’...‘Z’

digit ::=
‘0’...‘9’

accepted_special ::=
‘#’ | ‘.’ | ‘-’ | ‘_’

newline ::=
‘\r\n’

literal_list ::=
literal ( ‘,’ literal ) *

option ::=
literal ‘:’ ( spaced_literal | literal_list )
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option_list ::=
option ( newline option ) * newline

directive ::=
‘HEAD’
| ‘HELO’
| ‘BYE’
| ‘TRANS’
| ‘ALERT’
| ‘PSH’

message ::=
directive [ literal_list ] newline [ option_list ] newline data

answer ::=
number spaced_literal newline [ option_list ] newline data

Each Peiros message is composed of a header, containing a directive identifica-
tive of the message type and of one or more lines of options, and of a data section
separated from the header by an empty line. The data section has no terminator,
and its end is deduced by a “Content-Length” option in the header that is manda-
tory if the length of the data section is different from 0. Depending on the message
type, a message can expect a mandatory anser from the other party involved in
the conversation. The answer has a structure similar to that of the message, excep-
tion made for its first line, in which the directive is replaced by a numerical code
following the same conventions used in the HTTP protocol.

Follows a brief overview of the different Peiros message types, the associated
required options and their utilization context.

A.1.1 HEAD message

The HEAD message is used by Peiros client to query a server about its capabilities.
In the HEAD options, the client declares its hostname and its client version.

HEAD\r\n
Name: woody\r\n
Version: SGNET sensor v2.0\r\n
\r\n

The response to a HEAD message is mandatory, and if successful provides in
its options the list of capabilities implemented by the server.
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201 Features Available\r\n
Name: woody\r\n
Version: sgProxy v1.0.0\r\n
Offers: sample-generation,shellcode-detection,shellcode-processing\r\n
\r\n

A.1.2 HELO message

The HELO message requires the instantiation of a given capability and, in case
of positive response from the Peiros service provider, starts a Peiros session. The
client is required to provide its hostname and its IP address in order to allow its
identification.

HELO sample-generation+shellcode-detection\r\n
Name: woody\r\n
Address: 28.34.38.188\r\n
Version: ScriptGen v1.0.0\r\n
\r\n

The Peiros service can respond to such request with a 2xx code in case of
availability to offer the required service, with a 4xx code in case of unknown
capability, or with a 5xx code in case of insufficient resources to accept the request.

A.1.3 BYE message

The BYE message can be generated by any of the participants to the Peiros session
as a request to terminate it. After having emitted a BYE message, the corresponding
peer is not allowed any more to transmit messages inherent to the session. Upon
reception of a BYE message, a peer needs to acknowledge the termination of the
session by replying with a BYE message. No option is required for this message.

A.1.4 TRANS message

TRANS messages are used within Peiros sessions related to capabilities C1 and
C3 to tunnel raw IP packets among the two Peiros peers. Differently from the
previously analyzed messages, TRANS messages normally have a payload (the
binary content of the packet being transferred) and do not require an answer. Every
TRANS message must be associated with the transmission of a single packet.

TRANS\r\n
Content-length: 31\r\n
\r\n
32154435 46543wywetg sdgsdg swd
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A.1.5 ALERT message

Alert messages are generated by Peiros service providers implementing capability
C2 to alert a sensor about a successful code injection attack during the sample
generation phase. Thanks to memory tainting techniques, sample factories imple-
menting capability C2 are able to identify the location in the network stream of the
first byte of the shellcode. This message is used to notify the sensor about its loca-
tion. Optionally, the C2 service provider can provide in the message data the whole
shellcode payload π identified through tainting techniques. While this shellcode
identification capability is not yet supported by the current Argos-based sample
factory, it is likely to be exploited in the future as an attempt to use memory tainting
techniques for the identification of the whole shellcode. This should overcome the
limitations of the heuristics discussed in Section 4.3.2.2 on page 4.3.2.2.

ALERT\r\n
ID: 2684cd46694cf98e195042739902a34f\r\n
Offset: 22\r\n
\r\n

Through the utilization of the ID and Offset attributes the service provider is
able to notify the sensor about the MD5 hash of the packet containing the first byte
of the shellcode as well as the offset within the packet of that first byte. It is up to
the client to cache the packets and their hashes to reconstruct from this information
the exact location in the network stream.

A.1.6 PSH message

PSH messages have exactly the same structure of the TRANS messages. While
TRANS messages are used to exchange raw network packets over the Peiros layer,
the PSH messages are used to transfer serialized representations of the FSM knowl-
edge. In implementing the capability C4, the service provider uses these messages
to asynchronously push to the subscribed client updates of the FSM knowledge.

A.1.7 ANALYZE message

Analyze messages are used to provide to a shellcode handler a sample of shellcode.
The shellcode handler can respond to these requests with a 2xx code if the shellcode
was recognized correctly, with a 4xx code if the shellcode was not recognized, or
with a 5xx code if busy. In the submission of the shellcode the client needs to
provide to the shellcode handler contextual information on the network setup in
which the shellcode was collected. This information is used by the heuristics for
the analysis of the shellcode sample.
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ANALYZE\r\n
Source: 1.2.3.4:1342\r\n
Destination: 192.88.33.142:445\r\n
Content-length: 22\r\n
\r\n

A.2 Protocol features

The Peiros protocol as presented until now has two interesting characteristics worth
being detailed more in depth: its support for application level proxies as capability
aggregators and its extensibility to support new capabilities.

In the definition of the Peiros protocol we have tried to be as generic as possible
in the definition of each capability, decoupling the protocol interaction from the
practical implementation of each functionality. The protocol definition allows
an extremely interesting concept: that of capability aggregators. The SGNET
architecture described in Figure 4.6 on page 79 proposes the concept of a gateway
as an application level proxy between the sensors and the internal service providers.
From a Peiros point of view, the gateway is a Peiros-enabled server providing to
sensors a set of capabilities that is the union of the capabilities of the managed service
providers. If the gateway manages three sample factories (capability C1+C2) and
two shellcode handlers (capability C3) it will be seen by the sensor as an entity
offering capabilities C1+C2+C3. Upon a request for capability C3, the gateway
will forward the Peiros communication to one of the managed shellcode handlers
in a completely transparent way.

The flexibility of the Peiros protocol with respect to this kind of aggregations
shows its potential ability to support more complex infrastructures. For instance,
multiple gateways might be deployed in different locations of the Internet and
each installed sensor might choose among the gateways the one with lowest load
or lowest network delay.

Moreover, the structure of the Peiros protocol is extensible to support other
types of interactions among the different peers involved in SGNET. For instance, in
the current prototype all the information collected by the sensors on the observed
attacks is stored into local log files that are collected and parsed for the inclusion in
the central database on a daily basis. Such data collection pattern is not compatible
with the requirements of an early warning system, in which the reaction time to
new threats needs to be in the order of minutes. In such a scenario, we could
envisage the creation of a capability C5, realtime-logger, which allows the sensor
to push in real time all the collected information to the central gateway.
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Horasis: the Python API

The dataset taken into consideration in this work is offered to all the partners of
the project. Every research or industrial entity interested in taking advantage of
the information collected by SGNET is welcome to join the project by installing
a sensor. This pattern, carried out by the Leurré.com project [Pouget 2006] and
now extended to SGNET as an evolution of the initial Leurré.com deployment has
attracted numerous participants from all over the world.

A time consuming task in the management of the these datasets consists in
providing support to the users. Historically, the access to the these datasets was
provided to interested partners either through a web interface or through direct
SQL access via an SSH account. While the latter was adequate to the task of
building automated analysis scripts, a set of inconvenients were identified.

• The full SQL schema of the SGNET database is rather complex. Also, it often
rapidly evolves: new analysis methods are generated and new data feeds
are continuously added. The impact on the external user of such complexity
is noticeable, and often leads to misunderstanding of the semantics of the
various concepts or of the content of the tables.

• Errors of a single user can have repercussions on the availability of the whole
system. For instance, an erroneous SQL query can lead to an excessive cost
on the system draining the DBMS resources.

For the above reasons, an alternate solution was investigated. This led to the
generation of an API, called horasis, and based on python. The horasis API allows
users to access most of the information stored in the database through a set of object
instantiations and method calls. No knowledge is required on the underlying SQL
schema: the library transparently converts all the python interaction into SQL
queries used to reply to the user. The horasis library provides a unified interface
to both the Leurré.com “first generation” dataset and to the additional information
generated by the SGNET deployment.

All the information presented in this work was generated through python
scripts exploiting the features of this API.

The horasis library provides to the user three main concepts: DB objects, itera-
tors and predicates.
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B.1 DB objects

The horasis DB objects are python objects wrapping the main concepts defined in
the SGNET DB schema. Examples of these objects are, for instance, the Malware
object or the TinySession object. Each of these objects is instantiated using an
identifier, for instance the MD5 hash for a Malware object or the internal identifier
for a TinySession object. Upon instantiation, the library queries the database to
retrieve information on the existance of the instance in the dataset, and retrieve
those informations available at low cost (e.g. without complex joins among tables).
For instance, the MALWARE table in the SGNET schema contains the MD5 of each
sample, its size in bytes and similar attributes. When verifying the existance of
the MD5 in the table, the library can retrieve all the content of the row without
significantly affecting the performance. All this information thus appears as an
attribute of the object instance. Each object also provides a set of methods that,
once invoked, generate more expensive SQL queries and eventually link to other
DB objects. For instance, a malware object provides a method to retrieve the list of
all the InjectionAttack events that led to its download.

B.2 Iterators

The horasis iterators are used to iterate in time over a collection of DB objects.
For instance, the CodeInjectionIterator allows the iteration over all the code
injection objects detected by the deployment over a certain period of time.

B.3 Predicates

Finally, the horasis library provides a set of predicates used to query the database.
Two different types of predicates are provided:

• Interrogative predicates. They are used to query the database about the
available knowledge on a certain event. For instance, the predicate whois_ip
queries the database about all the available knowledge on a certain IP address
(if known). These predicates return an activity identifier, an opaque identifier
used within the SGNET database to identify a certain class of activities.

• Explicative predicates. They are used to retrieve additional information
about an activity identifier generated by the interrogative predicates. For
instance, the predicate activity_srcnetblocks provides the list of CIDR
network prefixes containing at least an attacking source that performed a
given activity class.
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Behavior
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Behavioral info (Anubis)

AV info (VirusTotal)

Session

Malware
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Type (handled by SG/handled via proxying)
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Shellcode
Download characteristics (protocol, source IP, ...)
Optional shell emulation information

PE info (pefile library)

Code 
injection

Figure B.1: Horasis library

B.4 Examples

Figure B.1 shows an example of the type of information that can be retrieved from
the SGNET dataset taking advantage of the horasis library. Taking advantage of
an iterator, the data consumer can have access to all the code injections observed
by the infrastructure for a given timeframe. Each of these events is associated with
three main objects: the code injection itself, the SG session and the malware object.
Through this information, the user can retrieve detailed knowledge on the various
phases of a code injection attack.

Summarizing, the horasis library allows data consumers to easily take ad-
vantage of most of the SGNET dataset without an in-depth knowledge of the
underlying SQL schema.
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